Download citation
Download citation
link to html
The title compounds, (C8H20N)[H2AsO4][H3AsO4]2, (I), and (C6H14N2)[H2AsO4]2[H3AsO4], (II), are unusual salts containing organic cations, dihydrogenarsenate anions and neutral arsenic acid mol­ecules. In (I), the dihydrogenarsenate anion lies across a twofold rotation axis in the space group C2/­c, while the cation is disordered across a centre of inversion. The [H2AsO4] and H3AsO4 species inter­act by way of O—H...O hydrogen bonds, leading to sheets and a three-dimensional network for (I) and (II), respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107023967/gd3110sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107023967/gd3110Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107023967/gd3110IIsup3.hkl
Contains datablock II

CCDC references: 655489; 655490

Comment top

Only a handful of crystal structures containing the neutral arsenic acid (H3AsO4) molecule have been determined, including N,N,N-trimetlylglycine (beatine) arsenic acid (Schildkamp et al., 1984), tetraphenylphosphonium chloride arsenic acid (Ruhlandt-Senge et al., 1992), L-histininium dihydrogen arsenate arsenic acid (Ratajczak et al., 2000) and DL-threonine arsenic acid 1:1 (Wilkinson & Harrison, 2005). We present here the syntheses and structures of the title compounds, (C8H20N)[H2AsO4][H3AsO4]2, (I), and (C6H14N2)[H2AsO4]2[H3AsO4], (II), which both contain organic cations, dihydrogenarsenate anions and neutral arsenic acid molecules.

The structure of (I) (Fig. 1) is built up from C8H20N+ tetraethylammonium (TEA) cations, [H2AsO4]- dihydrogenarsenate anions and neutral H3AsO4 arsenic acid molecules in a 1:1:2 ratio. The N atom of the cation occupies a special position with site symmetry 1; thus the –CH2CH3 arms of the TEA species are disordered, as is often seen for this cation (Majumdar et al., 2006). The dihydrogenarsenate anion, containing As1, lies across a twofold rotation axis. The short and long As1—O bonds (Table 1) correspond to unprotonated As—O vertices with partial double bond character and to protonated AsOH groups, respectively. The neutral arsenic acid molecule in (I), containing As2, with a mean As—O distance of 1.678 (2) Å], contains one short, formal double bond (As2O4) and three longer As—OH vertices, as seen in related structures (Wilkinson & Harrison, 2005).

As well as Coulombic and van der Waals forces, the component species in (I) interact by means of a network of O—H···O hydrogen bonds. All these bonds are short and near linear (Table 2). Pairs of arsenic acid molecules form inversion dimers via O6—H4···O4iii + O6iii—H4iii···O4 links (see Table 2 for symmetry codes. Similar dimers built up from [H2AsO4]- units have been seen in propane-1,2-diamminium hydrogenarsenate (Todd & Harrison, 2005). The As1-centred anion then serves to link the As2 dimers, by donating two O—H···O bonds and accepting two O—H···O bonds, into a sheet of tetrahedra propagating in (001) (Fig. 2). A number of unusual graph-set (Bernstein et al., 1995) loops occur within these arsenate sheets, including R23(10), R24(12) and R44(16) circuits, as well as the more familiar R22(8) inversion dimer arising from the As2 units.

The arsenate sheets sandwich the disordered organic cations in (I) (Fig. 3) to result in alternating inorganic and organic layers with respect to the c direction.

Compound (II) contains C2H14N22+ 1,4-diazoniabicyclo[2.2.2]octane dications accompanied by dihydrogenarsenate anions and arsenic acid molecules (Fig. 4), with all atoms occupying general crystallographic positions. Because the organic cation is divalent, a 1:2:1 ratio of C2H14N22+:H2AsO4-:H3AsO4 arises in (II). As in (I), the individual arsenate As—O bond lengths correlate with their protonation state (Table 3). The mean As—O distances for the As1, As2 and As3 (arsenic acid) tetrahedra are 1.679 (2), 1.681 (2) and 1.674 (2) Å, respectively

In (II), the As2-centred dihydrogenarsenate groups form inversion dimers via O—H···O bonds, which contrasts with (I), where the arsenic acid molecules formed similar dimers. The dimers are fused by further O—H···O hydrogen bonds (Table 4) to form chains of alternating As1- and As3-centred units, to result in slabs of tetrahedra propagating in [100] (Fig. 5). The graph-set loops found within the arsenate slabs in (II) include R22(8) inversion dimers, and R23(12), R33(12) and large R66(24) circuits.

The [100] slabs are crosslinked by the key O10—H10···O4iii bond (Table 4), to result in a three-dimensional hydorgen-bonded network encompassing [100] channels occupied by the organic cations. These very large channels can accommodate two organic cations side-by-side and are characterized by an R812(40) graph-set motif. In turn, the cations interact with the tetrahedral framework by way of N—H···O hydrogen bonds (Table 4). A related supramolecular hydrogen-bonded tetrahedral framework encapsulating organic cations was seen in 2-aminopyridinium dihydrogenphosphate (Czapla et al., 2003).

Related literature top

For related literature, see: Bernstein et al. (1995); Czapla et al. (2003); Majumdar et al. (2006); Ratajczak et al. (2000); Ruhlandt-Senge, Bacher & Müller (1992); Schildkamp et al. (1984); Todd & Harrison (2005); Wilkinson & Harrison (2005).

Experimental top

For (I), 10 ml each of 0.5 mol dm-3 aqueous solutions of tetraethylammonium hydroxide (TEAOH) and arsenic acid were mixed in a Petri dish, resulting in a clear solution. Colourless rods and bars of (I) grew over a few days, as the water evaporated. For (II), a 0.5 mol dm-3 aqueous 1,4-diazabicyclo[2.2.2]octane solution (10 ml) replaced the TEAOH solution, and colourless blocks of (II) were formed using the same experimental procedure as for (I).

Refinement top

The methylene groups of the organic molecule in (I) are disordered over two conformations, required to have equal occupancies by symmetry. Their H atoms were geometrically placed (C—H = 0.97 Å) and refined as riding. The H atoms of the terminal methyl groups were placed in two orientations (C—H = 0.92–0.98 Å), to achieve reasonable C—C—H angles for both disorder components of the bridging methylene groups, and refined as riding. For (II), the C– and N-bound H atoms were geometrically placed (C—H = 0.97 Å, N—H = 0.91 Å) and refined as riding atoms. For both (I) and (II), the O-bound H atoms were located in difference maps and refined as riding atoms in the positions found from the difference maps, giving a range of O—H distances of 0.83–0.96 Å. For both (I) and (II), Uiso(H) values were set at 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (50% probability displacement ellipsoids; H atoms are drawn as spheres of arbitrary radii). The intramolecular hydrogen bond is indicated by dashed lines. [Symmetry codes: (i) -x, y, 1/2 - z; (ii) 1/2 - x, 1/2 - y, -z.]
[Figure 2] Fig. 2. Part of a hydrogen-bonded sheet of tetrahedra in (I), shown in polyhedral representation, with the inter-tetrahedral hydrogen bonds shown as thin lines.
[Figure 3] Fig. 3. The packing in (I), viewed down [010], with the H atoms of the organic species omitted for clarity and hydrogen bonds indicated by thin lines.
[Figure 4] Fig. 4. The molecular structure of (II) (50% probability displacement ellipsoids; H atoms are drawn as spheres of arbitrary radii). Hydrogen bonds are indicated by dashed lines. Note the distinctive `three-ring' of tetrahedra, leading to an R33(12) loop.
[Figure 5] Fig. 5. Part of a hydrogen-bonded [100] slab of tetrahedra in (II), shown in polyhedral representation, with the inter-tetrahedral O—H···O hydrogen bonds shown as thin lines.
[Figure 6] Fig. 6. The packing in (I), viewed down [100], with the H atoms of the organic species omitted for clarity.
(I) Tetraethylammonium dihydrogenarsenate bis(arsenic acid) and 1,4-diazoniabicyclo[2.2.2]octane bis(dihydrogenarsenate) arsenic acid. ? top
Crystal data top
(C8H20N)[H2AsO4][H3AsO4]2F(000) = 1112
Mr = 555.08Dx = 1.834 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2724 reflections
a = 20.0518 (13) Åθ = 2.3–29.6°
b = 7.3138 (4) ŵ = 5.01 mm1
c = 15.251 (1) ÅT = 293 K
β = 115.969 (1)°Rod, colourless
V = 2010.7 (2) Å30.25 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3610 independent reflections
Radiation source: fine-focus sealed tube2301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 32.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 3030
Tmin = 0.360, Tmax = 0.739k = 118
9940 measured reflectionsl = 1823
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0287P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
3610 reflectionsΔρmax = 0.65 e Å3
130 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00088 (8)
Crystal data top
(C8H20N)[H2AsO4][H3AsO4]2V = 2010.7 (2) Å3
Mr = 555.08Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.0518 (13) ŵ = 5.01 mm1
b = 7.3138 (4) ÅT = 293 K
c = 15.251 (1) Å0.25 × 0.08 × 0.06 mm
β = 115.969 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3610 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2301 reflections with I > 2σ(I)
Tmin = 0.360, Tmax = 0.739Rint = 0.032
9940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.86Δρmax = 0.65 e Å3
3610 reflectionsΔρmin = 0.43 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
As10.00000.24048 (4)0.25000.03836 (10)
O10.01538 (10)0.1174 (2)0.34778 (11)0.0469 (4)
O20.07580 (11)0.3764 (2)0.28257 (12)0.0637 (6)
H10.07500.42310.23080.076*
As20.055937 (13)0.28268 (3)0.583774 (16)0.03564 (8)
O30.10288 (9)0.2190 (2)0.51990 (13)0.0530 (5)
H20.07380.18250.45860.064*
O40.07940 (10)0.4933 (2)0.62311 (12)0.0470 (4)
O50.07817 (10)0.1406 (2)0.67900 (12)0.0625 (5)
H30.04220.06000.66220.075*
O60.03622 (9)0.2541 (2)0.51201 (12)0.0491 (4)
H40.04910.32820.45770.059*
N10.25000.25000.00000.0402 (6)
C40.3162 (3)0.3614 (7)0.0706 (4)0.0499 (13)0.50
H4A0.34840.39340.04060.060*0.50
H4B0.34460.29200.12950.060*0.50
C50.2144 (3)0.4283 (6)0.0171 (4)0.0497 (13)0.50
H5A0.17840.39850.04140.060*0.50
H5B0.18940.49560.04350.060*0.50
C60.2811 (2)0.5485 (4)0.0962 (3)0.0843 (11)
H6A0.32120.62290.14050.126*0.50
H6B0.24940.51560.12600.126*0.50
H6C0.25320.61580.03740.126*0.50
H6D0.25930.65400.10800.126*0.50
H6E0.31480.57060.07160.126*0.50
H6F0.30250.47370.15500.126*0.50
C10.2001 (3)0.1994 (7)0.0470 (4)0.0550 (14)0.50
H1A0.16210.11610.00450.066*0.50
H1B0.17570.30870.05450.066*0.50
C20.2936 (3)0.1534 (7)0.0926 (4)0.0576 (14)0.50
H2A0.33530.22880.13400.069*0.50
H2B0.31290.04060.07940.069*0.50
C30.2437 (2)0.1074 (5)0.1491 (2)0.0892 (11)
H3A0.21000.07840.17640.134*0.50
H3B0.28100.19010.19180.134*0.50
H3C0.26690.00260.14190.134*0.50
H3D0.27610.04380.20840.134*0.50
H3E0.20590.02790.10780.134*0.50
H3F0.22620.21570.16280.134*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0547 (2)0.03502 (18)0.02475 (16)0.0000.01683 (15)0.000
O10.0669 (12)0.0438 (9)0.0266 (8)0.0077 (8)0.0173 (8)0.0030 (7)
O20.0782 (15)0.0663 (12)0.0393 (10)0.0273 (10)0.0190 (10)0.0010 (8)
As20.03761 (13)0.03770 (13)0.02809 (12)0.00035 (10)0.01113 (10)0.00172 (9)
O30.0407 (10)0.0749 (12)0.0401 (10)0.0053 (8)0.0147 (8)0.0164 (8)
O40.0588 (12)0.0369 (9)0.0394 (9)0.0004 (8)0.0162 (8)0.0043 (7)
O50.0643 (13)0.0636 (12)0.0387 (10)0.0163 (10)0.0031 (9)0.0174 (8)
O60.0372 (10)0.0630 (11)0.0423 (10)0.0071 (8)0.0131 (8)0.0104 (7)
N10.0263 (13)0.0474 (16)0.0410 (16)0.0019 (11)0.0094 (12)0.0008 (11)
C40.038 (3)0.060 (3)0.043 (3)0.016 (2)0.010 (2)0.002 (2)
C50.042 (3)0.048 (3)0.058 (3)0.009 (2)0.021 (3)0.004 (2)
C60.111 (3)0.0551 (19)0.092 (3)0.0263 (19)0.048 (2)0.0258 (17)
C10.034 (3)0.062 (3)0.074 (4)0.013 (2)0.029 (3)0.008 (3)
C20.044 (3)0.056 (3)0.050 (3)0.002 (2)0.001 (2)0.008 (3)
C30.112 (3)0.099 (3)0.060 (2)0.020 (2)0.040 (2)0.0173 (18)
Geometric parameters (Å, º) top
As1—O1i1.6510 (15)C4—H4B0.9700
As1—O11.6510 (15)C5—C61.615 (6)
As1—O21.6982 (17)C5—H5A0.9700
As1—O2i1.6982 (17)C5—H5B0.9700
O2—H10.8534C6—H6A0.9600
As2—O41.6454 (15)C6—H6B0.9600
As2—O51.6797 (16)C6—H6C0.9600
As2—O31.6895 (17)C6—H6D0.9418
As2—O61.6985 (16)C6—H6E0.9195
O3—H20.8987C6—H6F0.9748
O5—H30.8780C1—C31.565 (6)
O6—H40.9266C1—H1A0.9700
N1—C2ii1.475 (5)C1—H1B0.9700
N1—C21.475 (5)C2—C31.615 (7)
N1—C1ii1.510 (5)C2—H2A0.9700
N1—C11.510 (5)C2—H2B0.9700
N1—C41.527 (4)C3—H3A0.9600
N1—C4ii1.527 (4)C3—H3B0.9600
N1—C5ii1.562 (5)C3—H3C0.9600
N1—C51.562 (5)C3—H3D0.9700
C4—C61.662 (6)C3—H3E0.9446
C4—H4A0.9700C3—H3F0.9267
O1i—As1—O1113.94 (11)H4B—C4—H6E121.3
O1i—As1—O2111.87 (9)N1—C5—C6106.8 (3)
O1—As1—O2105.40 (8)N1—C5—H5A110.4
O1i—As1—O2i105.40 (8)C6—C5—H5A110.4
O1—As1—O2i111.87 (9)N1—C5—H5B110.4
O2—As1—O2i108.34 (14)C6—C5—H5B110.4
As1—O2—H1108.2H5A—C5—H5B108.6
O4—As2—O5109.81 (8)N1—C5—H6C123.3
O4—As2—O3109.00 (9)H5A—C5—H6C121.2
O5—As2—O3108.91 (10)C5—C6—C470.9 (3)
O4—As2—O6114.01 (8)C5—C6—H6A177.0
O5—As2—O6106.43 (8)C4—C6—H6A108.8
O3—As2—O6108.55 (8)C4—C6—H6B110.0
As2—O3—H2114.2H6A—C6—H6B109.5
As2—O5—H3106.9C4—C6—H6C109.6
As2—O6—H4107.6H6A—C6—H6C109.5
C2ii—N1—C2180.0 (7)H6B—C6—H6C109.5
C2ii—N1—C1ii70.5 (3)C5—C6—H6D106.7
C2—N1—C1ii109.5 (3)C5—C6—H6E107.9
C2ii—N1—C1109.5 (3)H6D—C6—H6E114.8
C2—N1—C170.5 (3)C5—C6—H6F105.6
C1ii—N1—C1180.0 (5)H6D—C6—H6F109.7
C2ii—N1—C4112.7 (3)H6E—C6—H6F111.7
C2—N1—C467.3 (3)N1—C1—C3112.4 (3)
C1ii—N1—C469.6 (3)N1—C1—H1A109.1
C1—N1—C4110.4 (3)C3—C1—H1A109.1
C2ii—N1—C4ii67.3 (3)N1—C1—H1B109.1
C2—N1—C4ii112.7 (3)C3—C1—H1B109.1
C1ii—N1—C4ii110.4 (3)H1A—C1—H1B107.9
C1—N1—C4ii69.6 (3)N1—C1—H3E126.7
C4—N1—C4ii180.0 (6)H1B—C1—H3E120.7
C2ii—N1—C5ii111.2 (3)N1—C2—C3111.4 (4)
C2—N1—C5ii68.8 (3)N1—C2—H2A109.3
C1ii—N1—C5ii71.3 (3)C3—C2—H2A109.3
C1—N1—C5ii108.7 (3)N1—C2—H2B109.3
C4—N1—C5ii104.1 (3)C3—C2—H2B109.3
C4ii—N1—C5ii75.9 (3)H2A—C2—H2B108.0
C2ii—N1—C568.8 (3)N1—C2—H3C128.2
C2—N1—C5111.2 (3)H2A—C2—H3C118.4
C1ii—N1—C5108.7 (3)C1—C3—H3A109.5
C1—N1—C571.3 (3)C1—C3—H3B109.5
C4—N1—C575.9 (3)H3A—C3—H3B109.5
C4ii—N1—C5104.1 (3)C1—C3—H3C109.5
C5ii—N1—C5180.0 (5)H3A—C3—H3C109.5
N1—C4—C6106.2 (3)H3B—C3—H3C109.5
N1—C4—H4A110.5C2—C3—H3D106.2
C6—C4—H4A110.5C2—C3—H3E106.0
N1—C4—H4B110.5H3D—C3—H3E109.9
C6—C4—H4B110.5C2—C3—H3F109.0
H4A—C4—H4B108.7H3D—C3—H3F111.5
N1—C4—H6E121.8H3E—C3—H3F113.8
C2ii—N1—C4—C662.4 (4)C2ii—N1—C1—C3176.3 (4)
C2—N1—C4—C6117.6 (4)C2—N1—C1—C33.7 (4)
C1ii—N1—C4—C6119.5 (4)C4—N1—C1—C351.6 (4)
C1—N1—C4—C660.5 (4)C4ii—N1—C1—C3128.4 (4)
C5ii—N1—C4—C6177.0 (3)C5ii—N1—C1—C361.9 (4)
C5—N1—C4—C63.0 (3)C5—N1—C1—C3118.1 (4)
C2ii—N1—C5—C6124.8 (4)C1ii—N1—C2—C3176.4 (3)
C2—N1—C5—C655.2 (4)C1—N1—C2—C33.6 (3)
C1ii—N1—C5—C665.5 (4)C4—N1—C2—C3119.7 (5)
C1—N1—C5—C6114.5 (4)C4ii—N1—C2—C360.3 (5)
C4—N1—C5—C63.1 (3)C5ii—N1—C2—C3123.8 (4)
C4ii—N1—C5—C6176.9 (3)C5—N1—C2—C356.2 (4)
N1—C5—C6—C43.0 (3)N1—C1—C3—C23.5 (3)
N1—C4—C6—C53.0 (3)N1—C2—C3—C13.6 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O4iii0.851.792.642 (2)175
O3—H2···O10.901.652.547 (2)176
O5—H3···O1iv0.881.702.564 (2)168
O6—H4···O4v0.931.712.617 (2)164
Symmetry codes: (iii) x, y+1, z1/2; (iv) x, y, z+1; (v) x, y+1, z+1.
(II) 1,4-diazoniabicyclo[2.2.2]octane bis(dihydrogenarsenate) arsenic acid top
Crystal data top
(C6H14N2)[H2AsO4]2[H3AsO4]F(000) = 1064
Mr = 538.01Dx = 2.076 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5683 reflections
a = 8.1285 (3) Åθ = 2.8–32.1°
b = 22.2104 (9) ŵ = 5.85 mm1
c = 10.0056 (4) ÅT = 293 K
β = 107.637 (1)°Block, colourless
V = 1721.47 (12) Å30.24 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
6212 independent reflections
Radiation source: fine-focus sealed tube4321 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 32.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1211
Tmin = 0.297, Tmax = 0.441k = 3330
17889 measured reflectionsl = 815
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0233P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.002
6212 reflectionsΔρmax = 0.64 e Å3
209 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00252 (11)
Crystal data top
(C6H14N2)[H2AsO4]2[H3AsO4]V = 1721.47 (12) Å3
Mr = 538.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1285 (3) ŵ = 5.85 mm1
b = 22.2104 (9) ÅT = 293 K
c = 10.0056 (4) Å0.24 × 0.20 × 0.14 mm
β = 107.637 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
6212 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4321 reflections with I > 2σ(I)
Tmin = 0.297, Tmax = 0.441Rint = 0.032
17889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 0.89Δρmax = 0.64 e Å3
6212 reflectionsΔρmin = 0.45 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.20979 (3)0.134143 (10)0.23649 (3)0.02638 (6)
O10.4053 (2)0.11193 (7)0.12768 (18)0.0397 (4)
H10.42890.08150.17600.048*
O20.0777 (2)0.07695 (7)0.29270 (19)0.0400 (4)
O30.2434 (2)0.16451 (8)0.38238 (18)0.0507 (5)
H30.33710.18210.37230.061*
O40.1462 (2)0.18726 (8)0.1465 (2)0.0467 (5)
As20.34076 (3)0.024094 (10)0.30675 (3)0.02488 (6)
O50.1507 (2)0.04422 (8)0.19015 (18)0.0395 (4)
H50.08650.06600.23260.047*
O60.48508 (19)0.01777 (7)0.22083 (18)0.0316 (4)
O70.4021 (2)0.07085 (7)0.44236 (17)0.0342 (4)
O80.2994 (2)0.04542 (7)0.36429 (18)0.0388 (4)
H80.39320.05700.43450.047*
As30.29256 (3)0.228100 (10)0.33337 (3)0.02591 (6)
O90.2756 (2)0.17439 (7)0.44770 (19)0.0430 (4)
H90.33530.13960.44350.052*
O100.2095 (2)0.29091 (7)0.38400 (19)0.0413 (4)
H100.25320.30180.48100.050*
O110.48942 (19)0.23803 (7)0.3267 (2)0.0380 (4)
O120.1643 (2)0.21237 (9)0.17108 (18)0.0463 (5)
H120.05870.20040.16860.056*
N10.6253 (2)0.34281 (8)0.3066 (2)0.0303 (4)
H130.56960.30920.32210.036*
N20.7753 (2)0.43453 (8)0.2628 (2)0.0267 (4)
H140.83110.46800.24710.032*
C10.8104 (3)0.32797 (10)0.3286 (3)0.0403 (6)
H1A0.81960.29330.27240.048*
H1B0.86640.31840.42650.048*
C20.5431 (3)0.36381 (12)0.1600 (3)0.0409 (6)
H2A0.41970.36820.14250.049*
H2B0.56220.33450.09440.049*
C30.6106 (4)0.39077 (11)0.4064 (3)0.0437 (6)
H3A0.65080.37570.50180.052*
H3B0.49090.40280.38670.052*
C40.8970 (3)0.38193 (9)0.2861 (3)0.0310 (5)
H4A1.00300.39140.35920.037*
H4B0.92530.37310.20070.037*
C50.6213 (3)0.42404 (10)0.1393 (2)0.0333 (5)
H5A0.65470.42330.05400.040*
H5B0.53780.45610.13140.040*
C60.7194 (3)0.44446 (9)0.3905 (2)0.0303 (5)
H6A0.65220.48120.38050.036*
H6B0.81950.44820.47270.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.02053 (10)0.02777 (11)0.02869 (13)0.00083 (8)0.00423 (9)0.00449 (10)
O10.0317 (9)0.0438 (10)0.0340 (10)0.0131 (7)0.0043 (8)0.0091 (8)
O20.0351 (9)0.0374 (9)0.0506 (11)0.0144 (7)0.0178 (9)0.0128 (8)
O30.0464 (11)0.0636 (12)0.0360 (11)0.0239 (9)0.0035 (9)0.0082 (9)
O40.0326 (9)0.0498 (11)0.0501 (11)0.0135 (8)0.0012 (9)0.0216 (9)
As20.02144 (10)0.02655 (11)0.02791 (13)0.00271 (8)0.00935 (9)0.00314 (9)
O50.0296 (8)0.0548 (11)0.0324 (9)0.0157 (8)0.0068 (8)0.0059 (8)
O60.0293 (8)0.0318 (8)0.0406 (10)0.0035 (6)0.0209 (8)0.0024 (7)
O70.0367 (9)0.0318 (8)0.0316 (9)0.0071 (7)0.0066 (8)0.0032 (7)
O80.0325 (9)0.0366 (9)0.0437 (11)0.0069 (7)0.0063 (8)0.0102 (8)
As30.02443 (11)0.02288 (10)0.03107 (13)0.00267 (8)0.00938 (10)0.00219 (9)
O90.0618 (12)0.0296 (9)0.0486 (11)0.0054 (8)0.0335 (10)0.0056 (8)
O100.0443 (10)0.0323 (9)0.0428 (11)0.0145 (7)0.0062 (9)0.0052 (8)
O110.0243 (8)0.0277 (8)0.0639 (12)0.0024 (6)0.0162 (8)0.0016 (8)
O120.0356 (9)0.0699 (13)0.0317 (10)0.0152 (9)0.0075 (8)0.0126 (9)
N10.0265 (9)0.0253 (9)0.0400 (12)0.0061 (7)0.0113 (9)0.0006 (9)
N20.0282 (9)0.0260 (9)0.0279 (10)0.0034 (7)0.0116 (8)0.0037 (8)
C10.0253 (11)0.0292 (12)0.0638 (19)0.0033 (9)0.0093 (12)0.0074 (12)
C20.0294 (12)0.0481 (15)0.0370 (15)0.0045 (11)0.0024 (11)0.0062 (12)
C30.0641 (17)0.0386 (13)0.0392 (16)0.0110 (13)0.0319 (14)0.0090 (12)
C40.0212 (10)0.0326 (12)0.0386 (14)0.0020 (9)0.0083 (10)0.0024 (10)
C50.0320 (12)0.0419 (13)0.0237 (12)0.0076 (10)0.0053 (10)0.0035 (10)
C60.0357 (12)0.0279 (11)0.0276 (12)0.0005 (9)0.0100 (10)0.0050 (9)
Geometric parameters (Å, º) top
As1—O21.6483 (15)N1—C21.491 (3)
As1—O41.6585 (16)N1—H130.9100
As1—O31.7037 (17)N2—C51.486 (3)
As1—O11.7045 (15)N2—C61.497 (3)
O1—H10.8857N2—C41.502 (3)
O3—H30.8348N2—H140.9100
As2—O61.6571 (14)C1—C41.515 (3)
As2—O71.6608 (16)C1—H1A0.9700
As2—O51.6896 (16)C1—H1B0.9700
As2—O81.7163 (15)C2—C51.522 (3)
O5—H50.9060C2—H2A0.9700
O8—H80.9032C2—H2B0.9700
As3—O111.6365 (14)C3—C61.522 (3)
As3—O121.6793 (17)C3—H3A0.9700
As3—O91.6871 (16)C3—H3B0.9700
As3—O101.6928 (15)C4—H4A0.9700
O9—H90.9205C4—H4B0.9700
O10—H100.9578C5—H5A0.9700
O12—H120.8918C5—H5B0.9700
N1—C31.490 (3)C6—H6A0.9700
N1—C11.490 (3)C6—H6B0.9700
O2—As1—O4117.10 (8)N1—C1—C4108.53 (17)
O2—As1—O3105.65 (9)N1—C1—H1A110.0
O4—As1—O3109.92 (10)C4—C1—H1A110.0
O2—As1—O1112.31 (9)N1—C1—H1B110.0
O4—As1—O1104.05 (8)C4—C1—H1B110.0
O3—As1—O1107.54 (9)H1A—C1—H1B108.4
As1—O1—H1100.8N1—C2—C5109.15 (19)
As1—O3—H3117.4N1—C2—H2A109.9
O6—As2—O7113.11 (8)C5—C2—H2A109.9
O6—As2—O5107.88 (8)N1—C2—H2B109.9
O7—As2—O5112.58 (8)C5—C2—H2B109.9
O6—As2—O8109.83 (8)H2A—C2—H2B108.3
O7—As2—O8109.22 (8)N1—C3—C6108.83 (18)
O5—As2—O8103.80 (8)N1—C3—H3A109.9
As2—O5—H5110.7C6—C3—H3A109.9
As2—O8—H8108.1N1—C3—H3B109.9
O11—As3—O12108.48 (9)C6—C3—H3B109.9
O11—As3—O9113.86 (9)H3A—C3—H3B108.3
O12—As3—O9110.75 (9)N2—C4—C1108.58 (16)
O11—As3—O10112.62 (8)N2—C4—H4A110.0
O12—As3—O10105.89 (9)C1—C4—H4A110.0
O9—As3—O10104.95 (8)N2—C4—H4B110.0
As3—O9—H9114.2C1—C4—H4B110.0
As3—O10—H10116.8H4A—C4—H4B108.4
As3—O12—H12113.5N2—C5—C2107.78 (18)
C3—N1—C1110.0 (2)N2—C5—H5A110.1
C3—N1—C2109.45 (19)C2—C5—H5A110.1
C1—N1—C2110.3 (2)N2—C5—H5B110.1
C3—N1—H13109.0C2—C5—H5B110.1
C1—N1—H13109.0H5A—C5—H5B108.5
C2—N1—H13109.0N2—C6—C3108.09 (18)
C5—N2—C6109.63 (17)N2—C6—H6A110.1
C5—N2—C4110.86 (17)C3—C6—H6A110.1
C6—N2—C4109.76 (18)N2—C6—H6B110.1
C5—N2—H14108.9C3—C6—H6B110.1
C6—N2—H14108.9H6A—C6—H6B108.4
C4—N2—H14108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.891.702.557 (2)163
O3—H3···O11i0.831.832.638 (2)163
O5—H5···O20.911.642.487 (2)154
O8—H8···O7ii0.901.772.666 (2)170
O9—H9···O70.921.622.526 (2)167
O10—H10···O4iii0.961.632.578 (3)171
O12—H12···O40.891.642.523 (2)171
N1—H13···O110.911.722.610 (2)167
N2—H14···O6iv0.911.812.655 (2)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula(C8H20N)[H2AsO4][H3AsO4]2(C6H14N2)[H2AsO4]2[H3AsO4]
Mr555.08538.01
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)20.0518 (13), 7.3138 (4), 15.251 (1)8.1285 (3), 22.2104 (9), 10.0056 (4)
β (°) 115.969 (1) 107.637 (1)
V3)2010.7 (2)1721.47 (12)
Z44
Radiation typeMo KαMo Kα
µ (mm1)5.015.85
Crystal size (mm)0.25 × 0.08 × 0.060.24 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Bruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Multi-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.360, 0.7390.297, 0.441
No. of measured, independent and
observed [I > 2σ(I)] reflections
9940, 3610, 2301 17889, 6212, 4321
Rint0.0320.032
(sin θ/λ)max1)0.7550.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.066, 0.86 0.028, 0.056, 0.89
No. of reflections36106212
No. of parameters130209
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.430.64, 0.45

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 2000), SHELXL97.

Selected bond lengths (Å) for (I) top
As1—O11.6510 (15)As2—O51.6797 (16)
As1—O21.6982 (17)As2—O31.6895 (17)
As2—O41.6454 (15)As2—O61.6985 (16)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O4i0.851.792.642 (2)175
O3—H2···O10.901.652.547 (2)176
O5—H3···O1ii0.881.702.564 (2)168
O6—H4···O4iii0.931.712.617 (2)164
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+1; (iii) x, y+1, z+1.
Selected bond lengths (Å) for (II) top
As1—O21.6483 (15)As2—O51.6896 (16)
As1—O41.6585 (16)As2—O81.7163 (15)
As1—O31.7037 (17)As3—O111.6365 (14)
As1—O11.7045 (15)As3—O121.6793 (17)
As2—O61.6571 (14)As3—O91.6871 (16)
As2—O71.6608 (16)As3—O101.6928 (15)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.891.702.557 (2)163
O3—H3···O11i0.831.832.638 (2)163
O5—H5···O20.911.642.487 (2)154
O8—H8···O7ii0.901.772.666 (2)170
O9—H9···O70.921.622.526 (2)167
O10—H10···O4iii0.961.632.578 (3)171
O12—H12···O40.891.642.523 (2)171
N1—H13···O110.911.722.610 (2)167
N2—H14···O6iv0.911.812.655 (2)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds