Download citation
Download citation
link to html
The title compound, [Co(C32H35N3O6)(H2O)2](ClO4)2·H2O, contains a cationic complex with a novel facultative hexa­dentate sugar-derived ligand coordinated in a tetra­dentate fashion to give a CoN2O4 coordination. The partial coordination is imposed by the rigid conformation of the sugar. The pyridine group that is not bound to the metal is free to participate in inter­molecular hydrogen bonding and π–π stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107013522/gd3097sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107013522/gd3097Isup2.hkl
Contains datablock I

CCDC reference: 649068

Comment top

Designing inflexible ligands, i.e. ligands having a small number of low-energy conformations, is of interest in inorganic chemistry as complexes containing such ligands have predetermined structural (conformational, stereochemical) properties (Comba & Schiek, 2003). Monosaccharides are known to display quite inflexible conformations, and this property has been used to design molecular scaffolds for the generation of bioactive molecules (Peri et al., 2002). Ligands consisting of monosaccharides functionalized with Lewis bases are of current research interest (Alexeev et al., 2004). Glycoligands are ligands built on a central saccharide distribution frame by functionalization with Lewis bases, in the present case α-methyl-D-mannoside and 2-picolyl groups, respectively. We report here the structure of the title compound, (I) (Fig. 1)

The ligating methyl 4-O-benzyl-3,4,6-tri-O-(2-picolyl)-α-D-mannopyranoside (L) is bound to the metal cation by coordination of the N and O atoms of the picolyl ether moieties, O2 and N2, and O3 and N3, as in previously published glycocomplex structures (Bellot et al., 2005; Cisnetti et al., 2007; Charron et al., 2007) containing analogous ligands constructed on other monosaccharide (galactose, lyxose and glucose) frameworks. In (I), the picolyl unit bonded to atom O6 remains uncoordinated to Co. Thus L, which is a potentially hexadentate ligand, behaves here as a tetradentate ligand. Two water molecules are bound to the metal cation in a cis fashion to achieve six-coordination. The cobalt coordination sphere is of distorted octahedral geometry with longer Co—O distances for the coordinated ether groups than for the coordinated water molecules. The coordination sphere is more open on the side of the water molecules because the chelate angles are less than 90°. The coordination distances and angles are given in Table 1. It should be noted that there are rather few examples of CoII cis-diaqua complexes with a neutral tetradentate ligand (Pappalardo et al., 1987; Hiller et al., 1990; Castiñeiras et al., 1991; Comba et al., 2002).

The structure contains three independent five-membered metallocycles, viz. Co/O2/C20/C21/N2 (A), Co/O3/C30/C31/N3 (B) and Co/O2/C2/C3/O3 (C) (see scheme). The metallocycles can be described in terms of the Corey–Bailar δ,λ notation (Corey & Bailar, 1959) or by considering the torsion around the C—C bond. The A and B metallocycles are in an envelope conformation with, respectively, C20 and C30 out of the envelope plane. The O2—C20—C21—N2 and O3—C30—C31—N3 torsion angles are, respectively, 33.9 (2) and 24.0 (2)°, and A and B are both of δ type. The C metallocycle, of λ type, adopts a twisted conformation with C2 and C3 out of the plane defined by the three other atoms. The O2—C2—C3—O3 torsion angle, which is common to both the C metallocycle and the sugar ring, is -45.84 (19)°. This value is compatible with a slightly distorted 4C1 chair conformation for the mannoside ring, as for methyl α-D-mannopyranoside (Gatehouse & Poppleton, 1970; Jeffrey et al., 1977). The puckering amplitude of the glycoside ring is 0.53 Å for (I), which is very similar to the value for methyl α-D-mannopyranoside (0.55 Å). The methyl group at O1 is in the axial position, which is favorable in terms of the anomeric effect, and the greater possible number of other substituents are in equatorial positions. The ligand in the complmoietieex is thus probably in the most stable conformation of the uncomplexed molecule.

The O2—O6 and O3—O6 distances depend on the sugar ring conformation. In the case of (I) these distances are larger than 4 Å, making the simultaneous coordination of atoms O2, O3 and O6 to a single metal centre impossible. The ligation of picolyl ether O6/N6 to the CoII atom would entail a movement of C6 towards axiality, which would result in a mannoside cycle deformation towards a less stable boat conformation. Upon ligation, atoms O2 and O3 become stereocenters. Their asymmetry has been characterized by the sum of the oxygen bond angles (Mikata et al., 2004, 2006). The values are 339.0° for O2 and 341.0° for O3, which are in the range that has been reported by us (Bellot et al., 2005; Cisnetti et al., 2007) and by Mikata et al. in the case of metal-bound sugar ethers.

The dangling pyridine containing N6 participates in hydrogen bonding and ππ stacking interactions with another molecule of the complex [symmetry codes: (a) x, y, z; (b) -x + 2, y + 1/2, -z + 3/2]. N6(a) is hydrogen bonded to O31(b) with a distance of 2.736 (2) Å, which is indicative of a quite strong interaction [the mean value for the Co—OH2···N distance over 110 structures in the Cambridge Structural Database (Allen, 2002) with O—H···N angle in the range 120–180° is 2.82 Å]. The pyridine ring containing N6(a) is stacked with the pyridine ring containing N2(b). The separation of the pyridine centroids is 3.63 (1) Å and the angle between the two ring planes is 9.01° (Fig. 2).

The perchlorate anion containing Cl2 bridges atoms O31 and O32 through hydrogen bonding (Table 2). There is a network of hydrogen bonds bridging each part of the complex cation to the others via hydrogen bonding with the perchlorate anions containing O13 and O12 and the solvent water molecule containing O33 (Fig. 3).

Related literature top

For related literature, see: Alexeev et al. (2004); Allen (2002); Bellot et al. (2005); Castiñeiras et al. (1991); Charron et al. (2007); Cisnetti et al. (2007); Comba & Schiek (2003); Comba et al. (2002); Corey & Bailar (1959); Gatehouse & Poppleton (1970); Hiller et al. (1990); Jeffrey et al. (1977); Mikata et al. (2004, 2006); Pappalardo et al. (1987); Peri et al. (2002); Rao & Roy (1980); Szeja et al. (1989).

Experimental top

For the synthesis of L, methyl 4-O-benzyl-α-D-mannopyranoside, (2), was prepared according to a published four-step synthesis (Rao & Roy, 1980). The picolylation to obtain L was performed on a 3 mmol scale by a phase transfer procedure adapted from Szeja's protocol for benzylation (Szeja et al., 1989). Picolyl chloride hydrochloride (3.6 equivalents), NBu4+·HSO4- (0.1 equivalent) and (2) (1 equivalent) were dissolved in a biphasic system composed of toluene (7 ml), 50% aqueous NaOH (5 ml) and 0.1 ml of tamyl alcohol·The mixture was stirred vigourously at RT overnight. L was recovered in 65% yield by extraction (CH2Cl2/H2O) followed by SiO2 column chromatography (eluant ACOEt/methanol 19:1). 1H NMR (CDCl3, 360 MHz): δ [8.5 (m, 3H), 7.5 (m, 6H), 7.2 (m, 5 H), 7.1 (m, 3H)], HAr; 4.9 (m, 9H), (O—CH—OCH3, O—CH2—CAr); 3.9 (m, 6H), other sugar CH; 3.31 (s, 3H), CH3. 13C NMR (CDCl3, 90 MHz): δ [158.6 (2 C), 158.5], Cquat py; [148.9, 148.8, 148.7, 136.6 (2 C), 136.5, 122.2 (2 C), 122.1, 121.5, 121.2, 121.1], Cpy; 138.3 Cquat Ph; [128.3 (2 C), 127.8 (2 C), 127.6], CPh; 98.7, C1; (75.0, 74.1, 73.5, 72.6, 69.9), (C6, O—CH2—CAr); (80.2, 75.8, 74.6, 71.5), other sugar CH; 54.8, CH3. ESI–MS: M/z 558.3 ([L+H]+). Crystals of the title compound were prepared by mixing 100 mg of L and 1 equivalent of Co(ClO4)2·6(H2O) in 5 ml of 96% ethanol. Mixing resulted in a hyperchrome effect. The crystals were grown by slow evaporation in approximatively one week and were recovered by filtration. Yield 55%. Microanalysis (calc/found): C 44.2/44.0, H 4.6/4.5, N 4.8/4.8, Cl 8.2/8.4, Co 6.8/6.6%.

Refinement top

H atoms of the ligand were positioned geometrically and refined using a riding model. H atoms of water moieties O31, O32 and O33 were located in a difference Fourier map and refined using DFIX instructions in which O—H distances were resttrained to 0.96 (3) Å and H—H distances to 1.52 (3) Å according to the ideal molecular geometry of water. The absolute configuration was unambiguous because the starting material for the ligand synthesis was pure α-D-methyl mannopyrannoside and none of the synthetic steps could have lead to any racemization.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3.2 (Brueggemann & Schmid, 1990) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids depicted at the 50% probability level. H atoms have been omitted for clarity, except those of water molecules, which are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A partial view (perchlorate groups and solvent water molecules have been omitted for clarity) of the packing of (I), showing ππ stacking interactions and hydrogen bonds involving the dangling pyridine ring containing atom N6. The non-H atoms are shown with displacement ellipsoids drawn at the 80% probability level. H atoms have been omitted for clarity, except those of water molecules, which are shown as small spheres of arbitrary radii. [Symmetry code: (i) -x + 2, y + 1/2, -z + 3/2.]
[Figure 3] Fig. 3. A partial view of the packing of (I), showing the network of hydrogen bonds linking two complex cations through water molecules and perchlorate anions. Non-H atoms of the perchlorate ions and water molecules are shown with displacement ellipsoids drawn at the 80% probability level. H atoms have been omitted for clarity, except water H atoms, which are shown as spheres of arbitrary radii. [Symmetry code: (iii) x - 1/2, -y + 3/2, -z + 2.]
Diaqua[methyl 4-O-benzyl-2,3,6-tri-O-(2-picolyl)-α-D-mannopyranoside]cobalt(II) bis(perchlorate) monohydrate top
Crystal data top
[Co(C32H35N3O6)(H2O)2](ClO4)2·H2OF(000) = 1804
Mr = 869.51Dx = 1.560 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8814 reflections
a = 10.7451 (4) Åθ = 2.3–32.1°
b = 11.0327 (4) ŵ = 0.69 mm1
c = 31.2265 (12) ÅT = 100 K
V = 3701.8 (2) Å3Plate, pink
Z = 40.28 × 0.17 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
9372 independent reflections
Radiation source: fine-focus sealed tube, kappa X8 APEX II Bruker8339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 34.8°, θmin = 2.0°
Absorption correction: ψ scan
(SADABS; Bruker, 2000)
h = 1717
Tmin = 0.852, Tmax = 0.923k = 1717
18042 measured reflectionsl = 5050
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0337P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
9372 reflectionsΔρmax = 0.47 e Å3
520 parametersΔρmin = 0.34 e Å3
6 restraintsAbsolute structure: Flack (1983), 538 Friedel pairs???
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (8)
Crystal data top
[Co(C32H35N3O6)(H2O)2](ClO4)2·H2OV = 3701.8 (2) Å3
Mr = 869.51Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.7451 (4) ŵ = 0.69 mm1
b = 11.0327 (4) ÅT = 100 K
c = 31.2265 (12) Å0.28 × 0.17 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
9372 independent reflections
Absorption correction: ψ scan
(SADABS; Bruker, 2000)
8339 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.923Rint = 0.023
18042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070Δρmax = 0.47 e Å3
S = 1.00Δρmin = 0.34 e Å3
9372 reflectionsAbsolute structure: Flack (1983), 538 Friedel pairs???
520 parametersAbsolute structure parameter: 0.015 (8)
6 restraints
Special details top

Experimental. Reagents and solvents have been bought from Acros, NMR spectroscopy was performed with a Bruker AV360 spectrometer, ESI Mass Spectrometry with a Finnigan MAT95S spectrometer and microanalys performed at the "service de microanalyse du CNRS" (Gif-sur-Yvette and Vernaison, France).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Treatment on H: H atoms of ligand were added geometrically and refined by riding model. H atoms of water O31, O32 and O33 added from difference Fourier map, and refinded by DFIX instructions in which O—H distances were set 0.96 (3) and H—H distances 1.52 (3) Angstroms according to the ideal molecular geometry of water, and with one common isotropic thermal parameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.98900 (2)0.39337 (2)0.903722 (7)0.01187 (6)
O21.17911 (11)0.34104 (12)0.88488 (4)0.0126 (3)
O30.99042 (11)0.19826 (12)0.91043 (4)0.0149 (3)
N21.08415 (14)0.55680 (14)0.90129 (5)0.0129 (3)
N31.02955 (14)0.36867 (15)0.97002 (5)0.0144 (3)
C11.31317 (17)0.17386 (18)0.86361 (6)0.0139 (4)
H11.38470.22870.86530.017*
C21.21299 (17)0.21766 (17)0.89466 (6)0.0130 (4)
H21.24380.21240.92410.016*
C31.09546 (16)0.14016 (18)0.88970 (6)0.0126 (4)
H31.11000.06170.90360.015*
C41.05712 (16)0.11731 (17)0.84325 (6)0.0124 (4)
H41.01210.18760.83190.015*
C51.16878 (17)0.08796 (18)0.81475 (6)0.0138 (4)
H51.19910.00680.82210.017*
O51.26782 (11)0.17277 (12)0.82100 (4)0.0142 (3)
O11.34933 (12)0.05863 (13)0.87826 (4)0.0168 (3)
C101.45202 (19)0.0095 (2)0.85461 (7)0.0238 (5)
H10A1.47280.06900.86570.036*
H10B1.52260.06240.85730.036*
H10C1.42950.00240.82500.036*
C201.26698 (16)0.42961 (17)0.90017 (7)0.0159 (4)
H20A1.34320.42540.88360.019*
H20B1.28690.41430.93000.019*
C211.20834 (17)0.55230 (18)0.89543 (6)0.0128 (4)
C221.27751 (18)0.65506 (19)0.88673 (6)0.0167 (4)
H221.36310.64990.88270.020*
C231.21777 (19)0.76510 (19)0.88407 (6)0.0185 (4)
H231.26290.83540.87870.022*
C241.08984 (19)0.77055 (19)0.88950 (6)0.0182 (4)
H241.04760.84390.88750.022*
C251.02702 (18)0.66410 (18)0.89794 (6)0.0163 (4)
H250.94110.66710.90150.020*
C300.96647 (19)0.16280 (19)0.95408 (6)0.0201 (4)
H30A1.00520.08490.95960.024*
H30B0.87750.15380.95830.024*
C311.01628 (17)0.25516 (17)0.98536 (6)0.0155 (4)
C321.04166 (19)0.2264 (2)1.02748 (6)0.0214 (4)
H321.03400.14691.03710.026*
C331.0786 (2)0.3174 (2)1.05517 (6)0.0246 (5)
H331.09600.30011.08370.030*
C341.08928 (19)0.4340 (2)1.03986 (6)0.0235 (5)
H341.11180.49701.05810.028*
C351.06587 (18)0.45603 (19)0.99690 (6)0.0176 (4)
H351.07580.53430.98640.021*
O40.97910 (12)0.01225 (12)0.84241 (4)0.0145 (3)
C400.84985 (18)0.0362 (2)0.83586 (8)0.0265 (5)
H40A0.83440.05560.80600.032*
H40B0.82380.10450.85320.032*
C410.77806 (17)0.07672 (19)0.84855 (7)0.0177 (4)
C420.77602 (18)0.1130 (2)0.89067 (7)0.0242 (5)
H420.81900.06830.91110.029*
C430.7114 (2)0.2144 (2)0.90281 (8)0.0299 (5)
H430.70950.23740.93150.036*
C440.64899 (19)0.2823 (2)0.87254 (8)0.0267 (5)
H440.60580.35130.88100.032*
C450.6496 (2)0.2494 (2)0.82996 (8)0.0285 (5)
H450.60750.29550.80970.034*
C460.71592 (18)0.1437 (2)0.81774 (7)0.0254 (5)
H460.71760.11960.78920.031*
C61.13522 (19)0.08950 (18)0.76772 (6)0.0168 (4)
H6A1.20820.07120.75060.020*
H6B1.07260.02840.76190.020*
O61.08859 (13)0.20624 (13)0.75665 (4)0.0175 (3)
C601.03143 (18)0.2070 (2)0.71517 (6)0.0185 (4)
H60A1.08090.15870.69560.022*
H60B1.02880.28930.70430.022*
C610.90157 (18)0.15679 (19)0.71718 (6)0.0156 (4)
C620.8045 (2)0.2270 (2)0.73174 (6)0.0196 (4)
H620.81850.30700.73980.024*
C630.6860 (2)0.1782 (2)0.73438 (6)0.0224 (5)
H630.61930.22510.74360.027*
C640.66924 (19)0.0581 (2)0.72291 (6)0.0225 (5)
H640.59100.02230.72460.027*
C650.77089 (18)0.0079 (2)0.70881 (6)0.0185 (4)
H650.75920.08860.70120.022*
N60.88551 (15)0.03938 (16)0.70558 (5)0.0151 (3)
Cl10.44449 (4)0.64749 (5)0.985683 (15)0.01955 (10)
O100.32285 (14)0.60827 (19)0.99799 (5)0.0388 (4)
O110.48988 (15)0.57257 (13)0.95138 (4)0.0267 (3)
O120.52842 (15)0.63598 (17)1.02178 (5)0.0343 (4)
O130.44105 (17)0.77148 (15)0.97145 (6)0.0363 (4)
O310.94868 (13)0.40168 (14)0.83976 (4)0.0161 (3)
H31A1.005 (2)0.451 (2)0.8213 (8)0.042 (7)*
H31B0.883 (2)0.402 (3)0.8312 (9)0.046 (9)*
O320.81129 (13)0.43422 (15)0.92229 (5)0.0213 (3)
H33B0.819 (2)0.592 (3)1.0069 (10)0.050 (9)*
H33A0.685 (2)0.573 (3)1.0003 (10)0.067 (11)*
O330.76934 (17)0.54335 (18)0.99747 (6)0.0332 (4)
H32B0.805 (3)0.474 (3)0.9470 (10)0.071 (11)*
H32A0.744 (2)0.441 (3)0.9060 (9)0.075 (11)*
Cl20.61570 (4)0.36496 (4)0.831902 (14)0.01515 (10)
O200.50671 (14)0.34335 (17)0.80738 (5)0.0320 (4)
O210.67630 (17)0.25132 (16)0.84093 (5)0.0381 (4)
O220.58292 (13)0.42090 (15)0.87230 (5)0.0254 (3)
O230.70104 (16)0.44134 (17)0.80921 (5)0.0333 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.01213 (11)0.01141 (12)0.01208 (11)0.00042 (10)0.00096 (10)0.00056 (10)
O20.0132 (6)0.0080 (6)0.0165 (6)0.0001 (5)0.0011 (5)0.0009 (5)
O30.0161 (6)0.0144 (6)0.0144 (6)0.0000 (6)0.0050 (5)0.0012 (5)
N20.0155 (7)0.0117 (8)0.0114 (7)0.0008 (6)0.0014 (6)0.0011 (7)
N30.0128 (7)0.0170 (8)0.0134 (7)0.0001 (6)0.0025 (6)0.0018 (6)
C10.0115 (8)0.0131 (10)0.0170 (9)0.0011 (7)0.0026 (7)0.0001 (8)
C20.0146 (8)0.0100 (9)0.0144 (9)0.0007 (7)0.0028 (7)0.0010 (8)
C30.0137 (8)0.0108 (9)0.0134 (8)0.0004 (7)0.0010 (7)0.0000 (7)
C40.0133 (8)0.0090 (9)0.0149 (8)0.0014 (8)0.0014 (7)0.0006 (7)
C50.0156 (8)0.0100 (10)0.0158 (9)0.0003 (7)0.0016 (7)0.0010 (8)
O50.0141 (6)0.0144 (7)0.0142 (6)0.0016 (5)0.0005 (5)0.0013 (5)
O10.0163 (6)0.0130 (7)0.0212 (7)0.0033 (6)0.0015 (5)0.0008 (6)
C100.0180 (9)0.0198 (11)0.0335 (12)0.0071 (9)0.0014 (9)0.0044 (9)
C200.0120 (8)0.0126 (10)0.0231 (10)0.0017 (7)0.0027 (8)0.0001 (8)
C210.0159 (9)0.0121 (9)0.0104 (9)0.0002 (7)0.0016 (7)0.0009 (7)
C220.0178 (9)0.0169 (10)0.0156 (9)0.0043 (8)0.0029 (8)0.0018 (8)
C230.0261 (10)0.0143 (11)0.0151 (9)0.0045 (9)0.0028 (8)0.0020 (8)
C240.0288 (11)0.0120 (10)0.0138 (9)0.0023 (8)0.0021 (8)0.0004 (8)
C250.0184 (9)0.0174 (10)0.0130 (9)0.0034 (8)0.0008 (7)0.0001 (7)
C300.0284 (11)0.0175 (10)0.0145 (9)0.0051 (9)0.0074 (8)0.0028 (8)
C310.0131 (8)0.0168 (9)0.0166 (9)0.0001 (8)0.0056 (8)0.0024 (7)
C320.0245 (10)0.0199 (11)0.0197 (10)0.0036 (9)0.0048 (8)0.0068 (9)
C330.0296 (11)0.0329 (13)0.0113 (9)0.0011 (10)0.0028 (8)0.0036 (9)
C340.0272 (11)0.0276 (12)0.0157 (10)0.0046 (10)0.0022 (8)0.0028 (9)
C350.0185 (9)0.0164 (10)0.0179 (9)0.0012 (8)0.0012 (8)0.0008 (8)
O40.0122 (6)0.0108 (6)0.0204 (7)0.0013 (5)0.0025 (5)0.0004 (5)
C400.0156 (9)0.0233 (12)0.0406 (13)0.0020 (9)0.0050 (9)0.0097 (11)
C410.0129 (9)0.0137 (10)0.0265 (10)0.0028 (8)0.0016 (8)0.0004 (8)
C420.0201 (9)0.0273 (12)0.0253 (10)0.0059 (10)0.0014 (8)0.0022 (10)
C430.0246 (10)0.0322 (13)0.0328 (12)0.0073 (10)0.0054 (10)0.0083 (12)
C440.0177 (10)0.0139 (11)0.0485 (14)0.0006 (9)0.0071 (9)0.0065 (11)
C450.0217 (10)0.0251 (12)0.0388 (13)0.0020 (9)0.0009 (10)0.0112 (11)
C460.0183 (10)0.0360 (14)0.0220 (10)0.0039 (10)0.0021 (8)0.0001 (10)
C60.0203 (9)0.0149 (10)0.0153 (9)0.0011 (8)0.0001 (7)0.0028 (8)
O60.0243 (7)0.0142 (7)0.0139 (6)0.0016 (6)0.0043 (6)0.0000 (6)
C600.0218 (10)0.0216 (11)0.0121 (8)0.0027 (9)0.0009 (7)0.0032 (8)
C610.0197 (9)0.0187 (11)0.0084 (8)0.0013 (8)0.0004 (7)0.0026 (8)
C620.0282 (11)0.0156 (11)0.0150 (9)0.0013 (9)0.0010 (8)0.0002 (8)
C630.0230 (10)0.0283 (13)0.0160 (10)0.0084 (9)0.0009 (8)0.0003 (9)
C640.0193 (10)0.0325 (13)0.0157 (10)0.0038 (9)0.0014 (8)0.0006 (9)
C650.0244 (10)0.0198 (11)0.0112 (9)0.0038 (9)0.0001 (8)0.0024 (8)
N60.0187 (8)0.0168 (9)0.0097 (7)0.0007 (7)0.0004 (7)0.0008 (7)
Cl10.0206 (2)0.0211 (3)0.0169 (2)0.0027 (2)0.00122 (18)0.0017 (2)
O100.0261 (8)0.0573 (13)0.0330 (9)0.0124 (9)0.0040 (7)0.0075 (9)
O110.0393 (9)0.0215 (8)0.0192 (7)0.0055 (8)0.0022 (7)0.0049 (6)
O120.0316 (9)0.0496 (11)0.0216 (7)0.0008 (8)0.0065 (6)0.0091 (8)
O130.0429 (10)0.0189 (8)0.0472 (11)0.0017 (8)0.0088 (8)0.0016 (8)
O310.0133 (6)0.0200 (7)0.0151 (6)0.0022 (6)0.0014 (5)0.0030 (6)
O320.0140 (7)0.0322 (9)0.0178 (7)0.0022 (6)0.0006 (6)0.0066 (7)
O330.0255 (9)0.0401 (12)0.0340 (10)0.0024 (8)0.0025 (8)0.0162 (8)
Cl20.01292 (19)0.0156 (2)0.0169 (2)0.00042 (17)0.00082 (17)0.00004 (19)
O200.0209 (7)0.0492 (10)0.0259 (8)0.0063 (8)0.0055 (7)0.0013 (7)
O210.0501 (11)0.0319 (10)0.0324 (9)0.0227 (9)0.0003 (8)0.0034 (8)
O220.0260 (8)0.0290 (9)0.0212 (7)0.0004 (7)0.0050 (6)0.0083 (7)
O230.0328 (9)0.0366 (10)0.0305 (9)0.0104 (8)0.0107 (7)0.0048 (8)
Geometric parameters (Å, º) top
Co—O312.0457 (13)C33—H330.9300
Co—O322.0459 (14)C34—C351.386 (3)
Co—N22.0742 (16)C34—H340.9300
Co—N32.1330 (15)C35—H350.9300
Co—O32.1627 (13)O4—C401.429 (2)
Co—O22.2028 (13)C40—C411.518 (3)
O2—C201.440 (2)C40—H40A0.9700
O2—C21.442 (2)C40—H40B0.9700
O3—C301.441 (2)C41—C421.375 (3)
O3—C31.450 (2)C41—C461.385 (3)
N2—C251.338 (2)C42—C431.370 (3)
N2—C211.348 (2)C42—H420.9300
N3—C351.336 (3)C43—C441.380 (3)
N3—C311.348 (2)C43—H430.9300
C1—O11.406 (2)C44—C451.378 (3)
C1—O51.417 (2)C44—H440.9300
C1—C21.527 (3)C45—C461.419 (3)
C1—H10.9800C45—H450.9300
C2—C31.533 (3)C46—H460.9300
C2—H20.9800C6—O61.425 (2)
C3—C41.529 (2)C6—H6A0.9700
C3—H30.9800C6—H6B0.9700
C4—O41.431 (2)O6—C601.433 (2)
C4—C51.529 (3)C60—C611.502 (3)
C4—H40.9800C60—H60A0.9700
C5—O51.430 (2)C60—H60B0.9700
C5—C61.512 (3)C61—N61.356 (3)
C5—H50.9800C61—C621.376 (3)
O1—C101.434 (2)C62—C631.385 (3)
C10—H10A0.9600C62—H620.9300
C10—H10B0.9600C63—C641.385 (3)
C10—H10C0.9600C63—H630.9300
C20—C211.500 (3)C64—C651.384 (3)
C20—H20A0.9700C64—H640.9300
C20—H20B0.9700C65—N61.341 (3)
C21—C221.383 (3)C65—H650.9300
C22—C231.376 (3)Cl1—O101.4294 (16)
C22—H220.9300Cl1—O111.4383 (15)
C23—C241.386 (3)Cl1—O131.4388 (17)
C23—H230.9300Cl1—O121.4492 (15)
C24—C251.380 (3)O31—H31A0.99 (2)
C24—H240.9300O31—H31B0.75 (3)
C25—H250.9300O32—H32B0.89 (3)
C30—C311.510 (3)O32—H32A0.89 (2)
C30—H30A0.9700O33—H33B0.81 (3)
C30—H30B0.9700O33—H33A0.97 (2)
C31—C321.380 (3)Cl2—O201.4195 (15)
C32—C331.383 (3)Cl2—O231.4329 (16)
C32—H320.9300Cl2—O211.4406 (16)
C33—C341.377 (3)Cl2—O221.4478 (15)
O31—Co—O3293.96 (6)C31—C30—H30B109.3
O31—Co—N291.70 (6)H30A—C30—H30B108.0
O32—Co—N2106.19 (6)N3—C31—C32122.10 (18)
O31—Co—N3175.22 (7)N3—C31—C30115.76 (16)
O32—Co—N386.78 (6)C32—C31—C30122.09 (18)
N2—Co—N392.63 (6)C31—C32—C33119.0 (2)
O31—Co—O398.08 (5)C31—C32—H32120.5
O32—Co—O3101.44 (6)C33—C32—H32120.5
N2—Co—O3149.92 (6)C34—C33—C32119.00 (19)
N3—Co—O377.14 (6)C34—C33—H33120.5
O31—Co—O286.99 (5)C32—C33—H33120.5
O32—Co—O2177.41 (6)C33—C34—C35119.0 (2)
N2—Co—O276.17 (5)C33—C34—H34120.5
N3—Co—O292.08 (5)C35—C34—H34120.5
O3—Co—O276.02 (5)N3—C35—C34122.3 (2)
C20—O2—C2113.89 (13)N3—C35—H35118.8
C20—O2—Co109.97 (10)C34—C35—H35118.8
C2—O2—Co115.15 (10)C40—O4—C4114.97 (15)
C30—O3—C3116.17 (14)O4—C40—C41107.72 (16)
C30—O3—Co111.13 (11)O4—C40—H40A110.2
C3—O3—Co113.71 (11)C41—C40—H40A110.2
C25—N2—C21118.45 (17)O4—C40—H40B110.2
C25—N2—Co123.09 (12)C41—C40—H40B110.2
C21—N2—Co117.44 (13)H40A—C40—H40B108.5
C35—N3—C31118.52 (16)C42—C41—C46120.1 (2)
C35—N3—Co125.26 (13)C42—C41—C40119.81 (19)
C31—N3—Co116.22 (12)C46—C41—C40120.1 (2)
O1—C1—O5113.14 (15)C43—C42—C41120.7 (2)
O1—C1—C2105.92 (15)C43—C42—H42119.6
O5—C1—C2110.87 (14)C41—C42—H42119.6
O1—C1—H1108.9C42—C43—C44120.0 (2)
O5—C1—H1108.9C42—C43—H43120.0
C2—C1—H1108.9C44—C43—H43120.0
O2—C2—C1110.02 (15)C45—C44—C43121.0 (2)
O2—C2—C3107.29 (14)C45—C44—H44119.5
C1—C2—C3109.89 (15)C43—C44—H44119.5
O2—C2—H2109.9C44—C45—C46118.6 (2)
C1—C2—H2109.9C44—C45—H45120.7
C3—C2—H2109.9C46—C45—H45120.7
O3—C3—C4106.65 (14)C41—C46—C45119.6 (2)
O3—C3—C2110.46 (15)C41—C46—H46120.2
C4—C3—C2114.19 (15)C45—C46—H46120.2
O3—C3—H3108.5O6—C6—C5109.26 (15)
C4—C3—H3108.5O6—C6—H6A109.8
C2—C3—H3108.5C5—C6—H6A109.8
O4—C4—C5106.12 (14)O6—C6—H6B109.8
O4—C4—C3107.99 (15)C5—C6—H6B109.8
C5—C4—C3112.08 (14)H6A—C6—H6B108.3
O4—C4—H4110.2C6—O6—C60112.03 (15)
C5—C4—H4110.2O6—C60—C61110.99 (15)
C3—C4—H4110.2O6—C60—H60A109.4
O5—C5—C6107.61 (15)C61—C60—H60A109.4
O5—C5—C4111.46 (15)O6—C60—H60B109.4
C6—C5—C4112.08 (15)C61—C60—H60B109.4
O5—C5—H5108.5H60A—C60—H60B108.0
C6—C5—H5108.5N6—C61—C62121.97 (19)
C4—C5—H5108.5N6—C61—C60117.32 (18)
C1—O5—C5112.93 (14)C62—C61—C60120.67 (19)
C1—O1—C10112.74 (16)C61—C62—C63119.8 (2)
O1—C10—H10A109.5C61—C62—H62120.1
O1—C10—H10B109.5C63—C62—H62120.1
H10A—C10—H10B109.5C62—C63—C64118.5 (2)
O1—C10—H10C109.5C62—C63—H63120.8
H10A—C10—H10C109.5C64—C63—H63120.8
H10B—C10—H10C109.5C65—C64—C63118.8 (2)
O2—C20—C21107.70 (14)C65—C64—H64120.6
O2—C20—H20A110.2C63—C64—H64120.6
C21—C20—H20A110.2N6—C65—C64123.0 (2)
O2—C20—H20B110.2N6—C65—H65118.5
C21—C20—H20B110.2C64—C65—H65118.5
H20A—C20—H20B108.5C65—N6—C61117.92 (18)
N2—C21—C22121.92 (18)O10—Cl1—O11109.65 (11)
N2—C21—C20115.83 (17)O10—Cl1—O13110.32 (12)
C22—C21—C20122.23 (16)O11—Cl1—O13108.96 (10)
C23—C22—C21118.99 (18)O10—Cl1—O12109.48 (10)
C23—C22—H22120.5O11—Cl1—O12108.54 (9)
C21—C22—H22120.5O13—Cl1—O12109.85 (11)
C22—C23—C24119.6 (2)Co—O31—H31A117.6 (15)
C22—C23—H23120.2Co—O31—H31B123 (2)
C24—C23—H23120.2H31A—O31—H31B111 (2)
C25—C24—C23118.13 (19)Co—O32—H32B115 (2)
C25—C24—H24120.9Co—O32—H32A128 (2)
C23—C24—H24120.9H32B—O32—H32A113 (3)
N2—C25—C24122.93 (17)H33B—O33—H33A111 (2)
N2—C25—H25118.5O20—Cl2—O23111.09 (10)
C24—C25—H25118.5O20—Cl2—O21109.41 (11)
O3—C30—C31111.43 (15)O23—Cl2—O21108.63 (11)
O3—C30—H30A109.3O20—Cl2—O22109.93 (9)
C31—C30—H30A109.3O23—Cl2—O22109.63 (10)
O3—C30—H30B109.3O21—Cl2—O22108.09 (10)
O31—Co—O2—C20118.65 (12)C6—C5—O5—C1176.16 (15)
N2—Co—O2—C2026.15 (11)C4—C5—O5—C160.58 (19)
N3—Co—O2—C2066.04 (12)O5—C1—O1—C1063.8 (2)
O3—Co—O2—C20142.24 (12)C2—C1—O1—C10174.51 (15)
O31—Co—O2—C2111.06 (12)C2—O2—C20—C21169.19 (14)
N2—Co—O2—C2156.44 (12)Co—O2—C20—C2138.23 (17)
N3—Co—O2—C264.25 (12)C25—N2—C21—C220.9 (3)
O3—Co—O2—C211.95 (11)Co—N2—C21—C22169.78 (14)
O31—Co—O3—C30156.51 (12)C25—N2—C21—C20179.24 (17)
O32—Co—O3—C3060.78 (12)Co—N2—C21—C2011.9 (2)
N2—Co—O3—C3095.73 (15)O2—C20—C21—N233.9 (2)
N3—Co—O3—C3023.20 (12)O2—C20—C21—C22147.75 (17)
O2—Co—O3—C30118.66 (12)N2—C21—C22—C230.1 (3)
O31—Co—O3—C370.17 (11)C20—C21—C22—C23178.09 (18)
O32—Co—O3—C3165.90 (11)C21—C22—C23—C240.9 (3)
N2—Co—O3—C337.59 (17)C22—C23—C24—C250.7 (3)
N3—Co—O3—C3110.13 (11)C21—N2—C25—C241.2 (3)
O2—Co—O3—C314.67 (10)Co—N2—C25—C24169.36 (14)
O31—Co—N2—C2574.10 (15)C23—C24—C25—N20.4 (3)
O32—Co—N2—C2520.53 (16)C3—O3—C30—C31100.34 (18)
N3—Co—N2—C25107.93 (15)Co—O3—C30—C3131.74 (18)
O3—Co—N2—C25176.52 (12)C35—N3—C31—C321.5 (3)
O2—Co—N2—C25160.57 (16)Co—N3—C31—C32178.81 (14)
O31—Co—N2—C2194.20 (14)C35—N3—C31—C30175.89 (17)
O32—Co—N2—C21171.18 (13)Co—N3—C31—C303.8 (2)
N3—Co—N2—C2183.77 (14)O3—C30—C31—N324.0 (2)
O3—Co—N2—C2115.2 (2)O3—C30—C31—C32158.60 (17)
O2—Co—N2—C217.73 (13)N3—C31—C32—C331.8 (3)
O32—Co—N3—C3587.76 (16)C30—C31—C32—C33175.40 (19)
N2—Co—N3—C3518.33 (16)C31—C32—C33—C340.1 (3)
O3—Co—N3—C35169.73 (16)C32—C33—C34—C351.7 (3)
O2—Co—N3—C3594.57 (15)C31—N3—C35—C340.5 (3)
O32—Co—N3—C3191.92 (14)Co—N3—C35—C34179.18 (15)
N2—Co—N3—C31161.99 (13)C33—C34—C35—N32.1 (3)
O3—Co—N3—C3110.59 (13)C5—C4—O4—C40133.70 (17)
O2—Co—N3—C3185.75 (13)C3—C4—O4—C40105.96 (18)
C20—O2—C2—C178.21 (18)C4—O4—C40—C41163.83 (16)
Co—O2—C2—C1153.43 (11)O4—C40—C41—C4266.7 (3)
C20—O2—C2—C3162.28 (14)O4—C40—C41—C46112.6 (2)
Co—O2—C2—C333.92 (16)C46—C41—C42—C431.0 (3)
O1—C1—C2—O2173.97 (14)C40—C41—C42—C43179.73 (19)
O5—C1—C2—O262.93 (19)C41—C42—C43—C441.0 (3)
O1—C1—C2—C368.11 (18)C42—C43—C44—C450.5 (3)
O5—C1—C2—C355.0 (2)C43—C44—C45—C460.1 (3)
C30—O3—C3—C4142.05 (15)C42—C41—C46—C450.4 (3)
Co—O3—C3—C487.07 (14)C40—C41—C46—C45179.71 (18)
C30—O3—C3—C293.33 (18)C44—C45—C46—C410.1 (3)
Co—O3—C3—C237.55 (16)O5—C5—C6—O663.86 (19)
O2—C2—C3—O345.84 (19)C4—C5—C6—O659.0 (2)
C1—C2—C3—O3165.44 (14)C5—C6—O6—C60167.98 (15)
O2—C2—C3—C474.35 (19)C6—O6—C60—C6180.0 (2)
C1—C2—C3—C445.3 (2)O6—C60—C61—N698.7 (2)
O3—C3—C4—O478.72 (17)O6—C60—C61—C6279.0 (2)
C2—C3—C4—O4158.98 (15)N6—C61—C62—C630.8 (3)
O3—C3—C4—C5164.75 (15)C60—C61—C62—C63178.38 (17)
C2—C3—C4—C542.5 (2)C61—C62—C63—C641.3 (3)
O4—C4—C5—O5165.81 (14)C62—C63—C64—C650.8 (3)
C3—C4—C5—O548.2 (2)C63—C64—C65—N60.2 (3)
O4—C4—C5—C673.51 (19)C64—C65—N6—C610.7 (3)
C3—C4—C5—C6168.84 (16)C62—C61—N6—C650.2 (3)
O1—C1—O5—C554.27 (19)C60—C61—N6—C65177.45 (16)
C2—C1—O5—C564.56 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31A···N6i1.00 (2)1.74 (3)2.736 (2)173 (2)
O31—H31B···O230.75 (2)2.12 (2)2.860 (2)168 (3)
O32—H32A···O220.89 (2)2.04 (2)2.912 (2)168 (3)
O32—H32B···O330.89 (3)1.79 (3)2.677 (2)171 (3)
O33—H33A···O120.97 (2)1.94 (2)2.885 (2)165 (3)
O33—H33B···O13ii0.81 (3)2.11 (3)2.919 (3)176 (3)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formula[Co(C32H35N3O6)(H2O)2](ClO4)2·H2O
Mr869.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.7451 (4), 11.0327 (4), 31.2265 (12)
V3)3701.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.28 × 0.17 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionψ scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.852, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
18042, 9372, 8339
Rint0.023
(sin θ/λ)max1)0.803
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.070, 1.00
No. of reflections9372
No. of parameters520
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.34
Absolute structureFlack (1983), 538 Friedel pairs???
Absolute structure parameter0.015 (8)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Bruker, 2001), SHELXTL, ORTEP-3.2 (Brueggemann & Schmid, 1990) and Mercury (Macrae et al., 2006).

Selected geometric parameters (Å, º) top
Co—O312.0457 (13)Co—N32.1330 (15)
Co—O322.0459 (14)Co—O32.1627 (13)
Co—N22.0742 (16)Co—O22.2028 (13)
O31—Co—O3293.96 (6)N2—Co—O3149.92 (6)
O31—Co—N291.70 (6)N3—Co—O377.14 (6)
O32—Co—N2106.19 (6)O31—Co—O286.99 (5)
O31—Co—N3175.22 (7)O32—Co—O2177.41 (6)
O32—Co—N386.78 (6)N2—Co—O276.17 (5)
N2—Co—N392.63 (6)N3—Co—O292.08 (5)
O31—Co—O398.08 (5)O3—Co—O276.02 (5)
O32—Co—O3101.44 (6)
O2—C2—C3—O345.84 (19)O3—C30—C31—N324.0 (2)
O2—C20—C21—N233.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31A···N6i1.00 (2)1.74 (3)2.736 (2)173 (2)
O31—H31B···O230.75 (2)2.12 (2)2.860 (2)168 (3)
O32—H32A···O220.89 (2)2.04 (2)2.912 (2)168 (3)
O32—H32B···O330.89 (3)1.79 (3)2.677 (2)171 (3)
O33—H33A···O120.97 (2)1.94 (2)2.885 (2)165 (3)
O33—H33B···O13ii0.81 (3)2.11 (3)2.919 (3)176 (3)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1/2, y+3/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds