Download citation
Download citation
link to html
The title compound, [Fe(C5H5)(C23H24O3PS)], is a very useful inter­mediate for the synthesis of enanti­omerically pure (S)-2-[(diphenyl­thio­phosphinoyl)ferrocenyl]methanol or (S)-2-(diphenyl­thio­phosphinoyl)ferrocene­carboxaldehyde. The dioxane ring has a chair conformation and is twisted with respect to the cyclo­penta­dienyl ring to which it is attached. There is an inter­molecular C-H...O hydrogen-bonding inter­action which links the mol­ecules into C(8) chains developing parallel to the a axis. Owing to this weak inter­action, the two cyclo­penta­dienyl rings are twisted with respect to each other by 16.0 (3)°, and so have a conformation which might be regarded as inter­mediate between eclipsed and staggered. The absolute configuration deduced from the X-ray analysis fully confirms the sterochemistry expected from the chemical pathway.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106025662/sq3026sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106025662/sq3026Isup2.hkl
Contains datablock I

CCDC reference: 618612

Comment top

In recent decades, ferrocene derivatives have attracted tremendous interest (Togni & Hayashi, 1995) because of their numerous fields of application. Among these compounds, those which exhibit planar chirality are especially important because of their involvement in asymmetric catalysis and materials chemistry (Richards & Locke, 1998; Balavoine et al., 1998; Riant & Kagan, 1997). One of the most efficient methods to synthesize enantiomerically pure ferrocene derivatives has been developed by Kagan et al. (Riant et al., 1997). We used this method to synthesize the title compound, (I). This compound proved to be a very useful intermediate for the synthesis of enantiomerically pure (S)-2-(diphenylthiophosphinoferrocenyl)methanol or (S)-2-(diphenylthiophosphino)ferrocenecarboxaldehyde, which we have used to develop new ligands for asymmetric catalysis (Routaboul et al., 2005; Mateus et al., 2006; Malacea et al., 2006).

A molecular view of compound (I) is shown in Fig. 1. Atom P1 is slightly exo by 0.237 (5) Å with respect to the Cp ring to which it is attached. This slight deviation from planarity with the Cp ring may be related to steric hindrance occurring between the dioxane ring and the phenyl rings. Indeed, there is a short contact of 2.51 Å between atom C111 and the H atom attached to atom C2. However, it could also result from an intramolecular C—H···O interaction between atom C122 of one of the phenyl rings and atom O1 of the dioxane (Table 1). As observed in related (diphenylthiophosphino)ferrocenyl derivatives (López Cortés et al., 2006, and references therein), atom S1 is endo by 0.878 (7) Å with respect to this Cp ring.

The dioxane ring is distorted and the puckering parameters (Cremer & Pople, 1975) show that its conformation is close to that of a chair: the total puckering amplitude Q and the θ angle calculated for the atom sequence C2/O2/C3/C5/C4/O1 are 0.569 (3) and 177.1 (3)°, respectively. Such a chair conformation seems to be general for a dioxane ring attached to ferrocenyl derivatives, whatever the number of substituents on the ferrocene framework (Table 2). Owing to steric hindrance, the dioxane ring is twisted with respect to the Cp ring, with C13—C12—C2—O1 and C13—C12—C2—O2 torsion angles of 84.8 (4) and −34.5 (4)°, respectively. This twist is also reflected by the dihedral angle of 63.3 (1)° between the Cp ring and the O1/C3/C4/O2 mean plane. These different geometric parameters are greatly dependent on the nature of the substituted ferrocenyl derivatives (Table 2). The larger twist is observed for the 1,2-di-substituted ferrocene with bulky substituents in the 2 position on the same Cp ring, as underlined in Table 2 [Cambridge Structural Database (CSD), Version 5.27; Allen, 2002]. The terminal methoxy group is twisted with respect to the C4—C41 bond, with a torsion angle of −71.0 (5)°.

The two Cp rings are twisted with respect to each other by 16.0 (3)°, and so have a conformation which might be regarded as intermediate between eclipsed and staggered. Such a conformation may be induced by the occurrence of an intermolecular C—H···O hydrogen-bonding interaction, which links the molecules into a C(8) chain (Etter et al., 1990) running parallel to the a axis (Table 1, Fig. 2).

The geometry within the (diphenylthiophosphino)ferrocenyl framework agrees with related compounds found in the CSD. Some selected bond distances, angles and puckering parameters are reported in Table 3. In all of these compounds, the S atoms appear to be endo with respect to the Cp ring bearing the phosphino group.

The refinement of the Flack parameter (Flack, 1983; Bernardinelli & Flack, 1985) allowed the determination of the absolute configuration and fully confirmed the stereochemistry expected from the chemical pathway. The two chiral centres, C2 and C4, have an S configuration, and the chiral planarity is S.

Experimental top

In a Schlenk tube under argon, (2S, 4S, SFc)-2-(diphenylphosphinoferrocenyl)-4-methoxymethyl-1,3-dioxane (16.5 g, 33.1 mmol; prepared according to Riant et al. (1997)] was dissolved in dry dichloromethane (1.3 l). Sulfur (5.7 g, 178 mmol, 5.4 equivalents) was then added and the solution was kept at reflux for 2 h. After cooling back to room temperature, dichloromethane (Volume?) was added to the suspension and the mixture was filtered on Celite with washings by dichloromethane. After evaporation of the solvent, the crude material was purified by flash chromatography on silica gel, eluted with a pentane–diethyl? ether mixture (80:20 v/v), to yield 14.8 g (84%) of an orange solid. Single crystals of (I) suitable for X-ray diffraction studies were obtained by slow diffusion of hexane into a CH2Cl2 solution of (2S, 4S, SFc)-2-(diphenylphosphinoferrocenyl)-4-methoxymethyl-1,3-dioxane.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 (Caromatic) or 0.96 Å (Cmethyl) and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(Caromatic,O) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: IPDS Software (Stoe & Cie, 2000); cell refinement: IPDS Software; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with the atom-labelling scheme. Displacement parameters are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing view of compound (I), showing the weak C—H···O hydrogen-bonding interactions resulting in the formation of a C(8) chain. [Symmetry code: (i) 1 + x, y, z.]
(2S,4S,SFc)-2-[(Diphenylthiophosphino)ferrocenyl]-4-methoxymethyl-1,3-dioxane top
Crystal data top
[Fe(C5H5)(C23H24O3PS)]F(000) = 1112
Mr = 532.39Dx = 1.434 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8000 reflections
a = 9.4886 (12) Åθ = 1.8–24.3°
b = 15.2217 (17) ŵ = 0.79 mm1
c = 17.071 (2) ÅT = 180 K
V = 2465.7 (5) Å3Needle, yellow
Z = 40.49 × 0.09 × 0.06 mm
Data collection top
Stoe IPDS
diffractometer
3962 independent reflections
Radiation source: fine-focus sealed tube3266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ scansθmax = 24.3°, θmin = 1.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1010
Tmin = 0.561, Tmax = 0.865k = 017
19961 measured reflectionsl = 019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0172P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
3962 reflectionsΔρmax = 0.21 e Å3
308 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (17)
Crystal data top
[Fe(C5H5)(C23H24O3PS)]V = 2465.7 (5) Å3
Mr = 532.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4886 (12) ŵ = 0.79 mm1
b = 15.2217 (17) ÅT = 180 K
c = 17.071 (2) Å0.49 × 0.09 × 0.06 mm
Data collection top
Stoe IPDS
diffractometer
3962 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3266 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 0.865Rint = 0.047
19961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.056Δρmax = 0.21 e Å3
S = 0.96Δρmin = 0.31 e Å3
3962 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
308 parametersAbsolute structure parameter: 0.016 (17)
0 restraints
Special details top

Experimental. The data were collected on a Stoe Imaging Plate Diffraction System (IPDS). The crystal-to-detector distance was 80 mm. 125 frames (5 min per frame) were obtained with 0 < ϕ < 250° and with the crystals rotated through 2.0° in ϕ. Coverage of the unique set was over 98.8% complete to at least 24.33°. Crystal decay was monitored by measuring 200 reflections per frame.

Spectroscopic and analytical characterization:

1H NMR (S)-(2) (acetone-d6, δ, p.p.m.): 7.9–7.8 (2H, m, PPh2), 7.7–7.4 (8H, m, PPh2), 6.02 (1H, s, O—CH—O), 4.77 (1H, m, subst Cp), 4.41 (1H, m, subst Cp), 4.32 (5H, s, Cp), 4.17 (1H, dd, ABX syst, J = 12.4 and 5 Hz, OCH2CH2), 3.88 (1H, dd, ABX syst, J = 12.4 and 2.8 Hz, OCH2CH2), 3.83 (1H, m, subst Cp), 3.64 (1H, m, CH), 2.89 (3H, s, OCH3), 2.77 (1H, dd, ABX syst, J = 10.1 and 4.5 Hz, CH2OCH3), 2.69 (1H, dd, ABX syst, J = 10.1 and 5.5 Hz, CH2OCH3), 1.62 (1H, qd, J =13.3 and 5.5 Hz, CH2), 1.38 (1H, br d, J = 13.3 Hz, CH2); 13C NMR (acetone-d6, δ, p.p.m.): 135.8 (JPC = 88.5 Hz, quat PPh2), 134.1 (JPC = 86.1 Hz, quat PPh2), 132.5 (JPC = 10.6 Hz, PPh2), 132.3 (JPC = 10.7 Hz, PPh2), 131.5 (JPC = 3.0 Hz, PPh2), 131.1 (JPC = 3.1 Hz, PPh2), 128.2 (JPC = 12.2 Hz, PPh2), 128.0 (JPC = 12.6 Hz, PPh2), 98.3 (O—CH—O), 90.1 (JPC = 10.9 Hz, quat Cp), 75.2 (JPC = 12.3 Hz, subst Cp), 75.1, 74.6, 74.4 (JPC = 94.? Hz, quat Cp), 71.0 (Cp), 70.9 (JPC = 8.7 Hz, subst Cp), 69.4 (JPC = 10.3 Hz, subst Cp), 67.8, 65.5, 58.3 (OCH3), 15.0 (CH2); 31P NMR (acetone-d6, δ, p.p.m.): 47.9. [α]D = −9.72 (CHCl3, c = 0.36). MS (DCI, NH3) m/e: 533 (M+1, 100%). Analysis, found: C 63.13, H 4.90, S 5.29%; calculated for C28H29FeO3PS: C 63.16, H 5.48, S 6.02%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.44353 (5)0.10794 (3)0.94796 (3)0.01799 (11)
S10.86914 (10)0.05679 (6)0.90433 (5)0.0245 (2)
P10.75005 (9)0.12341 (5)0.83239 (5)0.01670 (18)
O10.4108 (3)0.21193 (14)0.71221 (12)0.0244 (6)
O20.2482 (2)0.12014 (16)0.77315 (12)0.0223 (5)
O30.3405 (4)0.2627 (2)0.50854 (17)0.0551 (10)
C110.5875 (3)0.1622 (2)0.87428 (18)0.0161 (8)
C120.4467 (4)0.17102 (19)0.84335 (17)0.0156 (7)
C130.3663 (4)0.2200 (2)0.89868 (19)0.0195 (7)
H130.27000.23590.89320.023*
C140.4532 (4)0.2411 (2)0.96286 (19)0.0241 (8)
H140.42550.27341.00790.029*
C150.5890 (3)0.20594 (19)0.9489 (2)0.0181 (7)
H150.66780.21050.98300.022*
C160.5024 (4)0.0156 (2)0.9826 (2)0.0283 (9)
H160.59060.04300.97280.034*
C170.4688 (4)0.0354 (2)1.0480 (2)0.0335 (9)
H170.53000.04861.09040.040*
C180.3285 (5)0.0639 (3)1.0400 (2)0.0416 (11)
H180.27880.10011.07590.050*
C190.2751 (4)0.0297 (3)0.9700 (3)0.0455 (13)
H190.18240.03820.95040.055*
C200.3828 (5)0.0195 (2)0.9337 (2)0.0387 (11)
H200.37600.04970.88510.046*
C20.3919 (3)0.1407 (2)0.76523 (18)0.0164 (7)
H20.44570.08810.74690.020*
C30.1910 (4)0.0915 (3)0.6996 (2)0.0293 (9)
H3A0.08960.07800.70590.035*
H3B0.23970.03730.68250.035*
C50.2094 (4)0.1625 (2)0.6380 (2)0.0303 (9)
H5A0.17900.14010.58620.036*
H5B0.15030.21400.65130.036*
C40.3632 (4)0.1895 (2)0.63460 (19)0.0264 (9)
H40.42100.13980.61370.032*
C1110.7064 (3)0.0605 (2)0.74640 (19)0.0173 (8)
C1120.6548 (4)0.0247 (2)0.7570 (2)0.0236 (8)
H1120.64910.04860.80830.028*
C1130.6122 (4)0.0745 (2)0.6939 (2)0.0264 (9)
H1130.57530.13180.70190.032*
C1140.6234 (4)0.0409 (2)0.6191 (2)0.0324 (9)
H1140.59480.07530.57550.039*
C1150.6761 (4)0.0425 (2)0.6075 (2)0.0298 (9)
H1150.68370.06520.55580.036*
C1160.7181 (4)0.0936 (2)0.67064 (19)0.0236 (8)
H1160.75470.15100.66220.028*
C1210.8322 (4)0.2243 (2)0.7988 (2)0.0191 (8)
C1220.7508 (4)0.2921 (2)0.7661 (2)0.0256 (8)
H1220.65150.28620.76180.031*
C1230.8171 (4)0.3676 (2)0.7401 (2)0.0307 (9)
H1230.76270.41340.71750.037*
C1240.9616 (4)0.3773 (2)0.7466 (2)0.0295 (9)
H1241.00570.42970.72880.035*
C1251.0413 (4)0.3111 (2)0.7788 (2)0.0323 (9)
H1251.14050.31760.78310.039*
C1260.9768 (4)0.2347 (2)0.8052 (2)0.0245 (9)
H1261.03220.18920.82770.029*
C410.3885 (6)0.2702 (3)0.5864 (2)0.0487 (13)
H41A0.34050.32060.61150.058*
H41B0.49080.28290.58580.058*
C420.4237 (6)0.2052 (3)0.4637 (2)0.0648 (15)
H42A0.52360.21800.47280.097*
H42B0.40180.21300.40810.097*
H42C0.40360.14450.47910.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0183 (2)0.0193 (2)0.0164 (2)0.0001 (2)0.0011 (2)0.0015 (2)
S10.0236 (5)0.0250 (5)0.0248 (5)0.0049 (4)0.0031 (4)0.0010 (4)
P10.0154 (4)0.0180 (4)0.0167 (4)0.0006 (4)0.0005 (4)0.0028 (4)
O10.0380 (17)0.0189 (12)0.0162 (11)0.0072 (11)0.0051 (11)0.0037 (10)
O20.0164 (11)0.0312 (13)0.0192 (11)0.0040 (12)0.0035 (10)0.0030 (11)
O30.097 (3)0.0462 (19)0.0216 (15)0.0159 (19)0.0114 (17)0.0078 (14)
C110.0165 (19)0.0175 (17)0.0144 (17)0.0010 (14)0.0006 (14)0.0025 (13)
C120.0185 (17)0.0108 (15)0.0175 (16)0.0000 (15)0.0033 (16)0.0023 (13)
C130.0218 (19)0.0180 (17)0.0188 (17)0.0052 (15)0.0032 (17)0.0004 (15)
C140.0282 (19)0.0218 (17)0.0222 (19)0.0018 (17)0.0040 (18)0.0046 (14)
C150.0199 (19)0.0209 (16)0.0136 (15)0.0031 (13)0.0055 (16)0.0003 (15)
C160.035 (2)0.0169 (18)0.033 (2)0.0026 (16)0.0027 (17)0.0097 (16)
C170.053 (3)0.0255 (18)0.0219 (18)0.0004 (18)0.001 (2)0.0036 (18)
C180.050 (3)0.038 (2)0.037 (3)0.009 (2)0.027 (2)0.015 (2)
C190.021 (2)0.046 (3)0.070 (4)0.006 (2)0.002 (2)0.037 (2)
C200.051 (3)0.026 (2)0.039 (3)0.018 (2)0.002 (2)0.0063 (17)
C20.0135 (17)0.0184 (17)0.0175 (16)0.0047 (13)0.0005 (14)0.0010 (13)
C30.022 (2)0.038 (2)0.027 (2)0.0083 (18)0.0049 (17)0.0043 (17)
C50.037 (2)0.032 (2)0.0223 (19)0.0082 (18)0.0092 (17)0.0029 (17)
C40.041 (2)0.023 (2)0.0156 (17)0.0075 (18)0.0089 (17)0.0013 (14)
C1110.0148 (18)0.0159 (17)0.0213 (18)0.0007 (14)0.0001 (14)0.0070 (15)
C1120.025 (2)0.0202 (19)0.026 (2)0.0056 (16)0.0023 (17)0.0005 (15)
C1130.028 (2)0.0191 (18)0.032 (2)0.0021 (16)0.0021 (18)0.0063 (15)
C1140.038 (2)0.028 (2)0.031 (2)0.0032 (19)0.0052 (19)0.0196 (17)
C1150.039 (2)0.031 (2)0.0189 (19)0.0025 (18)0.0020 (18)0.0031 (17)
C1160.028 (2)0.0228 (19)0.0206 (18)0.0014 (15)0.0058 (16)0.0006 (16)
C1210.018 (2)0.0170 (18)0.0221 (19)0.0029 (15)0.0020 (15)0.0066 (14)
C1220.025 (2)0.0267 (19)0.0255 (19)0.0010 (18)0.0010 (17)0.0001 (16)
C1230.044 (2)0.025 (2)0.023 (2)0.0040 (18)0.0083 (18)0.0029 (16)
C1240.038 (2)0.019 (2)0.0319 (19)0.0119 (19)0.0054 (19)0.0039 (17)
C1250.025 (2)0.034 (2)0.038 (2)0.0072 (19)0.0016 (19)0.0057 (18)
C1260.024 (2)0.0218 (19)0.028 (2)0.0015 (16)0.0024 (16)0.0017 (16)
C410.093 (4)0.035 (2)0.0179 (19)0.016 (2)0.015 (2)0.0049 (17)
C420.091 (4)0.079 (3)0.024 (2)0.025 (3)0.008 (3)0.006 (2)
Geometric parameters (Å, º) top
Fe1—C182.027 (4)C20—H200.9500
Fe1—C122.028 (3)C2—H21.0000
Fe1—C192.028 (4)C3—C51.518 (5)
Fe1—C112.032 (3)C3—H3A0.9900
Fe1—C152.033 (3)C3—H3B0.9900
Fe1—C202.038 (4)C5—C41.518 (6)
Fe1—C132.038 (3)C5—H5A0.9900
Fe1—C142.044 (3)C5—H5B0.9900
Fe1—C172.047 (4)C4—C411.498 (5)
Fe1—C162.049 (3)C4—H41.0000
S1—P11.9529 (12)C111—C1161.393 (5)
P1—C111.800 (3)C111—C1121.399 (4)
P1—C1111.801 (3)C112—C1131.377 (5)
P1—C1211.816 (3)C112—H1120.9500
O1—C21.423 (4)C113—C1141.380 (5)
O1—C41.441 (4)C113—H1130.9500
O2—C21.406 (4)C114—C1151.379 (5)
O2—C31.435 (4)C114—H1140.9500
O3—C421.405 (6)C115—C1161.388 (5)
O3—C411.409 (4)C115—H1150.9500
C11—C151.437 (4)C116—H1160.9500
C11—C121.443 (5)C121—C1261.386 (5)
C12—C131.425 (4)C121—C1221.405 (5)
C12—C21.504 (4)C122—C1231.383 (5)
C13—C141.409 (5)C122—H1220.9500
C13—H130.9500C123—C1241.383 (5)
C14—C151.415 (5)C123—H1230.9500
C14—H140.9500C124—C1251.375 (5)
C15—H150.9500C124—H1240.9500
C16—C171.396 (5)C125—C1261.389 (5)
C16—C201.410 (5)C125—H1250.9500
C16—H160.9500C126—H1260.9500
C17—C181.407 (6)C41—H41A0.9900
C17—H170.9500C41—H41B0.9900
C18—C191.397 (6)C42—H42A0.9800
C18—H180.9500C42—H42B0.9800
C19—C201.412 (6)C42—H42C0.9800
C19—H190.9500
C18—Fe1—C12147.91 (16)C16—C17—H17126.0
C18—Fe1—C1940.31 (17)C18—C17—H17126.0
C12—Fe1—C19116.96 (16)Fe1—C17—H17126.4
C18—Fe1—C11167.42 (16)C19—C18—C17108.2 (4)
C12—Fe1—C1141.63 (13)C19—C18—Fe169.9 (2)
C19—Fe1—C11152.04 (16)C17—C18—Fe170.6 (2)
C18—Fe1—C15127.05 (16)C19—C18—H18125.9
C12—Fe1—C1569.46 (14)C17—C18—H18125.9
C19—Fe1—C15164.69 (17)Fe1—C18—H18125.2
C11—Fe1—C1541.41 (13)C18—C19—C20108.1 (4)
C18—Fe1—C2068.02 (17)C18—C19—Fe169.8 (2)
C12—Fe1—C20110.45 (14)C20—C19—Fe170.1 (2)
C19—Fe1—C2040.62 (17)C18—C19—H19126.0
C11—Fe1—C20120.18 (15)C20—C19—H19126.0
C15—Fe1—C20153.05 (16)Fe1—C19—H19125.8
C18—Fe1—C13113.78 (15)C16—C20—C19107.5 (4)
C12—Fe1—C1341.03 (13)C16—C20—Fe170.2 (2)
C19—Fe1—C13106.53 (16)C19—C20—Fe169.3 (2)
C11—Fe1—C1369.29 (13)C16—C20—H20126.3
C15—Fe1—C1368.48 (14)C19—C20—H20126.3
C20—Fe1—C13130.20 (16)Fe1—C20—H20125.8
C18—Fe1—C14104.82 (15)O2—C2—O1110.7 (3)
C12—Fe1—C1468.88 (13)O2—C2—C12108.6 (3)
C19—Fe1—C14126.44 (17)O1—C2—C12106.7 (2)
C11—Fe1—C1469.15 (13)O2—C2—H2110.3
C15—Fe1—C1440.62 (14)O1—C2—H2110.3
C20—Fe1—C14166.16 (17)C12—C2—H2110.3
C13—Fe1—C1440.36 (13)O2—C3—C5110.3 (3)
C18—Fe1—C1740.39 (16)O2—C3—H3A109.6
C12—Fe1—C17171.12 (15)C5—C3—H3A109.6
C19—Fe1—C1767.72 (16)O2—C3—H3B109.6
C11—Fe1—C17131.03 (15)C5—C3—H3B109.6
C15—Fe1—C17108.04 (15)H3A—C3—H3B108.1
C20—Fe1—C1767.65 (16)C4—C5—C3109.2 (3)
C13—Fe1—C17146.89 (14)C4—C5—H5A109.8
C14—Fe1—C17115.18 (14)C3—C5—H5A109.8
C18—Fe1—C1667.63 (16)C4—C5—H5B109.8
C12—Fe1—C16133.22 (14)C3—C5—H5B109.8
C19—Fe1—C1667.83 (16)H5A—C5—H5B108.3
C11—Fe1—C16111.61 (14)O1—C4—C41105.1 (3)
C15—Fe1—C16119.08 (14)O1—C4—C5109.3 (3)
C20—Fe1—C1640.38 (15)C41—C4—C5113.4 (4)
C13—Fe1—C16170.16 (15)O1—C4—H4109.7
C14—Fe1—C16149.48 (15)C41—C4—H4109.7
C17—Fe1—C1639.86 (14)C5—C4—H4109.7
C11—P1—C111107.52 (15)C116—C111—C112119.0 (3)
C11—P1—C121102.48 (15)C116—C111—P1123.1 (3)
C111—P1—C121106.92 (15)C112—C111—P1117.9 (3)
C11—P1—S1114.60 (11)C113—C112—C111120.8 (3)
C111—P1—S1111.69 (12)C113—C112—H112119.6
C121—P1—S1112.94 (12)C111—C112—H112119.6
C2—O1—C4111.4 (2)C112—C113—C114119.8 (3)
C2—O2—C3110.5 (2)C112—C113—H113120.1
C42—O3—C41112.5 (4)C114—C113—H113120.1
C15—C11—C12106.9 (3)C115—C114—C113120.2 (3)
C15—C11—P1119.7 (2)C115—C114—H114119.9
C12—C11—P1132.7 (2)C113—C114—H114119.9
C15—C11—Fe169.31 (17)C114—C115—C116120.5 (3)
C12—C11—Fe169.02 (17)C114—C115—H115119.7
P1—C11—Fe1133.54 (17)C116—C115—H115119.7
C13—C12—C11107.6 (3)C115—C116—C111119.7 (3)
C13—C12—C2124.3 (3)C115—C116—H116120.1
C11—C12—C2128.0 (3)C111—C116—H116120.1
C13—C12—Fe169.88 (18)C126—C121—C122119.5 (3)
C11—C12—Fe169.35 (17)C126—C121—P1119.8 (3)
C2—C12—Fe1129.1 (2)C122—C121—P1120.8 (3)
C14—C13—C12108.7 (3)C123—C122—C121119.2 (4)
C14—C13—Fe170.05 (19)C123—C122—H122120.4
C12—C13—Fe169.09 (18)C121—C122—H122120.4
C14—C13—H13125.6C122—C123—C124120.9 (4)
C12—C13—H13125.6C122—C123—H123119.6
Fe1—C13—H13126.8C124—C123—H123119.6
C13—C14—C15108.4 (3)C125—C124—C123119.9 (3)
C13—C14—Fe169.58 (18)C125—C124—H124120.0
C15—C14—Fe169.24 (17)C123—C124—H124120.0
C13—C14—H14125.8C124—C125—C126120.1 (4)
C15—C14—H14125.8C124—C125—H125119.9
Fe1—C14—H14127.0C126—C125—H125119.9
C14—C15—C11108.4 (3)C121—C126—C125120.4 (4)
C14—C15—Fe170.14 (18)C121—C126—H126119.8
C11—C15—Fe169.28 (17)C125—C126—H126119.8
C14—C15—H15125.8O3—C41—C4113.6 (3)
C11—C15—H15125.8O3—C41—H41A108.9
Fe1—C15—H15126.4C4—C41—H41A108.9
C17—C16—C20108.2 (4)O3—C41—H41B108.9
C17—C16—Fe170.0 (2)C4—C41—H41B108.9
C20—C16—Fe169.4 (2)H41A—C41—H41B107.7
C17—C16—H16125.9O3—C42—H42A109.5
C20—C16—H16125.9O3—C42—H42B109.5
Fe1—C16—H16126.3H42A—C42—H42B109.5
C16—C17—C18108.0 (4)O3—C42—H42C109.5
C16—C17—Fe170.1 (2)H42A—C42—H42C109.5
C18—C17—Fe169.0 (2)H42B—C42—H42C109.5
C4—C41—O3—C4271.0 (5)C13—C12—C2—O234.5 (4)
C13—C12—C2—O184.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C126—H126···O2i0.952.483.157 (4)128
C122—H122···O10.952.693.570 (5)155
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C23H24O3PS)]
Mr532.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)180
a, b, c (Å)9.4886 (12), 15.2217 (17), 17.071 (2)
V3)2465.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.49 × 0.09 × 0.06
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.561, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
19961, 3962, 3266
Rint0.047
(sin θ/λ)max1)0.580
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.056, 0.96
No. of reflections3962
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.31
Absolute structureFlack (1983), with how many Friedel pairs
Absolute structure parameter0.016 (17)

Computer programs: IPDS Software (Stoe & Cie, 2000), IPDS Software, X-RED (Stoe & Cie, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C126—H126···O2i0.952.483.157 (4)127.8
C122—H122···O10.952.693.570 (5)155.2
Symmetry code: (i) x+1, y, z.
Comparison of dihedral and torsion angles (°), and puckering parameters θ (°) and Q, within the dioxane ring in compound (I) and in related ferrocenyl derivatives top
RefΔΨ1*Ψ2**ΘQ
(I)a63.3 (1)-90.8 (4)149.9 (3)177.1 (3)0.569 (3)
Aa75.9-101.0138.1175.860.562
Bb75.4103.7-135.4178.150.562
Cc39.868.6-169.8176.260.557
Cc56.6-93.328.0177.230.551
Dd48.2103.1-18.62.730.551
Dd10.2-38.5-162.22.580.551
Ed8.336.3159.22.900.562
Fd35.9-113.36.4179.350.567
Fd7.9148.426.44.320.560
Fd36.3174.0-65.0178.700.571
Fd39.9-110.210.5175.590.564
Fd44.7-164.874.4173.750.562
Ge41.470.8-166.7174.40.567
Notes: (*) Ψ1 is the C2—C1—C11—O1 torsion angle. (**) Ψ2 is the C2—C1—C11—O2 torsion angle. (***) Δ is the dihedral angle between the C2O2 plane and the Cp ring. (a) 1,2-disubstituted ferrocenyl derivatives. (b) 1,2,1'-trisubstituted ferrocenyl derivatives. (c) 1,2,5-trisubstituted ferrocenyl derivatives. (d) 1,1'-disubstituted ferrocenyl derivatives. (e) 1-monosubstituted ferrocenyl derivatives. References: (A) Riant et al. (1997); (B) Iftime et al. (1996); (C) Chiffre et al. (2002); (C) Chiffre et al. (2002); (D) Iftime et al. (1998); (E) Chiffre et al. (2001); (F) Hartinger et al. (2003); (F) Hartinger et al. (2003); (F) Hartinger et al. (2003); (G) Chiffre et al. (1999).
Selected distances (Å) and angles (°) in the FcPS(Ph)2 framework for compound (I) and related ferrocenyl derivatives. δ is the distance of the S atom from the Cp ring. top
CompoundFe—Cg1Fe—Cg2Cg1—Fe—Cg2C2—PP—Sδ
(I)1.639 (5)1.653 (5)176.16 (3)1.800 (3)1.9529 (13)0.879 (7)
a1.6271.647178.21.7921.9441.063
a1.6361.652175.71.8111.9511.395
b1.6381.656177.11.7901.9570.543
c1.6441.660175.41.7951.9561.270
d1.6501.650180.01.7951.9380.886
e1.6531.653180.01.7951.9440.891
Notes: (a) Butler et al. (1986); (b) Stepnicka & Císarová (2002); (c) Stepnicka & Císarová (2003); (d) Fang et al. (1995); (e) Pilloni et al. (1997)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds