Download citation
Download citation
link to html
(μ-Benzene-1,2,4,5-tetra­carboxyl­ato-κ2O1:O4)bis­[aqua­bis(2,2-methyl­propane-1,3-diamine-κ2N,N′)nickel(II)] methanol disolvate tetra­hydrate, [Ni2(C10H2O8)(C5H14N2)4(H2O)2]·2CH4O·4H2O, (I), is dinuclear, with ele­mental units built up around an inversion centre halving the benzene-1,2,4,5-tetra­carboxyl­ate (btc) anion, which bridges two symmetry-related NiII cations. The octa­hedral Ni polyhedron is completed by two chelating 2,2-methyl­propane-1,3-diamine (dmpda) groups and a terminal aqua ligand. Two methanol and four water solvent mol­ecules are involved in a number of N—H...O and O—H...O hydrogen bonds which define a strongly bound two-dimensional supra­molecular structure. The structure of catena-poly[[[bis­(2,2-methyl­propane-1,3-diam­ine-κ2N,N′)nickel(II)]-μ-pyridine-2,5-dicarboxyl­ato-κ3O5:N,O2-[(2,2-methyl­propane-1,3-diamine-κ2N,N′)nickel(II)]-μ-pyridine-2,5-dicarboxyl­ato-κ3N,O2:O5] octa­hydrate], {[Ni2(C7H3NO4)2(C5H14N2)3]·8H2O}n, (II), is polymeric, forming twisted chains around three independent Ni centres, two of which lie on inversion centres and the third in a general position. There are three chelating dmpda ligands (one disordered over two equally populated positions), which are each attached to a different cation, and two pyridine-2,5-dicarboxyl­ate (pdc) anions, both chelating the Ni centre in general positions through an –O—C—C—N– loop, while acting as bridges to the remaining two centrosymmetric Ni atoms. There are, in addition, eight noncoordinated water mol­ecules in the structure, some of which are disordered.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109021404/ln3133sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109021404/ln3133Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109021404/ln3133IIsup3.hkl
Contains datablock II

CCDC references: 742227; 742228

Comment top

Multidimensional structures built up around metal centres bridged by carboxylate linkers are extremely appealing systems, both structurally, due to the variation in topologies which they can give rise to (Eddaoudi et al., 2001) and for their potential applications, viz. in medicine, chemical separation and heterogeneous catalysis, and occasionally due to their eventual electronic or magnetic properties (Go et al., 2005; Shi et al., 2004)

The presence of two potentially coordinating O atoms in the carboxylate group usually favours the stability of these compounds, and at the same time they assume different coordination modes to metallic centres (synsyn, synanti and antianti), which can lead to a variety of structural types. In general, it appears that synsyn conformations lead to binuclear compounds, while the remaining two conformations favour polymeric entities (Eddaoudi et al., 2001, 2002; Rowsell & Yaghi, 2004; Wang et al., 1999; Whitlow, 1973). In addition, the presence of donor solvent molecules such as water, amines etc. in the vicinity of the COOH groups frequently promotes the formation of supramolecular structures through extended hydrogen-bonding networks, sometimes in the form of porous systems having applications in size-selective sorption, host–guest recognition, catalysis etc. (Coughlin & Lippard, 1984; Colacio et al., 1992, 1994).

Here, we report the structures of the title compounds, [Ni2(btc)(dmpda)4(H2O)2].2CH4O.4H2O, (I) (Fig. 1), and [Ni2(pdc)2(dmpda)3].8H2O, (II) (Fig. 2), where btc is the benzene-1,2,4,5-tetracarboxylate anion, pdc is the pyridine-2,5-dicarboxylate anion and dmpa is the 2,2-methylpropane-1,3-amine ligand. Complexes (I) and (II) are based on the same NiII cation complexed to the same chelating dmpda ligand, but where different (though closely related) bridging agents have been used to link the metal centres, btc in (I) and pdc in (II). Although both polycarboxylates behave in a rather similar fashion (basically as one-dimensional linkers), the resulting structures are different in a number of interesting aspects.

Compound (I) is basically constructed out of dimers built up around an inversion centre, and the asymmetric unit is one half of a dimer. The inversion centre bisects the btc anion, which in turn bridges two opposite symmetry-related NiII cations, involving in this linkage only two carboxylate O atoms (one on each side) out of the eight available; the remaining six are in principle free to take part in hydrogen bonding (see below). Two dmpda groups chelate the metal centre through their amino groups, providing four N atoms for the octahedral environment of the metal, the sixth position being occupied by a terminal aqua ligand. The Ni—N bonds are fairly homogeneous, in a narrow range of 2.089 (3)–2.114 (3) Å, while the two Ni—O bonds present extreme values: 2.081 (2) Å for the Oaqua and 2.173 (2) Å for the Obtc. Finally, the structure is stabilized by one methanol and two water solvent molecules (Table 1). As a result, there are in the structure 15 H atoms potentially available for hydrogen bonding, six in the three water molecules, eight in the four amino groups and one in the methanol unit. 14 of these form significant interactions, generating a very complex hydrogen-bonding scheme, leading to a two-dimensional structure lying parallel to (100) (Fig. 3). These sheets are well separated along [100] and interact only weakly.

Structure (II) is more complex. There are three independent Ni atoms, two of them (Ni1 and Ni2) lying on inversion centres and the third (Ni3) in a general position but displaying a non-crystallographic twofold pseudo-symmetry. This is shown in Fig. 4, which displays a fit of the group onto its rotated image around an axis bisecting the Ndmpda—Ni—Ndmpda angle and passing through the cation. The largest deviation corresponds to the C75—C74 pair, with a misfit of 0.14 Å. There are also three dmpda ligands, each one identified herein by a different terminal digit and attached to a different cation: unit 1 to atom Ni1, unit 2 to atom Ni2, and unit 3, disordered over two equally populated positions, to atom Ni3. Completion of the coordination is achieved by two pdc anions (terminal digits 4 and 5), both of them chelating atom Ni3 through an –O—C—C—N– loop, while acting as bridges to the remaining two centrosymmetric Ni atoms (one Ni atom each). The resulting polyhedra are rather regular, as is usual in nickel structural chemistry. Irrespective of the type of ligand (X = C, O or N), the range of Ni—X distances is narrow [Ni1: 2.064 (3)–2.091 (3) Å; Ni2: 2.076 (3)–2.089 (3) Å; Ni3: 2.040 (3)–2.113 (3) Å]. The bond angles in the centrosymmetric polyhedra are also tightly bunched around ideal values [Ni1 90±3.23 (14)° and Ni2 90±4.05 (14)°], with those for Ni3 being more dispersed due to the closed pdc chelating bite [cis: 77.88 (11)–96.03 (13)°; trans: 167.91 (10)–175.03 (12)°].

This N,O-chelating bite in (II) is a very usual binding behaviour for pyridine-2,5-dicarboxylate. Out of a total of 173 cases where the ligand coordinates a metal (February 2009 update of the Cambridge Structural Database; Allen, 2002), 168 have combinations of the aforementioned chelating bite plus a diversity of µ2, µ3 and µ4 bridging modes; in particular, a total of 40 correspond to the µ2-N,O:O' type displayed in (II). In only five structures does the pyridine N atom not participate in coordination.

The bridging mode exerted by both pdc anions leads to a twisted chain structure of the ···Ni1···Ni3···Ni2···Ni3···Ni1··· type (with atoms Ni1 and Ni2 lying on inversion centres, and atom Ni3 on a general position) running parallel to the [121] direction (Fig. 5). These chains propagate in a rather non-interacting way and the space between them is filled by eight independent solvent water molecules (two of them heavily disordered). In spite of not having been able to determine the positions of the water H atoms with certainty (they have not been included in the model), the large number of short O···O contacts present in the structure, with a minimum of three contacts below 3.00 Å per solvent water molecule (see Supplementary Material for the most relevant ones), strongly suggests a very complex hydrogen-bonding scheme involving them and connecting the chains together. This `eagerness' for interaction shown by the water molecules in (II) contrasts with the much feebler participation displayed by the N—H groups; only half of the available N—H groups are involved in (extremely weak) N—H···O interactions (Table 2).

Experimental top

Complex (I) was synthesized as follows. 1,2,4,5-Benzenetetracarboxylic acid (H4btc) (0.254 g, 1 mmol) was added slowly to an aqueous solution (20 ml) of NaOH (0.16 g, 4 mmol). Nickel acetate tetrahydrate (0.497 g, 2 mmol) was dissolved in water (20 ml) and added to the above solution. The resulting mixture was stirred for 10 min, followed by the addition of a methanolic solution (Volume?) of 2,2-dimethyl-1,3-diamine (dmpda) (0.204 g, 2 mmol). Single crystals of (I) adequate for X-ray diffraction studies were obtained by slow concentration of the solution. Complex (II) was obtained in the same way, using pyridine-2,5-dicarboxylic acid (H2pdc) (0.167 g, 1 mmol) and NaOH (0.080 g, 2 mmol).

Refinement top

H atoms bonded to C or N atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93–0.97 Å and N—H = 0.90 Å. In (I), H atoms bonded to O atoms were located in a difference map and refined with restrained distances [O—H = 0.85 (1) Å and H···H = 1.30 (2) Å] and kept riding in the final cycles. In structure (II), these H atoms could not be confidently found and accordingly were not included in the model. In spite of this, a large number of short Owater···Oany distances clearly attributable to hydrogen bonding are present in the structure (see Supplementary Material). In all cases, Uiso(H) = 1.2 or 1.5Ueq(parent). The structure of (II) presents some disorder: one of the three chelating dmpda ligands is disordered over two nearly equally populated positions, as is one of the solvent water molecules (O7WA/O7WB). A second water molecule appears to be much more severely disordered, and could only be modelled as five complementary fragments, each with low site occupancy (O8WA to O8WE). The site-occupation factors of the disordered water O atoms were refined for a few cycles and then kept fixed, while those of the disordered dmpda ligand were refined continuously with the occupation factor sum for the two conformations constrained to unity. Some soft metric and atomic displacement parameter restraints were applied to the disordered atoms of the dmpda ligand [SADI and DELU instructions in the SHELXL program (Sheldrick, 2008) with a standard uncertainty of 0.01].

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2002); data reduction: SAINT-NT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. The asymmetric unit is shown in bold. [Symmetry code: (i) 1 - x, 1 - y, 2 - z.]
[Figure 2] Fig. 2. Molecular view of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. The asymmetric unit is shown in bold. Doubly primed atoms are in the disordered dmpa ligand. [Please check added text] [Symmetry codes: (i) 1 - x, 2 - y, 1 - z; (ii) -x, -y, -z.]
[Figure 3] Fig. 3. A packing view of (I), projected down [100], showing the two-dimensional hydrogen-bonded structure parallel to (100). Methyl groups and carbon-bound H atoms have been omitted for clarity.
[Figure 4] Fig. 4. Schematic drawing of the Ni3 coordination polyhedron in (II) fitted to its twofold rotated image.
[Figure 5] Fig. 5. A packing view of (II), projected down [001]*, showing the `twisted' chain structure of the ···Ni1···Ni3···Ni2···Ni3···Ni1··· type. H atoms not involved in hydrogen bonding have been omitted for clarity.
(I) (µ-benzene-1,2,4,5-tetracarboxylato- κ2O1:O4)bis[aquabis(2,2-methylpropane-1,3-diamine- κ2N,N')nickel(II)] methanol disolvate tetrahydrate top
Crystal data top
[Ni2(C10H2O8)(C5H14N2)4(H2O)2]·2CH4O·4H2OF(000) = 1020
Mr = 948.44Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5277 reflections
a = 10.6492 (10) Åθ = 2.0–27.8°
b = 20.914 (2) ŵ = 0.86 mm1
c = 11.3422 (11) ÅT = 295 K
β = 109.662 (2)°Block, pink
V = 2378.8 (4) Å30.44 × 0.25 × 0.18 mm
Z = 2
Data collection top
Bruker SMART? CCD area-detector
diffractometer
5385 independent reflections
Radiation source: fine-focus sealed tube3837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 28.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1413
Tmin = 0.72, Tmax = 0.86k = 2626
19918 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.6703P]
where P = (Fo2 + 2Fc2)/3
5385 reflections(Δ/σ)max = 0.002
267 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni2(C10H2O8)(C5H14N2)4(H2O)2]·2CH4O·4H2OV = 2378.8 (4) Å3
Mr = 948.44Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.6492 (10) ŵ = 0.86 mm1
b = 20.914 (2) ÅT = 295 K
c = 11.3422 (11) Å0.44 × 0.25 × 0.18 mm
β = 109.662 (2)°
Data collection top
Bruker SMART? CCD area-detector
diffractometer
5385 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3837 reflections with I > 2σ(I)
Tmin = 0.72, Tmax = 0.86Rint = 0.048
19918 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.03Δρmax = 0.70 e Å3
5385 reflectionsΔρmin = 0.36 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.49088 (4)0.654109 (17)0.57319 (3)0.03640 (15)
N110.6720 (3)0.61646 (12)0.5715 (2)0.0386 (6)
H11A0.70360.59140.63970.046*
H11B0.65330.59060.50440.046*
N210.5936 (3)0.73411 (13)0.6744 (3)0.0501 (7)
H21A0.53540.76690.65840.060*
H21B0.61540.72490.75630.060*
C110.7824 (4)0.65854 (17)0.5690 (3)0.0532 (9)
H11C0.75650.68000.48850.064*
H11D0.85930.63210.57560.064*
C210.8233 (4)0.70874 (18)0.6712 (3)0.0566 (9)
C310.7157 (5)0.75754 (18)0.6540 (4)0.0710 (12)
H31A0.75170.79270.71120.085*
H31B0.69120.77440.56950.085*
C410.8676 (6)0.6789 (3)0.7999 (4)0.0949 (16)
H41A0.89530.71190.86220.142*
H41B0.94080.65040.80850.142*
H41C0.79480.65550.81080.142*
C510.9444 (6)0.7441 (3)0.6559 (5)0.0991 (17)
H51A0.91830.76440.57530.149*
H51B1.01460.71410.66280.149*
H51C0.97530.77600.72020.149*
N120.3052 (3)0.69258 (12)0.5668 (2)0.0458 (7)
H12A0.29300.68250.63930.055*
H12B0.31180.73540.56490.055*
N220.3958 (3)0.56994 (12)0.4862 (2)0.0402 (6)
H22A0.44650.55340.44420.048*
H22B0.39940.54210.54770.048*
C120.1831 (4)0.67383 (17)0.4640 (3)0.0511 (9)
H12C0.18840.69060.38600.061*
H12D0.10710.69380.47790.061*
C220.1583 (4)0.60234 (17)0.4493 (3)0.0515 (8)
C320.2579 (3)0.56994 (17)0.3997 (3)0.0507 (8)
H32A0.23000.52600.37890.061*
H32B0.25550.59110.32290.061*
C420.1611 (4)0.5721 (2)0.5732 (4)0.0655 (11)
H42A0.13620.52790.55980.098*
H42B0.09940.59420.60410.098*
H42C0.24930.57540.63320.098*
C520.0201 (4)0.5925 (2)0.3510 (4)0.0782 (13)
H52A0.01870.61040.27260.117*
H52B0.04580.61340.37800.117*
H52C0.00080.54760.34070.117*
O130.4945 (3)0.37125 (11)0.7813 (2)0.0598 (7)
O230.4176 (3)0.45791 (11)0.66911 (18)0.0528 (6)
O330.6662 (3)0.53808 (12)0.7788 (2)0.0591 (7)
O430.5091 (2)0.61214 (9)0.75342 (17)0.0415 (5)
C130.5420 (3)0.56236 (14)1.0119 (3)0.0373 (7)
H130.57070.60461.01980.045*
C230.5276 (3)0.52969 (13)0.9013 (3)0.0349 (7)
C330.4853 (3)0.46644 (13)0.8894 (3)0.0354 (7)
C430.4636 (3)0.42975 (14)0.7692 (3)0.0403 (7)
C530.5714 (3)0.56189 (14)0.8019 (3)0.0382 (7)
O140.1542 (4)0.9576 (2)0.5474 (4)0.1225 (14)
H140.20800.98190.60110.184*
C140.1312 (8)0.9871 (5)0.4301 (7)0.175 (4)
H14A0.11261.03170.43590.263*
H14B0.05640.96710.36850.263*
H14C0.20890.98260.40590.263*
O1W0.4758 (3)0.69819 (11)0.4044 (2)0.0606 (7)
H1WA0.41780.72710.37410.073*
H1WB0.48990.67810.34500.073*
O2W0.3493 (3)0.81188 (11)0.3432 (2)0.0612 (7)
H2WA0.39910.84170.33350.073*
H2WB0.30490.82610.38750.073*
O3W0.2679 (4)0.84070 (14)0.5420 (3)0.0822 (9)
H3WA0.34730.84920.58820.099*
H3WB0.21620.87260.53380.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0606 (3)0.0276 (2)0.0273 (2)0.00564 (17)0.02307 (18)0.00162 (15)
N110.0600 (17)0.0329 (14)0.0285 (12)0.0016 (12)0.0220 (12)0.0027 (10)
N210.080 (2)0.0334 (14)0.0494 (16)0.0021 (14)0.0377 (16)0.0077 (12)
C110.064 (2)0.056 (2)0.048 (2)0.0095 (18)0.0293 (18)0.0097 (16)
C210.069 (2)0.054 (2)0.050 (2)0.0130 (19)0.0242 (18)0.0130 (17)
C310.105 (3)0.046 (2)0.072 (3)0.019 (2)0.044 (3)0.016 (2)
C410.123 (4)0.092 (4)0.054 (3)0.007 (3)0.010 (3)0.006 (2)
C510.102 (4)0.095 (4)0.105 (4)0.040 (3)0.042 (3)0.033 (3)
N120.0672 (19)0.0377 (15)0.0379 (14)0.0112 (13)0.0249 (14)0.0014 (12)
N220.0577 (17)0.0324 (13)0.0369 (14)0.0067 (12)0.0245 (13)0.0002 (11)
C120.060 (2)0.0437 (19)0.051 (2)0.0161 (17)0.0202 (18)0.0038 (16)
C220.054 (2)0.050 (2)0.051 (2)0.0060 (17)0.0182 (16)0.0020 (16)
C320.064 (2)0.0435 (19)0.0438 (19)0.0040 (17)0.0162 (17)0.0051 (15)
C420.069 (3)0.064 (3)0.078 (3)0.005 (2)0.044 (2)0.011 (2)
C520.063 (3)0.075 (3)0.086 (3)0.002 (2)0.012 (2)0.006 (2)
O130.125 (2)0.0273 (12)0.0353 (12)0.0033 (13)0.0375 (14)0.0026 (9)
O230.0957 (19)0.0405 (12)0.0231 (10)0.0071 (12)0.0213 (11)0.0016 (9)
O330.0860 (19)0.0531 (15)0.0580 (15)0.0210 (13)0.0503 (14)0.0217 (12)
O430.0737 (16)0.0289 (11)0.0321 (11)0.0071 (10)0.0313 (11)0.0076 (9)
C130.064 (2)0.0241 (14)0.0281 (14)0.0007 (13)0.0210 (14)0.0002 (11)
C230.058 (2)0.0278 (15)0.0250 (13)0.0036 (13)0.0210 (13)0.0021 (11)
C330.058 (2)0.0279 (15)0.0238 (13)0.0022 (13)0.0191 (13)0.0016 (11)
C430.067 (2)0.0329 (16)0.0278 (15)0.0069 (15)0.0246 (15)0.0049 (12)
C530.066 (2)0.0285 (15)0.0256 (14)0.0004 (14)0.0221 (14)0.0006 (12)
O140.131 (3)0.106 (3)0.118 (3)0.018 (3)0.026 (3)0.019 (3)
C140.175 (8)0.193 (9)0.124 (6)0.024 (6)0.005 (5)0.029 (6)
O1W0.113 (2)0.0466 (14)0.0337 (12)0.0271 (14)0.0395 (13)0.0106 (10)
O2W0.106 (2)0.0355 (13)0.0544 (15)0.0042 (13)0.0429 (15)0.0011 (11)
O3W0.117 (3)0.0624 (19)0.078 (2)0.0170 (17)0.047 (2)0.0191 (15)
Geometric parameters (Å, º) top
Ni1—O1W2.081 (2)C12—H12D0.9700
Ni1—N112.089 (3)C22—C321.517 (5)
Ni1—N222.103 (3)C22—C421.531 (5)
Ni1—N122.114 (3)C22—C521.532 (5)
Ni1—N212.114 (3)C32—H32A0.9700
Ni1—O432.1727 (18)C32—H32B0.9700
N11—C111.477 (4)C42—H42A0.9600
N11—H11A0.9000C42—H42B0.9600
N11—H11B0.9000C42—H42C0.9600
N21—C311.479 (5)C52—H52A0.9600
N21—H21A0.9000C52—H52B0.9600
N21—H21B0.9000C52—H52C0.9600
C11—C211.515 (5)O13—C431.262 (4)
C11—H11C0.9700O23—C431.226 (4)
C11—H11D0.9700O33—C531.231 (4)
C21—C311.497 (6)O43—C531.266 (3)
C21—C411.510 (6)C13—C33i1.386 (4)
C21—C511.546 (6)C13—C231.390 (4)
C31—H31A0.9700C13—H130.9300
C31—H31B0.9700C23—C331.389 (4)
C41—H41A0.9600C23—C531.515 (4)
C41—H41B0.9600C33—C13i1.386 (4)
C41—H41C0.9600C33—C431.512 (4)
C51—H51A0.9600O14—C141.412 (8)
C51—H51B0.9600O14—H140.8497
C51—H51C0.9600C14—H14A0.9600
N12—C121.478 (4)C14—H14B0.9600
N12—H12A0.9000C14—H14C0.9600
N12—H12B0.9000O1W—H1WA0.8500
N22—C321.467 (4)O1W—H1WB0.8500
N22—H22A0.9000O2W—H2WA0.8500
N22—H22B0.9000O2W—H2WB0.8500
C12—C221.518 (5)O3W—H3WA0.8501
C12—H12C0.9700O3W—H3WB0.8499
O1W—Ni1—N1186.83 (10)C32—N22—H22A106.8
O1W—Ni1—N2293.62 (10)Ni1—N22—H22A106.8
N11—Ni1—N2288.87 (10)C32—N22—H22B106.8
O1W—Ni1—N1291.02 (10)Ni1—N22—H22B106.8
N11—Ni1—N12177.65 (9)H22A—N22—H22B106.7
N22—Ni1—N1290.31 (10)N12—C12—C22115.0 (3)
O1W—Ni1—N2190.83 (11)N12—C12—H12C108.5
N11—Ni1—N2189.58 (11)C22—C12—H12C108.5
N22—Ni1—N21175.20 (10)N12—C12—H12D108.5
N12—Ni1—N2191.41 (11)C22—C12—H12D108.5
O1W—Ni1—O43177.48 (9)H12C—C12—H12D107.5
N11—Ni1—O4393.78 (9)C32—C22—C12111.3 (3)
N22—Ni1—O4388.84 (9)C32—C22—C42110.9 (3)
N12—Ni1—O4388.41 (9)C12—C22—C42110.9 (3)
N21—Ni1—O4386.73 (9)C32—C22—C52106.8 (3)
C11—N11—Ni1121.3 (2)C12—C22—C52107.5 (3)
C11—N11—H11A107.0C42—C22—C52109.3 (3)
Ni1—N11—H11A107.0N22—C32—C22114.8 (3)
C11—N11—H11B107.0N22—C32—H32A108.6
Ni1—N11—H11B107.0C22—C32—H32A108.6
H11A—N11—H11B106.7N22—C32—H32B108.6
C31—N21—Ni1119.9 (2)C22—C32—H32B108.6
C31—N21—H21A107.3H32A—C32—H32B107.5
Ni1—N21—H21A107.3C22—C42—H42A109.5
C31—N21—H21B107.3C22—C42—H42B109.5
Ni1—N21—H21B107.3H42A—C42—H42B109.5
H21A—N21—H21B106.9C22—C42—H42C109.5
N11—C11—C21115.1 (3)H42A—C42—H42C109.5
N11—C11—H11C108.5H42B—C42—H42C109.5
C21—C11—H11C108.5C22—C52—H52A109.5
N11—C11—H11D108.5C22—C52—H52B109.5
C21—C11—H11D108.5H52A—C52—H52B109.5
H11C—C11—H11D107.5C22—C52—H52C109.5
C31—C21—C41112.6 (4)H52A—C52—H52C109.5
C31—C21—C11111.2 (3)H52B—C52—H52C109.5
C41—C21—C11111.7 (4)C53—O43—Ni1127.76 (17)
C31—C21—C51106.8 (4)C33i—C13—C23121.7 (3)
C41—C21—C51107.8 (4)C33i—C13—H13119.1
C11—C21—C51106.4 (3)C23—C13—H13119.1
N21—C31—C21115.4 (3)C33—C23—C13119.3 (3)
N21—C31—H31A108.4C33—C23—C53121.4 (2)
C21—C31—H31A108.4C13—C23—C53119.0 (3)
N21—C31—H31B108.4C13i—C33—C23119.0 (3)
C21—C31—H31B108.4C13i—C33—C43119.8 (3)
H31A—C31—H31B107.5C23—C33—C43121.2 (2)
C21—C41—H41A109.5O23—C43—O13125.1 (3)
C21—C41—H41B109.5O23—C43—C33118.9 (3)
H41A—C41—H41B109.5O13—C43—C33116.0 (3)
C21—C41—H41C109.5O33—C53—O43126.2 (3)
H41A—C41—H41C109.5O33—C53—C23117.3 (3)
H41B—C41—H41C109.5O43—C53—C23116.4 (3)
C21—C51—H51A109.5C14—O14—H14106.0
C21—C51—H51B109.5O14—C14—H14A109.5
H51A—C51—H51B109.5O14—C14—H14B109.5
C21—C51—H51C109.5H14A—C14—H14B109.5
H51A—C51—H51C109.5O14—C14—H14C109.5
H51B—C51—H51C109.5H14A—C14—H14C109.5
C12—N12—Ni1119.4 (2)H14B—C14—H14C109.5
C12—N12—H12A107.5Ni1—O1W—H1WA120.5
Ni1—N12—H12A107.5Ni1—O1W—H1WB122.0
C12—N12—H12B107.5H1WA—O1W—H1WB109.3
Ni1—N12—H12B107.5H2WA—O2W—H2WB108.4
H12A—N12—H12B107.0H3WA—O3W—H3WB112.1
C32—N22—Ni1122.0 (2)
O1W—Ni1—N11—C1159.2 (2)N12—C12—C22—C52172.7 (3)
N22—Ni1—N11—C11152.9 (2)Ni1—N22—C32—C2251.1 (4)
N21—Ni1—N11—C1131.7 (2)C12—C22—C32—N2267.5 (4)
O43—Ni1—N11—C11118.4 (2)C42—C22—C32—N2256.5 (4)
O1W—Ni1—N21—C3154.9 (3)C52—C22—C32—N22175.4 (3)
N12—Ni1—N21—C31146.0 (3)N11—Ni1—O43—C5327.5 (3)
O43—Ni1—N21—C31125.7 (3)N22—Ni1—O43—C5361.3 (3)
Ni1—N11—C11—C2153.6 (4)N12—Ni1—O43—C53151.7 (3)
N11—C11—C21—C3167.4 (4)N21—Ni1—O43—C53116.8 (3)
N11—C11—C21—C4159.3 (5)C33i—C13—C23—C330.3 (5)
N11—C11—C21—C51176.6 (4)C33i—C13—C23—C53174.3 (3)
Ni1—N21—C31—C2155.0 (4)C13—C23—C33—C13i0.3 (5)
C41—C21—C31—N2157.5 (5)C53—C23—C33—C13i174.2 (3)
C11—C21—C31—N2168.6 (4)C13—C23—C33—C43177.9 (3)
C51—C21—C31—N21175.6 (3)C53—C23—C33—C438.3 (5)
O1W—Ni1—N12—C1263.2 (2)C13i—C33—C43—O23141.0 (3)
N22—Ni1—N12—C1230.4 (2)C23—C33—C43—O2336.6 (5)
N21—Ni1—N12—C12154.1 (2)C13i—C33—C43—O1338.6 (5)
O43—Ni1—N12—C12119.2 (2)C23—C33—C43—O13143.9 (3)
O1W—Ni1—N22—C3261.9 (2)Ni1—O43—C53—O3324.7 (5)
N11—Ni1—N22—C32148.7 (2)Ni1—O43—C53—C23157.65 (19)
N12—Ni1—N22—C3229.1 (2)C33—C23—C53—O3359.6 (4)
O43—Ni1—N22—C32117.5 (2)C13—C23—C53—O33114.3 (3)
Ni1—N12—C12—C2255.1 (4)C33—C23—C53—O43122.5 (3)
N12—C12—C22—C3270.6 (4)C13—C23—C53—O4363.6 (4)
N12—C12—C22—C4253.4 (4)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O33ii0.851.952.800 (5)179
N11—H11A···O330.902.082.883 (3)149
N11—H11B···O23iii0.902.113.005 (3)170
N21—H21A···O13ii0.902.343.111 (4)143
N12—H12A···O2Wiv0.902.193.012 (3)152
N12—H12B···O3W0.902.253.124 (4)165
N22—H22A···O23iii0.902.253.122 (3)164
N22—H22B···O230.902.203.086 (3)167
O1W—H1WA···O2W0.851.902.706 (3)157
O1W—H1WB···O13iii0.851.822.664 (3)174
O2W—H2WA···O43v0.851.962.761 (3)157
O2W—H2WB···O3W0.851.952.740 (4)155
O3W—H3WA···O13ii0.851.892.723 (4)167
O3W—H3WB···O140.851.922.739 (5)161
Symmetry codes: (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z+1/2; (v) x, y+3/2, z1/2.
(II) catena-poly[[[bis(2,2-methylpropane-1,3-amine- κ2N,N')nickel(II)]-µ-pyridine-2,5-dicarboxylato- κ3O5:N,O2-[(2,2-methylpropane-1,3-amine- κ2N,N')nickel(II)]-µ-pyridine-2,5-dicarboxylato- κ3N,O2:O5]octahydrate] top
Crystal data top
[Ni2(C7H3NO4)2(C5H14N2)3]·8H2OZ = 2
Mr = 898.30F(000) = 956
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.269 (3) ÅCell parameters from 6745 reflections
b = 13.622 (3) Åθ = 1.9–28.1°
c = 15.171 (4) ŵ = 0.93 mm1
α = 105.25 (3)°T = 295 K
β = 98.02 (2)°Block, light green
γ = 111.25 (3)°0.40 × 0.38 × 0.32 mm
V = 2200.8 (12) Å3
Data collection top
Bruker SMART? CCD area-detector
diffractometer
9619 independent reflections
Radiation source: fine-focus sealed tube6322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1616
Tmin = 0.68, Tmax = 0.74k = 1717
18893 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1169P)2]
where P = (Fo2 + 2Fc2)/3
9619 reflections(Δ/σ)max = 0.005
568 parametersΔρmax = 0.70 e Å3
93 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ni2(C7H3NO4)2(C5H14N2)3]·8H2Oγ = 111.25 (3)°
Mr = 898.30V = 2200.8 (12) Å3
Triclinic, P1Z = 2
a = 12.269 (3) ÅMo Kα radiation
b = 13.622 (3) ŵ = 0.93 mm1
c = 15.171 (4) ÅT = 295 K
α = 105.25 (3)°0.40 × 0.38 × 0.32 mm
β = 98.02 (2)°
Data collection top
Bruker SMART? CCD area-detector
diffractometer
9619 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
6322 reflections with I > 2σ(I)
Tmin = 0.68, Tmax = 0.74Rint = 0.038
18893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06093 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 0.98Δρmax = 0.70 e Å3
9619 reflectionsΔρmin = 0.39 e Å3
568 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50001.00000.50000.0474 (2)
Ni20.00000.00000.00000.0493 (2)
Ni30.53879 (4)0.48684 (4)0.25151 (3)0.04313 (16)
C110.2278 (4)0.9174 (5)0.4843 (5)0.110 (2)
H11A0.15190.90010.44120.132*
H11B0.23210.96770.54460.132*
C210.2216 (4)0.8128 (4)0.4981 (3)0.0728 (12)
C310.3240 (4)0.8214 (6)0.5656 (5)0.114 (2)
H31A0.32890.86930.62730.137*
H31B0.30680.74760.56950.137*
C410.2059 (6)0.7275 (5)0.4029 (4)0.129 (2)
H41A0.20220.75980.35400.194*
H41B0.13230.66180.38860.194*
H41C0.27340.70750.40640.194*
C510.1089 (5)0.7611 (7)0.5320 (6)0.158 (3)
H51A0.04160.76720.49710.237*
H51B0.12430.80010.59820.237*
H51C0.09050.68350.52180.237*
N110.3248 (3)0.9781 (3)0.4490 (3)0.0694 (10)
H11C0.32621.04670.45870.083*
H11D0.30410.94360.38590.083*
N210.4415 (3)0.8636 (3)0.5476 (3)0.0598 (9)
H21C0.44580.80600.50480.072*
H21D0.49660.88130.60160.072*
C120.1212 (4)0.1630 (3)0.0135 (4)0.0700 (12)
H12A0.19900.16660.02690.084*
H12B0.07750.21270.05080.084*
C220.0523 (4)0.2050 (3)0.0790 (3)0.0726 (12)
C320.0740 (4)0.2122 (3)0.0554 (4)0.0703 (12)
H32A0.11230.25810.01060.084*
H32B0.11930.25050.09300.084*
C420.1152 (5)0.1298 (6)0.1825 (3)0.113 (2)
H42A0.11500.05740.19160.169*
H42B0.19730.12190.19760.169*
H42C0.07280.16300.22320.169*
C520.0451 (6)0.3229 (4)0.0680 (5)0.119 (2)
H52A0.02880.36430.00220.179*
H52B0.01880.36110.09310.179*
H52C0.12070.31690.10180.179*
N120.1419 (3)0.0491 (3)0.0187 (3)0.0614 (9)
H12C0.18260.03380.02440.074*
H12D0.19250.00360.07590.074*
N220.0846 (3)0.1058 (3)0.0706 (3)0.0627 (9)
H22C0.05600.06680.13310.075*
H22D0.16410.12140.05520.075*
C230.7925 (4)0.4348 (4)0.2547 (3)0.0683 (11)
C13"0.7867 (12)0.5169 (12)0.2105 (11)0.100 (5)0.528 (7)
H13A0.86740.57670.22910.120*0.528 (7)
H13B0.76700.48070.14250.120*0.528 (7)
C33"0.6774 (7)0.3400 (7)0.2414 (7)0.082 (3)0.528 (7)
H33A0.64010.30230.17400.098*0.528 (7)
H33B0.69520.28720.26630.098*0.528 (7)
C43"0.8419 (10)0.4940 (10)0.3629 (4)0.107 (4)0.528 (7)
H43A0.79260.53080.38580.160*0.528 (7)
H43B0.92380.54850.37730.160*0.528 (7)
H43C0.83980.43970.39280.160*0.528 (7)
C53"0.8884 (14)0.3903 (19)0.2362 (16)0.131 (7)0.528 (7)
H53A0.86120.33690.17320.196*0.528 (7)
H53B0.90090.35470.28110.196*0.528 (7)
H53C0.96310.45140.24260.196*0.528 (7)
C13'0.8102 (7)0.5487 (9)0.2553 (12)0.080 (4)0.472 (7)
H13C0.85580.60080.31850.096*0.472 (7)
H13D0.86040.56750.21300.096*0.472 (7)
C33'0.7189 (5)0.3965 (10)0.3154 (7)0.070 (3)0.472 (7)
H33C0.75160.45430.37740.084*0.472 (7)
H33D0.72750.33090.32270.084*0.472 (7)
C43'0.7372 (10)0.3549 (8)0.1512 (4)0.087 (3)0.472 (7)
H43D0.65310.33980.13250.131*0.472 (7)
H43E0.74500.28610.14580.131*0.472 (7)
H43F0.77920.38920.11090.131*0.472 (7)
C53'0.9201 (11)0.441 (2)0.2845 (15)0.105 (5)0.472 (7)
H53D0.94390.46000.35200.158*0.472 (7)
H53E0.97610.49660.26580.158*0.472 (7)
H53F0.92000.36920.25450.158*0.472 (7)
N130.7037 (3)0.5685 (3)0.2290 (3)0.0590 (8)
H13G0.68890.59140.18000.071*0.528 (7)
H13H0.74470.63080.28020.071*0.528 (7)
H13I0.72610.64190.25930.071*0.472 (7)
H13J0.68960.55850.16680.071*0.472 (7)
N230.5900 (3)0.3683 (3)0.2855 (2)0.0579 (8)
H23G0.62060.39320.34870.069*0.528 (7)
H23H0.52260.30480.27070.069*0.528 (7)
H23I0.55560.30510.23480.069*0.472 (7)
H23J0.55710.35290.33240.069*0.472 (7)
C140.3787 (3)0.4777 (3)0.3734 (2)0.0425 (8)
N240.3803 (3)0.4206 (2)0.28696 (19)0.0427 (7)
C340.2822 (3)0.3301 (3)0.2339 (2)0.0448 (8)
H340.28340.29050.17410.054*
C440.1805 (3)0.2927 (3)0.2629 (2)0.0433 (8)
C540.1781 (3)0.3549 (3)0.3515 (3)0.0527 (9)
H540.10840.33190.37240.063*
C640.2785 (3)0.4498 (3)0.4077 (3)0.0525 (9)
H640.27830.49310.46640.063*
C740.4960 (3)0.5767 (3)0.4324 (2)0.0455 (8)
C840.0768 (3)0.1840 (3)0.2003 (3)0.0511 (9)
O140.5818 (2)0.5884 (2)0.39442 (17)0.0492 (6)
O240.4987 (2)0.6362 (2)0.51062 (17)0.0564 (7)
O340.0932 (2)0.1374 (2)0.1229 (2)0.0655 (8)
O440.0113 (3)0.1505 (3)0.2299 (2)0.0802 (10)
C150.4217 (3)0.5531 (3)0.1140 (2)0.0470 (8)
N250.4787 (3)0.5941 (2)0.20644 (19)0.0452 (7)
C350.4891 (3)0.6947 (3)0.2576 (2)0.0480 (8)
H350.52950.72300.32150.058*
C450.4436 (4)0.7596 (3)0.2217 (3)0.0523 (9)
C550.3869 (4)0.7171 (4)0.1272 (3)0.0686 (12)
H550.35650.75820.09940.082*
C650.3748 (4)0.6124 (4)0.0728 (3)0.0653 (11)
H650.33500.58280.00870.078*
C750.4143 (3)0.4381 (3)0.0606 (3)0.0492 (8)
C850.4576 (4)0.8713 (3)0.2877 (3)0.0594 (10)
O150.4644 (2)0.3942 (2)0.10753 (17)0.0495 (6)
O250.3604 (2)0.3933 (2)0.02580 (17)0.0631 (8)
O350.4935 (3)0.8881 (3)0.3746 (2)0.0716 (8)
O450.4301 (4)0.9348 (3)0.2541 (2)0.0934 (12)
O1W0.2874 (4)0.1899 (4)0.8222 (3)0.1322 (18)
O2W0.6800 (3)0.8342 (3)0.6318 (2)0.0779 (9)
O3W0.6088 (4)0.8852 (3)0.7944 (3)0.1130 (13)
O4W0.6150 (5)0.8356 (3)0.9608 (3)0.1285 (16)
O5W0.1007 (5)0.1392 (4)0.6761 (4)0.1458 (19)
O6W0.9254 (3)0.9186 (3)0.6268 (2)0.0927 (11)
O7WA0.1872 (12)0.2494 (8)0.5574 (9)0.098 (3)0.60
O7WB0.2144 (19)0.2054 (13)0.5488 (15)0.108 (6)0.40
O8WA0.7454 (9)0.0318 (9)0.1592 (8)0.095 (3)*0.40
O8WB0.7536 (16)0.0159 (15)0.2079 (14)0.082 (5)*0.20
O8WC0.5439 (15)0.0230 (15)0.0975 (12)0.081 (5)*0.20
O8WD0.440 (3)0.096 (3)0.002 (2)0.081 (9)*0.10
O8WE0.540 (3)0.036 (3)0.156 (2)0.072 (8)*0.10
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0507 (4)0.0406 (4)0.0512 (4)0.0227 (3)0.0104 (3)0.0123 (3)
Ni20.0347 (3)0.0441 (4)0.0499 (4)0.0065 (3)0.0084 (3)0.0018 (3)
Ni30.0442 (3)0.0392 (3)0.0377 (3)0.0116 (2)0.00780 (19)0.0100 (2)
C110.052 (3)0.116 (4)0.187 (7)0.037 (3)0.028 (4)0.088 (4)
C210.048 (2)0.075 (3)0.087 (3)0.017 (2)0.006 (2)0.034 (3)
C310.075 (3)0.129 (5)0.158 (5)0.030 (4)0.021 (3)0.102 (5)
C410.123 (6)0.096 (4)0.137 (5)0.029 (4)0.001 (4)0.033 (4)
C510.078 (4)0.202 (8)0.231 (9)0.042 (5)0.051 (5)0.150 (7)
N110.056 (2)0.067 (2)0.098 (3)0.0296 (19)0.0186 (19)0.042 (2)
N210.056 (2)0.056 (2)0.069 (2)0.0239 (17)0.0074 (16)0.0254 (17)
C120.055 (2)0.070 (3)0.088 (3)0.030 (2)0.023 (2)0.025 (2)
C220.066 (3)0.075 (3)0.091 (3)0.036 (2)0.027 (2)0.036 (3)
C320.056 (2)0.055 (3)0.089 (3)0.013 (2)0.020 (2)0.022 (2)
C420.079 (4)0.163 (6)0.087 (3)0.041 (4)0.010 (3)0.047 (4)
C520.096 (4)0.108 (4)0.199 (7)0.057 (4)0.059 (5)0.091 (5)
N120.0455 (19)0.061 (2)0.070 (2)0.0172 (17)0.0173 (16)0.0171 (18)
N220.053 (2)0.058 (2)0.071 (2)0.0168 (17)0.0265 (17)0.0170 (18)
C230.059 (2)0.074 (3)0.078 (3)0.033 (2)0.019 (2)0.027 (2)
C13"0.097 (9)0.148 (12)0.114 (11)0.076 (9)0.059 (8)0.085 (11)
C33"0.085 (6)0.083 (6)0.081 (7)0.044 (4)0.020 (5)0.022 (5)
C43"0.076 (7)0.133 (10)0.082 (5)0.018 (6)0.006 (5)0.035 (6)
C53"0.117 (11)0.14 (2)0.199 (19)0.094 (14)0.083 (12)0.076 (14)
C13'0.050 (6)0.081 (6)0.130 (14)0.035 (5)0.034 (7)0.053 (7)
C33'0.068 (6)0.105 (8)0.066 (6)0.050 (6)0.026 (5)0.048 (6)
C43'0.119 (9)0.100 (7)0.077 (5)0.069 (7)0.055 (5)0.038 (5)
C53'0.077 (7)0.122 (18)0.158 (15)0.069 (11)0.049 (7)0.063 (11)
N130.054 (2)0.055 (2)0.067 (2)0.0183 (17)0.0159 (16)0.0258 (17)
N230.060 (2)0.0500 (19)0.062 (2)0.0208 (17)0.0142 (17)0.0216 (16)
C140.0477 (19)0.0414 (19)0.0341 (18)0.0172 (16)0.0060 (14)0.0104 (15)
N240.0441 (16)0.0388 (16)0.0346 (15)0.0107 (13)0.0077 (12)0.0068 (12)
C340.0433 (19)0.044 (2)0.0380 (18)0.0136 (16)0.0070 (15)0.0086 (16)
C440.0415 (18)0.0399 (18)0.0381 (18)0.0132 (15)0.0060 (14)0.0047 (14)
C540.043 (2)0.063 (2)0.049 (2)0.0210 (18)0.0133 (16)0.0160 (18)
C640.056 (2)0.052 (2)0.0365 (19)0.0184 (18)0.0090 (16)0.0026 (16)
C740.047 (2)0.0390 (19)0.040 (2)0.0110 (16)0.0013 (16)0.0126 (16)
C840.041 (2)0.047 (2)0.053 (2)0.0092 (17)0.0031 (17)0.0160 (18)
O140.0469 (14)0.0429 (14)0.0413 (13)0.0074 (11)0.0030 (11)0.0096 (11)
O240.0620 (17)0.0484 (15)0.0364 (14)0.0147 (13)0.0052 (12)0.0042 (12)
O340.0489 (16)0.0571 (17)0.0535 (17)0.0035 (13)0.0048 (13)0.0076 (14)
O440.0475 (17)0.084 (2)0.073 (2)0.0023 (16)0.0184 (15)0.0113 (18)
C150.0384 (18)0.054 (2)0.0412 (19)0.0172 (17)0.0110 (15)0.0071 (16)
N250.0528 (18)0.0431 (17)0.0364 (16)0.0186 (14)0.0097 (13)0.0114 (13)
C350.053 (2)0.049 (2)0.0337 (18)0.0172 (17)0.0072 (15)0.0089 (16)
C450.053 (2)0.055 (2)0.054 (2)0.0269 (19)0.0182 (17)0.0190 (18)
C550.081 (3)0.089 (3)0.052 (2)0.059 (3)0.008 (2)0.021 (2)
C650.076 (3)0.079 (3)0.041 (2)0.041 (3)0.0019 (19)0.016 (2)
C750.0379 (18)0.052 (2)0.042 (2)0.0081 (16)0.0107 (15)0.0065 (17)
C850.057 (2)0.057 (2)0.067 (3)0.030 (2)0.013 (2)0.017 (2)
O150.0548 (15)0.0475 (15)0.0397 (13)0.0187 (12)0.0118 (11)0.0086 (11)
O250.0601 (17)0.0691 (19)0.0376 (14)0.0182 (15)0.0045 (12)0.0001 (13)
O350.097 (2)0.0609 (18)0.0606 (19)0.0446 (18)0.0192 (17)0.0100 (15)
O450.120 (3)0.079 (2)0.091 (2)0.067 (2)0.001 (2)0.020 (2)
O1W0.097 (3)0.121 (4)0.121 (3)0.000 (3)0.048 (3)0.008 (3)
O2W0.071 (2)0.0619 (19)0.090 (2)0.0257 (16)0.0007 (17)0.0233 (17)
O3W0.113 (3)0.089 (3)0.123 (3)0.034 (2)0.029 (3)0.025 (3)
O4W0.153 (4)0.065 (2)0.136 (4)0.018 (3)0.051 (3)0.018 (2)
O5W0.156 (4)0.110 (4)0.127 (4)0.008 (3)0.046 (3)0.034 (3)
O6W0.082 (2)0.090 (3)0.085 (2)0.019 (2)0.0098 (19)0.028 (2)
O7WA0.088 (6)0.075 (7)0.086 (5)0.001 (5)0.033 (4)0.002 (6)
O7WB0.114 (13)0.067 (10)0.090 (9)0.007 (7)0.020 (8)0.013 (8)
Geometric parameters (Å, º) top
Ni1—N112.064 (3)C13"—N131.450 (4)
Ni1—N11i2.064 (3)C13"—H13A0.9700
Ni1—O35i2.073 (3)C13"—H13B0.9700
Ni1—O352.073 (3)C33"—N231.453 (4)
Ni1—N21i2.091 (3)C33"—H33A0.9700
Ni1—N212.091 (3)C33"—H33B0.9700
Ni2—O342.076 (3)C43"—H43A0.9600
Ni2—O34ii2.076 (3)C43"—H43B0.9600
Ni2—N22ii2.083 (3)C43"—H43C0.9600
Ni2—N222.083 (3)C53"—H53A0.9600
Ni2—N12ii2.089 (3)C53"—H53B0.9600
Ni2—N122.089 (3)C53"—H53C0.9600
Ni3—N242.040 (3)C13'—N131.451 (4)
Ni3—N132.052 (3)C13'—H13C0.9700
Ni3—N252.076 (3)C13'—H13D0.9700
Ni3—N232.086 (3)C33'—N231.456 (4)
Ni3—O152.087 (3)C33'—H33C0.9700
Ni3—O142.113 (3)C33'—H33D0.9700
C11—N111.444 (4)C43'—H43D0.9600
C11—C211.470 (6)C43'—H43E0.9600
C11—H11A0.9700C43'—H43F0.9600
C11—H11B0.9700C53'—H53D0.9600
C21—C311.454 (6)C53'—H53E0.9600
C21—C411.534 (4)C53'—H53F0.9600
C21—C511.534 (7)N13—H13G0.9000
C31—N211.441 (4)N13—H13H0.9000
C31—H31A0.9700N13—H13I0.8999
C31—H31B0.9700N13—H13J0.9001
C41—H41A0.9600N23—H23G0.9000
C41—H41B0.9600N23—H23H0.9000
C41—H41C0.9600N23—H23I0.9000
C51—H51A0.9600N23—H23J0.9000
C51—H51B0.9600C14—N241.344 (4)
C51—H51C0.9600C14—C641.368 (5)
N11—H11C0.9000C14—C741.514 (5)
N11—H11D0.9000N24—C341.323 (4)
N21—H21C0.9000C34—C441.349 (5)
N21—H21D0.9000C34—H340.9300
C12—N121.457 (4)C44—C541.398 (5)
C12—C221.488 (5)C44—C841.507 (5)
C12—H12A0.9700C54—C641.374 (5)
C12—H12B0.9700C54—H540.9300
C22—C321.502 (5)C64—H640.9300
C22—C421.534 (4)C74—O241.237 (4)
C22—C521.539 (4)C74—O141.250 (4)
C32—N221.463 (3)C84—O441.210 (5)
C32—H32A0.9700C84—O341.259 (5)
C32—H32B0.9700C15—N251.342 (4)
C42—H42A0.9600C15—C651.370 (6)
C42—H42B0.9600C15—C751.526 (5)
C42—H42C0.9600N25—C351.335 (4)
C52—H52A0.9600C35—C451.385 (5)
C52—H52B0.9600C35—H350.9300
C52—H52C0.9600C45—C551.366 (5)
N12—H12C0.9000C45—C851.520 (5)
N12—H12D0.9000C55—C651.388 (6)
N22—H22C0.9000C55—H550.9300
N22—H22D0.9000C65—H650.9300
C23—C33'1.443 (7)C75—O251.254 (4)
C23—C13"1.464 (9)C75—O151.268 (5)
C23—C33"1.471 (8)C85—O451.231 (5)
C23—C13'1.483 (9)C85—O351.261 (5)
C23—C53"1.533 (4)O7WA—O7WB0.776 (18)
C23—C53'1.534 (4)O8WA—O8WB0.826 (18)
C23—C43'1.542 (4)O8WC—O8WE1.05 (3)
C23—C43"1.544 (4)O8WC—O8WD1.62 (4)
O1W···O5W2.696 (7)O5W···O7WB2.685 (8)
O1W···O25iii2.838 (5)O5W···O6Wv2.809 (6)
O2W···O3W2.730 (6)O6W···O44iv2.807 (5)
O2W···O6W2.825 (5)O6W···O7WAiv2.876 (8)
O2W···O242.739 (5)O6W···O7WBiv2.672 (8)
O3W···O4W2.781 (7)O7WA···O14iv2.730 (6)
O4W···O15iv2.766 (5)O7WB···O14iv2.822 (6)
O5W···O7WA2.725 (8)
N11—Ni1—N11i180.000 (1)C22—C32—H32A108.2
N11—Ni1—O35i88.17 (15)N22—C32—H32B108.2
N11i—Ni1—O35i91.83 (15)C22—C32—H32B108.2
N11—Ni1—O3591.83 (15)H32A—C32—H32B107.4
N11i—Ni1—O3588.17 (15)C22—C42—H42A109.5
O35i—Ni1—O35180.000 (1)C22—C42—H42B109.5
N11—Ni1—N21i87.73 (13)H42A—C42—H42B109.5
N11i—Ni1—N21i92.27 (13)C22—C42—H42C109.5
O35i—Ni1—N21i86.77 (14)H42A—C42—H42C109.5
O35—Ni1—N21i93.23 (14)H42B—C42—H42C109.5
N11—Ni1—N2192.27 (13)C22—C52—H52A109.5
N11i—Ni1—N2187.73 (13)C22—C52—H52B109.5
O35i—Ni1—N2193.23 (14)H52A—C52—H52B109.5
O35—Ni1—N2186.77 (14)C22—C52—H52C109.5
N21i—Ni1—N21180.000 (1)H52A—C52—H52C109.5
O34—Ni2—O34ii180.0 (2)H52B—C52—H52C109.5
O34—Ni2—N22ii85.95 (13)C12—N12—Ni2122.2 (3)
O34ii—Ni2—N22ii94.05 (13)C12—N12—H12C106.8
O34—Ni2—N2294.05 (13)Ni2—N12—H12C106.8
O34ii—Ni2—N2285.95 (13)C12—N12—H12D106.8
N22ii—Ni2—N22180.00 (16)Ni2—N12—H12D106.8
O34—Ni2—N12ii90.71 (13)H12C—N12—H12D106.6
O34ii—Ni2—N12ii89.29 (13)C32—N22—Ni2119.4 (3)
N22ii—Ni2—N12ii87.43 (13)C32—N22—H22C107.5
N22—Ni2—N12ii92.57 (13)Ni2—N22—H22C107.5
O34—Ni2—N1289.29 (13)C32—N22—H22D107.5
O34ii—Ni2—N1290.71 (13)Ni2—N22—H22D107.5
N22ii—Ni2—N1292.57 (13)H22C—N22—H22D107.0
N22—Ni2—N1287.43 (13)C13"—C23—C33"116.8 (8)
N12ii—Ni2—N12180.0 (2)C33'—C23—C13'113.3 (8)
N24—Ni3—N13173.68 (12)C13"—C23—C53"116.0 (12)
N24—Ni3—N2589.51 (12)C33"—C23—C53"108.9 (10)
N13—Ni3—N2588.89 (13)C33'—C23—C53'111.7 (11)
N24—Ni3—N2389.68 (12)C13'—C23—C53'105.8 (11)
N13—Ni3—N2392.43 (13)C33'—C23—C43'111.4 (7)
N25—Ni3—N23175.03 (12)C13'—C23—C43'107.6 (8)
N24—Ni3—O1594.21 (11)C53'—C23—C43'106.6 (8)
N13—Ni3—O1591.52 (13)C13"—C23—C43"108.9 (8)
N25—Ni3—O1579.76 (11)C33"—C23—C43"105.1 (6)
N23—Ni3—O1595.41 (12)C53"—C23—C43"99.1 (10)
N24—Ni3—O1477.88 (11)N13—C13"—C23119.6 (7)
N13—Ni3—O1496.03 (13)N23—C33"—C23115.7 (5)
N25—Ni3—O1490.93 (11)N13—C13'—C23118.3 (7)
N23—Ni3—O1493.69 (12)C23—C33'—N23117.3 (5)
O15—Ni3—O14167.91 (10)C13"—N13—Ni3123.1 (6)
N11—C11—C21119.1 (4)C13'—N13—Ni3124.5 (5)
N11—C11—H11A107.6C33"—N23—Ni3117.8 (5)
C21—C11—H11A107.6C33'—N23—Ni3118.1 (5)
N11—C11—H11B107.6N24—C14—C64123.2 (3)
C21—C11—H11B107.6N24—C14—C74116.0 (3)
H11A—C11—H11B107.0C64—C14—C74120.9 (3)
C31—C21—C11116.6 (5)C34—N24—C14118.7 (3)
C31—C21—C41107.8 (5)C34—N24—Ni3126.7 (2)
C11—C21—C41109.4 (5)C14—N24—Ni3114.6 (2)
C31—C21—C51106.5 (4)N24—C34—C44122.7 (3)
C11—C21—C51109.7 (4)N24—C34—H34118.6
C41—C21—C51106.4 (5)C44—C34—H34118.6
N21—C31—C21117.6 (4)C34—C44—C54118.2 (3)
N21—C31—H31A107.9C34—C44—C84118.7 (3)
C21—C31—H31A107.9C54—C44—C84123.0 (3)
N21—C31—H31B107.9C64—C54—C44120.2 (3)
C21—C31—H31B107.9C64—C54—H54119.9
H31A—C31—H31B107.2C44—C54—H54119.9
C21—C41—H41A109.5C14—C64—C54116.9 (3)
C21—C41—H41B109.5C14—C64—H64121.6
H41A—C41—H41B109.5C54—C64—H64121.6
C21—C41—H41C109.5O24—C74—O14127.0 (3)
H41A—C41—H41C109.5O24—C74—C14119.1 (3)
H41B—C41—H41C109.5O14—C74—C14113.9 (3)
C21—C51—H51A109.5O44—C84—O34127.4 (4)
C21—C51—H51B109.5O44—C84—C44117.1 (4)
H51A—C51—H51B109.5O34—C84—C44115.5 (3)
C21—C51—H51C109.5C74—O14—Ni3116.7 (2)
H51A—C51—H51C109.5C84—O34—Ni2139.8 (3)
H51B—C51—H51C109.5N25—C15—C65121.1 (3)
C11—N11—Ni1120.7 (3)N25—C15—C75115.0 (3)
C11—N11—H11C107.2C65—C15—C75124.0 (3)
Ni1—N11—H11C107.2C35—N25—C15118.3 (3)
C11—N11—H11D107.2C35—N25—Ni3128.2 (2)
Ni1—N11—H11D107.2C15—N25—Ni3113.4 (2)
H11C—N11—H11D106.8N25—C35—C45124.2 (3)
C31—N21—Ni1121.9 (3)N25—C35—H35117.9
C31—N21—H21C106.8C45—C35—H35117.9
Ni1—N21—H21C106.8C55—C45—C35116.6 (4)
C31—N21—H21D106.8C55—C45—C85124.0 (4)
Ni1—N21—H21D106.8C35—C45—C85119.4 (3)
H21C—N21—H21D106.7C45—C55—C65120.1 (4)
N12—C12—C22115.0 (4)C45—C55—H55120.0
N12—C12—H12A108.5C65—C55—H55120.0
C22—C12—H12A108.5C15—C65—C55119.7 (4)
N12—C12—H12B108.5C15—C65—H65120.2
C22—C12—H12B108.5C55—C65—H65120.2
H12A—C12—H12B107.5O25—C75—O15124.3 (4)
C12—C22—C32111.0 (4)O25—C75—C15118.7 (4)
C12—C22—C42111.7 (4)O15—C75—C15117.0 (3)
C32—C22—C42108.8 (4)O45—C85—O35125.8 (4)
C12—C22—C52107.9 (4)O45—C85—C45119.3 (4)
C32—C22—C52108.9 (4)O35—C85—C45114.9 (4)
C42—C22—C52108.5 (5)C75—O15—Ni3114.7 (2)
N22—C32—C22116.3 (3)C85—O35—Ni1135.6 (3)
N22—C32—H32A108.2O8WE—O8WC—O8WD127 (3)
N11—C11—C21—C3161.3 (8)C54—C44—C84—O440.4 (6)
N11—C11—C21—C4161.3 (7)C34—C44—C84—O341.8 (5)
N11—C11—C21—C51177.7 (6)C54—C44—C84—O34179.3 (4)
C11—C21—C31—N2159.8 (8)O24—C74—O14—Ni3170.8 (3)
C41—C21—C31—N2163.6 (7)C14—C74—O14—Ni39.5 (4)
C51—C21—C31—N21177.4 (6)N24—Ni3—O14—C749.0 (3)
C21—C11—N11—Ni143.2 (7)N13—Ni3—O14—C74169.2 (3)
O35i—Ni1—N11—C1171.7 (4)N25—Ni3—O14—C7480.3 (3)
O35—Ni1—N11—C11108.3 (4)N23—Ni3—O14—C7497.9 (3)
N21i—Ni1—N11—C11158.6 (4)O15—Ni3—O14—C7440.9 (6)
N21—Ni1—N11—C1121.4 (4)O44—C84—O34—Ni25.7 (8)
C21—C31—N21—Ni142.0 (7)C44—C84—O34—Ni2175.5 (3)
N11—Ni1—N21—C3121.4 (4)N22ii—Ni2—O34—C84139.9 (5)
N11i—Ni1—N21—C31158.6 (4)N22—Ni2—O34—C8440.1 (5)
O35i—Ni1—N21—C3166.9 (4)N12ii—Ni2—O34—C8452.5 (5)
O35—Ni1—N21—C31113.1 (4)N12—Ni2—O34—C84127.5 (5)
N12—C12—C22—C3263.8 (5)C65—C15—N25—C350.3 (5)
N12—C12—C22—C4257.8 (5)C75—C15—N25—C35179.7 (3)
N12—C12—C22—C52176.9 (4)C65—C15—N25—Ni3179.1 (3)
C12—C22—C32—N2266.8 (5)C75—C15—N25—Ni31.0 (4)
C42—C22—C32—N2256.4 (6)N24—Ni3—N25—C3586.8 (3)
C52—C22—C32—N22174.5 (4)O15—Ni3—N25—C35178.8 (3)
C22—C12—N12—Ni255.8 (5)O14—Ni3—N25—C359.0 (3)
O34—Ni2—N12—C12130.7 (3)N24—Ni3—N25—C1592.4 (3)
O34ii—Ni2—N12—C1249.3 (3)N13—Ni3—N25—C1593.7 (3)
N22ii—Ni2—N12—C12143.4 (3)O15—Ni3—N25—C152.0 (2)
N22—Ni2—N12—C1236.6 (3)O14—Ni3—N25—C15170.2 (2)
C22—C32—N22—Ni258.7 (5)C15—N25—C35—C450.7 (5)
O34—Ni2—N22—C32126.0 (3)Ni3—N25—C35—C45178.5 (3)
O34ii—Ni2—N22—C3254.0 (3)N25—C35—C45—C551.3 (6)
N12ii—Ni2—N22—C32143.1 (3)N25—C35—C45—C85178.1 (4)
N12—Ni2—N22—C3236.9 (3)C35—C45—C55—C651.5 (7)
C64—C14—N24—C343.1 (5)C85—C45—C55—C65177.9 (4)
C74—C14—N24—C34176.8 (3)N25—C15—C65—C550.5 (7)
C64—C14—N24—Ni3176.4 (3)C75—C15—C65—C55179.5 (4)
C74—C14—N24—Ni33.6 (4)C45—C55—C65—C151.1 (7)
N25—Ni3—N24—C3494.7 (3)N25—C15—C75—O25178.7 (3)
N23—Ni3—N24—C3480.4 (3)C65—C15—C75—O251.3 (6)
O15—Ni3—N24—C3415.0 (3)N25—C15—C75—O151.6 (5)
O14—Ni3—N24—C34174.2 (3)C65—C15—C75—O15178.4 (4)
N25—Ni3—N24—C1484.8 (3)C55—C45—C85—O459.1 (7)
N23—Ni3—N24—C14100.1 (3)C35—C45—C85—O45171.5 (4)
O15—Ni3—N24—C14164.5 (2)C55—C45—C85—O35168.4 (4)
O14—Ni3—N24—C146.3 (2)C35—C45—C85—O3510.9 (6)
C14—N24—C34—C440.1 (5)O25—C75—O15—Ni3177.0 (3)
Ni3—N24—C34—C44179.4 (3)C15—C75—O15—Ni33.3 (4)
N24—C34—C44—C542.2 (6)N24—Ni3—O15—C7585.8 (3)
N24—C34—C44—C84175.5 (3)N13—Ni3—O15—C7591.6 (3)
C34—C44—C54—C641.6 (6)N25—Ni3—O15—C753.0 (2)
C84—C44—C54—C64176.0 (4)N23—Ni3—O15—C75175.9 (2)
N24—C14—C64—C543.6 (6)O14—Ni3—O15—C7537.2 (6)
C74—C14—C64—C54176.4 (3)O45—C85—O35—Ni112.0 (8)
C44—C54—C64—C141.1 (6)C45—C85—O35—Ni1165.4 (3)
N24—C14—C74—O24176.3 (3)N11—Ni1—O35—C8545.5 (4)
C64—C14—C74—O243.7 (5)N11i—Ni1—O35—C85134.5 (4)
N24—C14—C74—O144.0 (5)N21i—Ni1—O35—C8542.4 (4)
C64—C14—C74—O14176.0 (3)N21—Ni1—O35—C85137.6 (4)
C34—C44—C84—O44177.1 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11C···O2Wi0.902.393.127 (6)139
N12—H12D···O3Wiv0.902.563.423 (6)160
N13—H13G···O25vi0.902.423.297 (4)165
N13—H13H···O7WAiv0.902.403.256 (4)159
N23—H23H···O3Wiv0.902.333.196 (6)160
Symmetry codes: (i) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (vi) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni2(C10H2O8)(C5H14N2)4(H2O)2]·2CH4O·4H2O[Ni2(C7H3NO4)2(C5H14N2)3]·8H2O
Mr948.44898.30
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)295295
a, b, c (Å)10.6492 (10), 20.914 (2), 11.3422 (11)12.269 (3), 13.622 (3), 15.171 (4)
α, β, γ (°)90, 109.662 (2), 90105.25 (3), 98.02 (2), 111.25 (3)
V3)2378.8 (4)2200.8 (12)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.860.93
Crystal size (mm)0.44 × 0.25 × 0.180.40 × 0.38 × 0.32
Data collection
DiffractometerBruker SMART? CCD area-detector
diffractometer
Bruker SMART? CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.72, 0.860.68, 0.74
No. of measured, independent and
observed [I > 2σ(I)] reflections
19918, 5385, 3837 18893, 9619, 6322
Rint0.0480.038
(sin θ/λ)max1)0.6630.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.146, 1.03 0.060, 0.192, 0.98
No. of reflections53859619
No. of parameters267568
No. of restraints093
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.360.70, 0.39

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O33i0.851.952.800 (5)179
N11—H11A···O330.902.082.883 (3)149
N11—H11B···O23ii0.902.113.005 (3)170
N21—H21A···O13i0.902.343.111 (4)143
N12—H12A···O2Wiii0.902.193.012 (3)152
N12—H12B···O3W0.902.253.124 (4)165
N22—H22A···O23ii0.902.253.122 (3)164
N22—H22B···O230.902.203.086 (3)167
O1W—H1WA···O2W0.851.902.706 (3)157
O1W—H1WB···O13ii0.851.822.664 (3)174
O2W—H2WA···O43iv0.851.962.761 (3)157
O2W—H2WB···O3W0.851.952.740 (4)155
O3W—H3WA···O13i0.851.892.723 (4)167
O3W—H3WB···O140.851.922.739 (5)161
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N11—H11C···O2Wi0.902.393.127 (6)139
N12—H12D···O3Wii0.902.563.423 (6)160
N13—H13G···O25iii0.902.423.297 (4)165
N13—H13H···O7WAii0.902.403.256 (4)159
N23—H23H···O3Wii0.902.333.196 (6)160
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds