Download citation
Download citation
link to html
Single crystals of penta­erbium trinickel trialuminium tetra­germanium were synthesized from the elements by arc-melting. The novel compound crystallizes in the space group Pmmn, e6b2a, with all nine crystallographically unique atoms in special positions of site symmetries m.. and mm2. This compound represents a new ordered variant of the NbCoB type. Its two-layer structure is described as an inter­growth of the Er3NiAl3Ge2 (Y3NiAl3Ge2 type) and ErNiGe (TiNiSi type) structures. The coordination polyhedra are distorted penta­gonal prisms around Er atoms, tetra­gonal prisms around Al and Ni atoms, and trigonal prisms around Ge and Ni atoms, capped with eight, four and three extra vertices, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106009255/bc1097sup1.cif
Contains datablocks global, publication_text, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106009255/bc1097Isup2.hkl
Contains datablock I

Comment top

Rare-earth intermetallics of different compositions have received attention because of their interesting and useful physical properties, e.g. the coexistence of superconductivity and magnetism, the Kondo effect, and the magnetocaloric effect. The search for new intermetallic phases is necessary for the development of new materials and the accurate determination of their crystal structures is the basic requirement for a better understanding of their physical properties. The NbCoB structure type was discovered by Krypyakevich et al. (1971). Since then, only one other representative, TaCoB (Kuz'ma & Rudakevich, 1973), has been found among intermetallics. Recently, Fedorchuk et al. (2005) reported the existence of Yb5Mg3Ga7, which represents a new type of ordering in the NbCoB structure. The title compound, Er5Ni3Al3Ge4, which is yet another quaternary variant of the NbCoB type, was obtained during a systematic investigation of the Er–Ni–Al–Ge system. We present here the results of a single-crystal structure study.

A projection of the Er5Ni3Al3Ge4 unit cell on to the (100) plane is shown in Fig. 1. The coordination polyhedra of the atoms are distorted pentagonal, tetragonal and trigonal prisms with eight, four and three extra vertices, as shown in Fig. 2. The coordination around atom Er1 (site symmetry m..) consists of 18 atoms, if bonding interactions up to 4.2 Å are included, resulting in a distorted pentagonal prism with eight additional vertices, [Er1Ge5Ni4Al2Er7] (a in Fig. 2). The coordination polyhedra around atom Er2 and Er3 (site symmetry m.. and mm2 and bonding interactions < 4.2 Å) are similar pentagonal prisms with eight additional vertices of composition [Er2Ni4Ge5Al4Er5] (b) and [Er3Ni2Ge4Al6Er6] (c), respectively. The coordination polyhedra around the Ge atoms (site symmetry m..) are trigonal prisms (bonding interactions < 3 Å), viz. tricapped [Ge1Ni3AlEr5] (d) and tricapped [Ge2NiAl2Er6] (e). These trigonal prisms are deformed so that the height/width ratio of the prisms, c/a, is 1.18. Two types of prisms are observed for the Ni atoms. Atom Ni1 (site symmetry m.. and bonding interactions < 3.3 Å) centres a deformed tetragonal prism, [Ni1Ge4Er6Ni2] (f). The coordination polyhedron for atom Ni2 (site symmetry mm2, bonding interactions < 3 Å) is a deformed (c/a = 1.54) trigonal prism, [Ni2Al6Er3] (g). The coordination polyhedra around the Al atoms (site symmetry m.. for Al1 and mm2 for Al2) are deformed tetragonal prisms (bonding interactions < 3.3 Å), viz. tetracapped [Al1Ni2Al2Ge2Er6] (h) and [Al2Ni2Ge2Al2Er6] (i). These deformed tetragonal prisms centered by Al and Ni1 may also be considered as distorted cuboctahedra. The structure of Er5Ni3Al3Ge4 belongs to class #10 [coordination number 6 + n (n = 0–5) for the smallest atom, a trigonal prism and its derivatives as coordination polyhedron) according to the classification scheme of Krypyakevich (1977).

The interatomic distances (Table 1) are in good agreement with the sums of the atomic radii (Emsley, 1991). The shortest Er3—Ni2 [2.798 (4) Å = 93.2% of the sum of the atomic radii] and Al1—Al2 [2.716 (6) Å = 94.9% of twice the Al atomic radius) distances indicate partial covalent bonding.

Er5Ni3Al3Ge4 is a quaternary ordered variant of the NbCoB type (Krypyakevich et al., 1971). The Er atoms substitute for Nb, the Ge and Ni2 atoms substitute for B, and the Al and Ni1 atoms substitute for Co. ErNiGe (Fig. 3a) adopts the TiNiSi structure type (Gorelenko et al., 1984; Brink Shoemaker & Shoemaker, 1965) and Er3NiAl3Ge2 (Fig. 3b) adopts the Y3NiAl3Ge2 structure type (Demchenko et al., 2005; Zhao & Parthé, 1990). Er5Ni3Al3Ge4 can be described as a 1:1 intergrowth of fragments of the [Er2Ni2Ge2] and [Er3NiAl3Ge2] structures. The feature common to these three structures is a puckered sheet of edge-connected columns of trigonal prisms. Er5Ni3Al3Ge4 belongs to the family of two-layer compounds. More than 70 other inorganic structure types belong to this family according to the compilation in TYPIX (Parthé et al., 1993–1994).

Experimental top

The single-crystal used in this work was extracted from an alloy of nominal composition Er25Ni25Al30Ge20. The alloy was prepared by arc melting the elements (purity greater than 99.9% for Ni, Al and Ge, and 99.84% for Er) in an electric arc furnace with a water-cooled copper hearth under an argon atmosphere with a Ti-getter. The alloy was then annealed in an evacuated silica tube at 870 K for 350 h. A preliminary crystal investigation was performed using Laue and rotation methods (RKV-86 and RGNS-2 chambers, Mo Kα radiation). The chemical composition of the crystal was determined with an energy dispersive PV9800 X-ray spectrometer using a standardless procedure. The result of the EDX analysis is 36.47% Er, 19.72% Ni, 17.32% Al, 26.50% Ge (in atom%, with an accuracy of 2%). These values are very close to the composition obtained from the structural refinement. No impurities were found.

Refinement top

The analysis of the systematic absences using the program ABSEN (McArdle, 1996) led to the extinction symbol P– −n and possible space groups Pm21n, P21mn and centrosymmetric Pmmn. A statistical test of the distribution of the E values using the program E-STATS from WinGX system (Farrugia, 1999) suggested that the structure is centrosymmetric with a probability of 80%. Taking into account some notes on choosing a centre of symmetry (Marsh, 1995), the structure solution and refinement were also performed in the non-centrosymmetric group. The results clearly indicated that Er5Ni3Al3Ge4 crystallizes in the centrosymmetric space group Pmmn, since the solution and refinement in the non-centrosymmetric variants were less satisfactory and resulted in larger R indices and atomic displacement parameters. The atomic coordinates were standardized using the STRUCTURE TIDY program (Gelato & Parthé, 1987). The highest residual electron density peak is 0.97 Å from Er3 and the deepest hole is 0.95 Å from Er2.

Computing details top

Data collection: KM4B8 Software (Galdecki et al., 1996); cell refinement: KM4B8 Software; data reduction: KM4B8 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Coordination polyhedra around Er1–Er3 (a, b and c), Ge1 and Ge2 (d and e), Ni1 and Ni2 (f and g), and Al1 and Al2 (h and i) in the Er5Ni3Al3Ge4 structure
[Figure 2] Fig. 2. Projection of the unit-cell on to the (100) plane, with displacement ellipsoids drawn at the 95% probability level. [Symmetry codes: (i) x, y, z; (ii) −x + 1/2, −y + 3/2, z; (iii) x + 1/2, −y + 1, −z + 1; (iv) −x + 1, y − 1/2, −z + 1; (v) −x + 1/2, −y + 1/2, z; (vi) −x + 1, y + 1/2, −z + 1.]
[Figure 3] Fig. 3. Intergrowth fragments of (a) ErNiGe and (b) Er3NiAl3Ge2. The broken and solid lines correspond to the lower and upper layers, respectively.
pentaerbium trinickel trialuminium tetragermanium top
Crystal data top
Er5Ni3Al3Ge4F(000) = 1182
Mr = 1383.73Dx = 8.481 Mg m3
Orthorhombic, PmmnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ab 2aCell parameters from 18 reflections
a = 4.1561 (6) Åθ = 15–33°
b = 19.069 (1) ŵ = 87.55 mm1
c = 6.8369 (5) ÅT = 295 K
V = 541.84 (9) Å3Elongated prism, metallic dark grey
Z = 20.11 × 0.02 × 0.01 mm
Data collection top
Kuma KM-4
diffractometer
501 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.085
Graphite monochromatorθmax = 68.0°, θmin = 4.6°
ω–2θ scansh = 54
Absorption correction: for a cylinder mounted on the ϕ axis
(Dwiggins, 1975)
k = 2214
Tmin = 0.169, Tmax = 0.382l = 88
3581 measured reflections3 standard reflections every 100 reflections
580 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0783P)2 + 0.734P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.001
S = 1.16Δρmax = 3.99 e Å3
580 reflectionsΔρmin = 2.75 e Å3
50 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00070 (11)
Crystal data top
Er5Ni3Al3Ge4V = 541.84 (9) Å3
Mr = 1383.73Z = 2
Orthorhombic, PmmnCu Kα radiation
a = 4.1561 (6) ŵ = 87.55 mm1
b = 19.069 (1) ÅT = 295 K
c = 6.8369 (5) Å0.11 × 0.02 × 0.01 mm
Data collection top
Kuma KM-4
diffractometer
501 reflections with I > 2σ(I)
Absorption correction: for a cylinder mounted on the ϕ axis
(Dwiggins, 1975)
Rint = 0.085
Tmin = 0.169, Tmax = 0.3823 standard reflections every 100 reflections
3581 measured reflections intensity decay: 2%
580 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04350 parameters
wR(F2) = 0.1110 restraints
S = 1.16Δρmax = 3.99 e Å3
580 reflectionsΔρmin = 2.75 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.25000.57155 (5)0.49989 (10)0.0180 (4)
Er20.25000.61950 (5)0.99676 (11)0.0175 (4)
Er30.25000.75000.61585 (17)0.0178 (4)
Ge10.25000.03874 (9)0.7965 (2)0.0177 (5)
Ge20.25000.14615 (8)0.2890 (2)0.0172 (5)
Ni10.25000.02588 (14)0.1663 (4)0.0199 (6)
Ni20.25000.75000.2066 (5)0.0217 (9)
Al10.25000.1784 (2)0.6850 (6)0.0134 (9)
Al20.25000.25000.0285 (8)0.0137 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.0247 (7)0.0162 (6)0.0132 (6)0.0000.0000.0013 (3)
Er20.0242 (7)0.0162 (6)0.0122 (6)0.0000.0000.0009 (3)
Er30.0249 (7)0.0153 (6)0.0133 (6)0.0000.0000.000
Ge10.0216 (10)0.0174 (9)0.0141 (8)0.0000.0000.0024 (6)
Ge20.0223 (10)0.0164 (9)0.0130 (9)0.0000.0000.0004 (6)
Ni10.0239 (15)0.0163 (13)0.0193 (12)0.0000.0000.0010 (10)
Ni20.028 (2)0.0212 (19)0.0160 (18)0.0000.0000.000
Al10.018 (2)0.0109 (19)0.0108 (18)0.0000.0000.0013 (14)
Al20.022 (4)0.009 (3)0.011 (2)0.0000.0000.000
Geometric parameters (Å, º) top
Er1—Ge2i2.9027 (13)Ge1—Er1xvi2.9690 (14)
Er1—Ge2ii2.9027 (13)Ge1—Er1xvii2.9690 (14)
Er1—Ge1iii2.9215 (18)Ge1—Er2iii3.314 (2)
Er1—Ni1iii2.942 (3)Ge2—Ni12.442 (3)
Er1—Ge1ii2.9690 (14)Ge2—Al22.663 (4)
Er1—Ge1i2.9690 (14)Ge2—Al12.777 (4)
Er1—Al1i3.173 (3)Ge2—Er2xvi2.8971 (12)
Er1—Al1ii3.173 (3)Ge2—Er2xvii2.8971 (12)
Er1—Ni1i3.207 (2)Ge2—Er1xvii2.9027 (13)
Er1—Ni1ii3.207 (2)Ge2—Er1xvi2.9027 (13)
Er1—Er1iv3.4299 (15)Ge2—Er3v2.9433 (12)
Er1—Er1v3.4299 (15)Ge2—Er3iv2.9433 (12)
Er1—Er33.4940 (9)Ni1—Ge1xii2.4293 (18)
Er1—Er23.5180 (10)Ni1—Ge1xiii2.4293 (18)
Er1—Er2vi3.5593 (10)Ni1—Ge1vi2.540 (3)
Er2—Ni2vii2.873 (2)Ni1—Er1iii2.942 (3)
Er2—Ge2ii2.8971 (12)Ni1—Er2xvii2.9576 (19)
Er2—Ge2i2.8971 (13)Ni1—Er2xvi2.9576 (19)
Er2—Ge1viii2.9475 (13)Ni1—Er2xviii3.005 (3)
Er2—Ge1ix2.9475 (13)Ni1—Er1xvii3.207 (2)
Er2—Ni1ii2.9576 (19)Ni1—Er1xvi3.207 (2)
Er2—Ni1i2.9576 (19)Ni2—Al1v2.594 (3)
Er2—Ni1x3.005 (3)Ni2—Al1ii2.594 (3)
Er2—Al1ix3.212 (3)Ni2—Al1i2.594 (3)
Er2—Al1viii3.212 (3)Ni2—Al1iv2.594 (3)
Er2—Al2v3.2467 (8)Ni2—Al2xix2.627 (4)
Er2—Al2iv3.2467 (8)Ni2—Al2xx2.627 (4)
Er2—Ge1iii3.314 (2)Ni2—Er2vi2.873 (2)
Er2—Er1vii3.5593 (10)Ni2—Er2xxi2.873 (2)
Er2—Er33.6020 (12)Al1—Ni2v2.594 (3)
Er3—Ni22.798 (4)Al1—Ni2iv2.594 (3)
Er3—Ge2v2.9433 (12)Al1—Al2vii2.716 (6)
Er3—Ge2ii2.9433 (12)Al1—Al1iii2.729 (8)
Er3—Ge2i2.9433 (12)Al1—Er1xvi3.173 (3)
Er3—Ge2iv2.9433 (12)Al1—Er1xvii3.173 (3)
Er3—Al2v3.198 (5)Al1—Er2xiv3.212 (3)
Er3—Al2iv3.198 (5)Al1—Er2xv3.212 (3)
Er3—Al1ii3.227 (3)Al1—Er3iv3.227 (3)
Er3—Al1iv3.227 (3)Al1—Er3v3.227 (3)
Er3—Al1i3.227 (3)Al2—Ni2xix2.627 (4)
Er3—Al1v3.227 (3)Al2—Ni2xx2.627 (4)
Er3—Er1xi3.4940 (9)Al2—Ge2iii2.663 (4)
Er3—Er2xi3.6020 (12)Al2—Al1vi2.716 (6)
Ge1—Ni1xii2.4293 (18)Al2—Al1xviii2.716 (6)
Ge1—Ni1xiii2.4293 (18)Al2—Er3v3.198 (5)
Ge1—Ni1vii2.540 (3)Al2—Er3iv3.198 (5)
Ge1—Al12.771 (4)Al2—Er2v3.2467 (8)
Ge1—Er1iii2.9215 (18)Al2—Er2xvi3.2467 (8)
Ge1—Er2xiv2.9475 (13)Al2—Er2iv3.2467 (8)
Ge1—Er2xv2.9475 (13)Al2—Er2xvii3.2467 (8)
Ge2i—Er1—Ge2ii91.43 (5)Al1i—Er3—Er2xi138.85 (5)
Ge2i—Er1—Ge1iii90.44 (4)Al1v—Er3—Er2xi99.71 (7)
Ge2ii—Er1—Ge1iii90.44 (4)Er1—Er3—Er2xi146.81 (4)
Ge2i—Er1—Ni1iii134.03 (3)Er1xi—Er3—Er2xi59.417 (19)
Ge2ii—Er1—Ni1iii134.03 (3)Ni2—Er3—Er2136.301 (18)
Ge1iii—Er1—Ni1iii94.79 (7)Ge2v—Er3—Er2107.76 (4)
Ge2i—Er1—Ge1ii160.68 (5)Ge2ii—Er3—Er251.34 (3)
Ge2ii—Er1—Ge1ii86.65 (3)Ge2i—Er3—Er251.34 (3)
Ge1iii—Er1—Ge1ii108.78 (4)Ge2iv—Er3—Er2107.76 (4)
Ni1iii—Er1—Ge1ii48.53 (4)Al2v—Er3—Er256.66 (4)
Ge2i—Er1—Ge1i86.65 (3)Al2iv—Er3—Er256.66 (4)
Ge2ii—Er1—Ge1i160.68 (5)Al1ii—Er3—Er299.71 (7)
Ge1iii—Er1—Ge1i108.78 (4)Al1iv—Er3—Er2138.85 (5)
Ni1iii—Er1—Ge1i48.53 (4)Al1i—Er3—Er299.71 (7)
Ge1ii—Er1—Ge1i88.84 (5)Al1v—Er3—Er2138.85 (5)
Ge2i—Er1—Al1i54.16 (7)Er1—Er3—Er259.417 (19)
Ge2ii—Er1—Al1i110.61 (7)Er1xi—Er3—Er2146.81 (4)
Ge1iii—Er1—Al1i137.63 (5)Er2xi—Er3—Er287.40 (4)
Ni1iii—Er1—Al1i95.56 (8)Ni1xii—Ge1—Ni1xiii117.61 (14)
Ge1ii—Er1—Al1i108.77 (7)Ni1xii—Ge1—Ni1vii81.18 (9)
Ge1i—Er1—Al1i53.50 (7)Ni1xiii—Ge1—Ni1vii81.18 (9)
Ge2i—Er1—Al1ii110.61 (7)Ni1xii—Ge1—Al1121.10 (7)
Ge2ii—Er1—Al1ii54.16 (7)Ni1xiii—Ge1—Al1121.10 (7)
Ge1iii—Er1—Al1ii137.63 (5)Ni1vii—Ge1—Al1111.51 (12)
Ni1iii—Er1—Al1ii95.56 (8)Ni1xii—Ge1—Er1iii73.00 (7)
Ge1ii—Er1—Al1ii53.50 (7)Ni1xiii—Ge1—Er1iii73.00 (7)
Ge1i—Er1—Al1ii108.77 (7)Ni1vii—Ge1—Er1iii128.41 (9)
Al1i—Er1—Al1ii81.81 (10)Al1—Ge1—Er1iii120.08 (10)
Ge2i—Er1—Ni1i46.79 (5)Ni1xii—Ge1—Er2xiv144.86 (9)
Ge2ii—Er1—Ni1i104.06 (5)Ni1xiii—Ge1—Er2xiv67.15 (7)
Ge1iii—Er1—Ni1i46.41 (4)Ni1vii—Ge1—Er2xiv64.73 (5)
Ni1iii—Er1—Ni1i112.35 (5)Al1—Ge1—Er2xiv68.26 (7)
Ge1ii—Er1—Ni1i151.88 (7)Er1iii—Ge1—Er2xiv135.15 (2)
Ge1i—Er1—Ni1i88.57 (4)Ni1xii—Ge1—Er2xv67.15 (7)
Al1i—Er1—Ni1i91.93 (6)Ni1xiii—Ge1—Er2xv144.86 (9)
Al1ii—Er1—Ni1i151.90 (9)Ni1vii—Ge1—Er2xv64.73 (5)
Ge2i—Er1—Ni1ii104.06 (5)Al1—Ge1—Er2xv68.26 (7)
Ge2ii—Er1—Ni1ii46.79 (5)Er1iii—Ge1—Er2xv135.15 (2)
Ge1iii—Er1—Ni1ii46.41 (4)Er2xiv—Ge1—Er2xv89.66 (5)
Ni1iii—Er1—Ni1ii112.35 (5)Ni1xii—Ge1—Er1xvi65.15 (6)
Ge1ii—Er1—Ni1ii88.57 (4)Ni1xiii—Ge1—Er1xvi141.00 (9)
Ge1i—Er1—Ni1ii151.88 (7)Ni1vii—Ge1—Er1xvi134.40 (3)
Al1i—Er1—Ni1ii151.90 (9)Al1—Ge1—Er1xvi67.03 (6)
Al1ii—Er1—Ni1ii91.93 (6)Er1iii—Ge1—Er1xvi71.22 (4)
Ni1i—Er1—Ni1ii80.77 (6)Er2xiv—Ge1—Er1xvi135.29 (7)
Ge2i—Er1—Er1iv145.43 (5)Er2xv—Ge1—Er1xvi73.96 (3)
Ge2ii—Er1—Er1iv87.47 (3)Ni1xii—Ge1—Er1xvii141.00 (9)
Ge1iii—Er1—Er1iv55.04 (3)Ni1xiii—Ge1—Er1xvii65.15 (6)
Ni1iii—Er1—Er1iv59.86 (4)Ni1vii—Ge1—Er1xvii134.40 (3)
Ge1ii—Er1—Er1iv53.75 (3)Al1—Ge1—Er1xvii67.03 (6)
Ge1i—Er1—Er1iv104.88 (5)Er1iii—Ge1—Er1xvii71.22 (4)
Al1i—Er1—Er1iv155.22 (8)Er2xiv—Ge1—Er1xvii73.96 (3)
Al1ii—Er1—Er1iv96.57 (5)Er2xv—Ge1—Er1xvii135.29 (7)
Ni1i—Er1—Er1iv100.15 (5)Er1xvi—Ge1—Er1xvii88.84 (5)
Ni1ii—Er1—Er1iv52.49 (5)Ni1xii—Ge1—Er2iii59.65 (7)
Ge2i—Er1—Er1v87.47 (3)Ni1xiii—Ge1—Er2iii59.65 (7)
Ge2ii—Er1—Er1v145.43 (5)Ni1vii—Ge1—Er2iii60.05 (7)
Ge1iii—Er1—Er1v55.04 (3)Al1—Ge1—Er2iii171.56 (10)
Ni1iii—Er1—Er1v59.86 (4)Er1iii—Ge1—Er2iii68.36 (4)
Ge1ii—Er1—Er1v104.88 (5)Er2xiv—Ge1—Er2iii106.11 (5)
Ge1i—Er1—Er1v53.75 (3)Er2xv—Ge1—Er2iii106.11 (5)
Al1i—Er1—Er1v96.57 (5)Er1xvi—Ge1—Er2iii118.29 (4)
Al1ii—Er1—Er1v155.22 (8)Er1xvii—Ge1—Er2iii118.29 (4)
Ni1i—Er1—Er1v52.49 (5)Ni1—Ge2—Al2117.94 (13)
Ni1ii—Er1—Er1v100.15 (5)Ni1—Ge2—Al1122.91 (12)
Er1iv—Er1—Er1v74.58 (4)Al2—Ge2—Al1119.15 (15)
Ge2i—Er1—Er353.83 (3)Ni1—Ge2—Er2xvi66.64 (5)
Ge2ii—Er1—Er353.83 (3)Al2—Ge2—Er2xvi71.31 (7)
Ge1iii—Er1—Er3122.93 (5)Al1—Ge2—Er2xvi134.14 (3)
Ni1iii—Er1—Er3142.28 (6)Ni1—Ge2—Er2xvii66.64 (5)
Ge1ii—Er1—Er3111.10 (4)Al2—Ge2—Er2xvii71.31 (7)
Ge1i—Er1—Er3111.10 (4)Al1—Ge2—Er2xvii134.14 (3)
Al1i—Er1—Er357.64 (7)Er2xvi—Ge2—Er2xvii91.66 (5)
Al1ii—Er1—Er357.64 (7)Ni1—Ge2—Er1xvii73.18 (6)
Ni1i—Er1—Er395.91 (6)Al2—Ge2—Er1xvii134.18 (3)
Ni1ii—Er1—Er395.91 (6)Al1—Ge2—Er1xvii67.90 (6)
Er1iv—Er1—Er3140.78 (2)Er2xvi—Ge2—Er1xvii139.72 (6)
Er1v—Er1—Er3140.78 (2)Er2xvii—Ge2—Er1xvii74.68 (2)
Ge2i—Er1—Er252.59 (3)Ni1—Ge2—Er1xvi73.18 (6)
Ge2ii—Er1—Er252.59 (3)Al2—Ge2—Er1xvi134.18 (3)
Ge1iii—Er1—Er261.11 (4)Al1—Ge2—Er1xvi67.90 (6)
Ni1iii—Er1—Er2155.90 (6)Er2xvi—Ge2—Er1xvi74.68 (2)
Ge1ii—Er1—Er2135.54 (3)Er2xvii—Ge2—Er1xvi139.72 (6)
Ge1i—Er1—Er2135.54 (3)Er1xvii—Ge2—Er1xvi91.43 (5)
Al1i—Er1—Er2102.57 (7)Ni1—Ge2—Er3v135.06 (2)
Al1ii—Er1—Er2102.57 (7)Al2—Ge2—Er3v69.36 (7)
Ni1i—Er1—Er251.93 (4)Al1—Ge2—Er3v68.61 (7)
Ni1ii—Er1—Er251.93 (4)Er2xvi—Ge2—Er3v140.67 (6)
Er1iv—Er1—Er2101.91 (3)Er2xvii—Ge2—Er3v76.15 (3)
Er1v—Er1—Er2101.91 (3)Er1xvii—Ge2—Er3v73.40 (3)
Er3—Er1—Er261.82 (3)Er1xvi—Ge2—Er3v136.49 (6)
Ge2i—Er1—Er2vi110.77 (4)Ni1—Ge2—Er3iv135.06 (2)
Ge2ii—Er1—Er2vi110.77 (4)Al2—Ge2—Er3iv69.36 (7)
Ge1iii—Er1—Er2vi148.84 (5)Al1—Ge2—Er3iv68.61 (7)
Ni1iii—Er1—Er2vi54.05 (6)Er2xvi—Ge2—Er3iv76.15 (3)
Ge1ii—Er1—Er2vi52.74 (3)Er2xvii—Ge2—Er3iv140.67 (6)
Ge1i—Er1—Er2vi52.74 (3)Er1xvii—Ge2—Er3iv136.49 (6)
Al1i—Er1—Er2vi56.64 (6)Er1xvi—Ge2—Er3iv73.40 (3)
Al1ii—Er1—Er2vi56.64 (6)Er3v—Ge2—Er3iv89.82 (5)
Ni1i—Er1—Er2vi139.25 (3)Ge1xii—Ni1—Ge1xiii117.61 (14)
Ni1ii—Er1—Er2vi139.25 (3)Ge1xii—Ni1—Ge2116.12 (7)
Er1iv—Er1—Er2vi101.82 (3)Ge1xiii—Ni1—Ge2116.12 (7)
Er1v—Er1—Er2vi101.82 (3)Ge1xii—Ni1—Ge1vi98.82 (9)
Er3—Er1—Er2vi88.23 (3)Ge1xiii—Ni1—Ge1vi98.82 (9)
Er2—Er1—Er2vi150.05 (4)Ge2—Ni1—Ge1vi104.55 (11)
Ni2vii—Er2—Ge2ii100.65 (6)Ge1xii—Ni1—Er1iii66.32 (7)
Ni2vii—Er2—Ge2i100.65 (6)Ge1xiii—Ni1—Er1iii66.32 (7)
Ge2ii—Er2—Ge2i91.66 (5)Ge2—Ni1—Er1iii109.07 (10)
Ni2vii—Er2—Ge1viii102.30 (6)Ge1vi—Ni1—Er1iii146.38 (12)
Ge2ii—Er2—Ge1viii84.80 (3)Ge1xii—Ni1—Er2xvii161.21 (11)
Ge2i—Er2—Ge1viii157.04 (6)Ge1xiii—Ni1—Er2xvii75.21 (5)
Ni2vii—Er2—Ge1ix102.30 (6)Ge2—Ni1—Er2xvii64.06 (6)
Ge2ii—Er2—Ge1ix157.04 (6)Ge1vi—Ni1—Er2xvii64.32 (6)
Ge2i—Er2—Ge1ix84.80 (3)Er1iii—Ni1—Er2xvii132.33 (5)
Ge1viii—Er2—Ge1ix89.66 (5)Ge1xii—Ni1—Er2xvi75.21 (5)
Ni2vii—Er2—Ni1ii135.33 (4)Ge1xiii—Ni1—Er2xvi161.21 (11)
Ge2ii—Er2—Ni1ii49.29 (6)Ge2—Ni1—Er2xvi64.06 (6)
Ge2i—Er2—Ni1ii110.84 (6)Ge1vi—Ni1—Er2xvi64.32 (6)
Ge1viii—Er2—Ni1ii50.95 (6)Er1iii—Ni1—Er2xvi132.33 (5)
Ge1ix—Er2—Ni1ii111.14 (6)Er2xvii—Ni1—Er2xvi89.27 (7)
Ni2vii—Er2—Ni1i135.33 (4)Ge1xii—Ni1—Er2xviii64.69 (7)
Ge2ii—Er2—Ni1i110.84 (6)Ge1xiii—Ni1—Er2xviii64.69 (7)
Ge2i—Er2—Ni1i49.29 (6)Ge2—Ni1—Er2xviii177.41 (11)
Ge1viii—Er2—Ni1i111.14 (6)Ge1vi—Ni1—Er2xviii72.86 (8)
Ge1ix—Er2—Ni1i50.95 (6)Er1iii—Ni1—Er2xviii73.52 (7)
Ni1ii—Er2—Ni1i89.27 (7)Er2xvii—Ni1—Er2xviii114.30 (7)
Ni2vii—Er2—Ni1x127.34 (9)Er2xvi—Ni1—Er2xviii114.30 (7)
Ge2ii—Er2—Ni1x114.96 (5)Ge1xii—Ni1—Er1xvii128.12 (10)
Ge2i—Er2—Ni1x114.96 (5)Ge1xiii—Ni1—Er1xvii60.59 (5)
Ge1viii—Er2—Ni1x48.16 (3)Ge2—Ni1—Er1xvii60.03 (6)
Ge1ix—Er2—Ni1x48.16 (3)Ge1vi—Ni1—Er1xvii133.01 (6)
Ni1ii—Er2—Ni1x65.70 (7)Er1iii—Ni1—Er1xvii67.65 (5)
Ni1i—Er2—Ni1x65.70 (7)Er2xvii—Ni1—Er1xvii69.45 (4)
Ni2vii—Er2—Al1ix50.09 (7)Er2xvi—Ni1—Er1xvii124.02 (9)
Ge2ii—Er2—Al1ix149.26 (7)Er2xviii—Ni1—Er1xvii121.67 (7)
Ge2i—Er2—Al1ix86.06 (6)Ge1xii—Ni1—Er1xvi60.59 (5)
Ge1viii—Er2—Al1ix108.30 (7)Ge1xiii—Ni1—Er1xvi128.12 (10)
Ge1ix—Er2—Al1ix53.26 (7)Ge2—Ni1—Er1xvi60.03 (6)
Ni1ii—Er2—Al1ix157.09 (9)Ge1vi—Ni1—Er1xvi133.01 (6)
Ni1i—Er2—Al1ix90.68 (6)Er1iii—Ni1—Er1xvi67.65 (5)
Ni1x—Er2—Al1ix93.53 (8)Er2xvii—Ni1—Er1xvi124.02 (9)
Ni2vii—Er2—Al1viii50.09 (7)Er2xvi—Ni1—Er1xvi69.45 (4)
Ge2ii—Er2—Al1viii86.06 (6)Er2xviii—Ni1—Er1xvi121.67 (7)
Ge2i—Er2—Al1viii149.26 (7)Er1xvii—Ni1—Er1xvi80.77 (6)
Ge1viii—Er2—Al1viii53.26 (7)Al1v—Ni2—Al1ii146.8 (2)
Ge1ix—Er2—Al1viii108.30 (7)Al1v—Ni2—Al1i63.47 (15)
Ni1ii—Er2—Al1viii90.68 (6)Al1ii—Ni2—Al1i106.47 (16)
Ni1i—Er2—Al1viii157.09 (9)Al1v—Ni2—Al1iv106.47 (16)
Ni1x—Er2—Al1viii93.53 (8)Al1ii—Ni2—Al1iv63.47 (15)
Al1ix—Er2—Al1viii80.63 (9)Al1i—Ni2—Al1iv146.8 (2)
Ni2vii—Er2—Al2v50.40 (8)Al1v—Ni2—Al2xix143.94 (12)
Ge2ii—Er2—Al2v106.78 (8)Al1ii—Ni2—Al2xix62.69 (12)
Ge2i—Er2—Al2v50.99 (9)Al1i—Ni2—Al2xix143.94 (12)
Ge1viii—Er2—Al2v151.31 (10)Al1iv—Ni2—Al2xix62.69 (12)
Ge1ix—Er2—Al2v88.55 (6)Al1v—Ni2—Al2xx62.69 (12)
Ni1ii—Er2—Al2v153.16 (11)Al1ii—Ni2—Al2xx143.94 (12)
Ni1i—Er2—Al2v89.59 (6)Al1i—Ni2—Al2xx62.69 (12)
Ni1x—Er2—Al2v136.69 (6)Al1iv—Ni2—Al2xx143.94 (12)
Al1ix—Er2—Al2v49.74 (12)Al2xix—Ni2—Al2xx104.5 (2)
Al1viii—Er2—Al2v100.48 (9)Al1v—Ni2—Er373.40 (12)
Ni2vii—Er2—Al2iv50.40 (8)Al1ii—Ni2—Er373.40 (12)
Ge2ii—Er2—Al2iv50.99 (9)Al1i—Ni2—Er373.40 (12)
Ge2i—Er2—Al2iv106.78 (8)Al1iv—Ni2—Er373.40 (12)
Ge1viii—Er2—Al2iv88.55 (6)Al2xix—Ni2—Er3127.73 (12)
Ge1ix—Er2—Al2iv151.31 (10)Al2xx—Ni2—Er3127.73 (12)
Ni1ii—Er2—Al2iv89.59 (6)Al1v—Ni2—Er2vi126.75 (8)
Ni1i—Er2—Al2iv153.16 (11)Al1ii—Ni2—Er2vi71.76 (8)
Ni1x—Er2—Al2iv136.69 (6)Al1i—Ni2—Er2vi71.76 (8)
Al1ix—Er2—Al2iv100.48 (9)Al1iv—Ni2—Er2vi126.75 (8)
Al1viii—Er2—Al2iv49.74 (12)Al2xix—Ni2—Er2vi72.20 (7)
Al2v—Er2—Al2iv79.59 (2)Al2xx—Ni2—Er2vi72.20 (7)
Ni2vii—Er2—Ge1iii174.44 (8)Er3—Ni2—Er2vi119.97 (7)
Ge2ii—Er2—Ge1iii83.17 (4)Al1v—Ni2—Er2xxi71.76 (8)
Ge2i—Er2—Ge1iii83.17 (4)Al1ii—Ni2—Er2xxi126.75 (8)
Ge1viii—Er2—Ge1iii73.88 (5)Al1i—Ni2—Er2xxi126.75 (8)
Ge1ix—Er2—Ge1iii73.89 (5)Al1iv—Ni2—Er2xxi71.76 (8)
Ni1ii—Er2—Ge1iii45.14 (4)Al2xix—Ni2—Er2xxi72.20 (7)
Ni1i—Er2—Ge1iii45.14 (4)Al2xx—Ni2—Er2xxi72.20 (7)
Ni1x—Er2—Ge1iii47.09 (6)Er3—Ni2—Er2xxi119.97 (7)
Al1ix—Er2—Ge1iii126.77 (7)Er2vi—Ni2—Er2xxi120.06 (13)
Al1viii—Er2—Ge1iii126.77 (7)Ni2v—Al1—Ni2iv106.47 (16)
Al2v—Er2—Ge1iii132.53 (6)Ni2v—Al1—Al2vii59.26 (11)
Al2iv—Er2—Ge1iii132.53 (7)Ni2iv—Al1—Al2vii59.26 (11)
Ni2vii—Er2—Er1135.03 (7)Ni2v—Al1—Al1iii58.26 (8)
Ge2ii—Er2—Er152.73 (3)Ni2iv—Al1—Al1iii58.26 (8)
Ge2i—Er2—Er152.73 (3)Al2vii—Al1—Al1iii59.84 (10)
Ge1viii—Er2—Er1109.11 (4)Ni2v—Al1—Ge1115.29 (10)
Ge1ix—Er2—Er1109.11 (4)Ni2iv—Al1—Ge1115.29 (10)
Ni1ii—Er2—Er158.62 (5)Al2vii—Al1—Ge1104.19 (15)
Ni1i—Er2—Er158.62 (5)Al1iii—Al1—Ge1164.03 (9)
Ni1x—Er2—Er197.62 (6)Ni2v—Al1—Ge2113.28 (13)
Al1ix—Er2—Er1138.17 (5)Ni2iv—Al1—Ge2113.28 (13)
Al1viii—Er2—Er1138.17 (5)Al2vii—Al1—Ge2162.66 (18)
Al2v—Er2—Er198.50 (10)Al1iii—Al1—Ge2102.81 (9)
Al2iv—Er2—Er198.50 (10)Ge1—Al1—Ge293.15 (14)
Ge1iii—Er2—Er150.53 (3)Ni2v—Al1—Er1xvi167.47 (13)
Ni2vii—Er2—Er1vii74.92 (7)Ni2iv—Al1—Er1xvi85.82 (4)
Ge2ii—Er2—Er1vii134.17 (3)Al2vii—Al1—Er1xvi131.84 (9)
Ge2i—Er2—Er1vii134.17 (3)Al1iii—Al1—Er1xvi129.97 (6)
Ge1viii—Er2—Er1vii53.29 (3)Ge1—Al1—Er1xvi59.47 (7)
Ge1ix—Er2—Er1vii53.29 (3)Ge2—Al1—Er1xvi57.94 (7)
Ni1ii—Er2—Er1vii102.07 (6)Ni2v—Al1—Er1xvii85.82 (4)
Ni1i—Er2—Er1vii102.07 (6)Ni2iv—Al1—Er1xvii167.47 (13)
Ni1x—Er2—Er1vii52.43 (5)Al2vii—Al1—Er1xvii131.84 (9)
Al1ix—Er2—Er1vii55.61 (7)Al1iii—Al1—Er1xvii129.97 (6)
Al1viii—Er2—Er1vii55.61 (6)Ge1—Al1—Er1xvii59.47 (7)
Al2v—Er2—Er1vii104.38 (10)Ge2—Al1—Er1xvii57.94 (7)
Al2iv—Er2—Er1vii104.38 (10)Er1xvi—Al1—Er1xvii81.81 (10)
Ge1iii—Er2—Er1vii99.52 (4)Ni2v—Al1—Er2xiv58.15 (7)
Er1—Er2—Er1vii150.05 (4)Ni2iv—Al1—Er2xiv120.59 (16)
Ni2vii—Er2—Er376.27 (7)Al2vii—Al1—Er2xiv65.80 (9)
Ge2ii—Er2—Er352.50 (3)Al1iii—Al1—Er2xiv110.48 (7)
Ge2i—Er2—Er352.50 (3)Ge1—Al1—Er2xiv58.48 (7)
Ge1viii—Er2—Er3135.05 (2)Ge2—Al1—Er2xiv125.66 (10)
Ge1ix—Er2—Er3135.05 (2)Er1xvi—Al1—Er2xiv117.95 (12)
Ni1ii—Er2—Er398.31 (6)Er1xvii—Al1—Er2xiv67.75 (5)
Ni1i—Er2—Er398.31 (6)Ni2v—Al1—Er2xv120.59 (16)
Ni1x—Er2—Er3156.38 (6)Ni2iv—Al1—Er2xv58.15 (7)
Al1ix—Er2—Er3104.36 (7)Al2vii—Al1—Er2xv65.80 (9)
Al1viii—Er2—Er3104.36 (7)Al1iii—Al1—Er2xv110.48 (7)
Al2v—Er2—Er355.39 (9)Ge1—Al1—Er2xv58.48 (7)
Al2iv—Er2—Er355.39 (9)Ge2—Al1—Er2xv125.66 (10)
Ge1iii—Er2—Er3109.29 (4)Er1xvi—Al1—Er2xv67.75 (5)
Er1—Er2—Er358.76 (2)Er1xvii—Al1—Er2xv117.95 (12)
Er1vii—Er2—Er3151.19 (3)Er2xiv—Al1—Er2xv80.63 (9)
Ni2—Er3—Ge2v102.77 (4)Ni2v—Al1—Er3iv118.40 (14)
Ni2—Er3—Ge2ii102.77 (4)Ni2iv—Al1—Er3iv56.20 (9)
Ge2v—Er3—Ge2ii154.46 (7)Al2vii—Al1—Er3iv109.80 (11)
Ni2—Er3—Ge2i102.77 (4)Al1iii—Al1—Er3iv64.98 (7)
Ge2v—Er3—Ge2i84.57 (5)Ge1—Al1—Er3iv125.59 (10)
Ge2ii—Er3—Ge2i89.82 (5)Ge2—Al1—Er3iv58.14 (7)
Ni2—Er3—Ge2iv102.77 (4)Er1xvi—Al1—Er3iv66.17 (5)
Ge2v—Er3—Ge2iv89.82 (5)Er1xvii—Al1—Er3iv116.07 (12)
Ge2ii—Er3—Ge2iv84.57 (5)Er2xiv—Al1—Er3iv175.23 (14)
Ge2i—Er3—Ge2iv154.46 (7)Er2xv—Al1—Er3iv99.390 (19)
Ni2—Er3—Al2v139.48 (7)Ni2v—Al1—Er3v56.20 (9)
Ge2v—Er3—Al2v51.19 (5)Ni2iv—Al1—Er3v118.40 (14)
Ge2ii—Er3—Al2v106.90 (6)Al2vii—Al1—Er3v109.80 (11)
Ge2i—Er3—Al2v51.19 (5)Al1iii—Al1—Er3v64.98 (7)
Ge2iv—Er3—Al2v106.90 (6)Ge1—Al1—Er3v125.59 (10)
Ni2—Er3—Al2iv139.48 (7)Ge2—Al1—Er3v58.14 (7)
Ge2v—Er3—Al2iv106.90 (6)Er1xvi—Al1—Er3v116.07 (12)
Ge2ii—Er3—Al2iv51.19 (5)Er1xvii—Al1—Er3v66.17 (5)
Ge2i—Er3—Al2iv106.90 (6)Er2xiv—Al1—Er3v99.390 (19)
Ge2iv—Er3—Al2iv51.19 (5)Er2xv—Al1—Er3v175.23 (14)
Al2v—Er3—Al2iv81.04 (14)Er3iv—Al1—Er3v80.19 (9)
Ni2—Er3—Al1ii50.40 (6)Ni2xix—Al2—Ni2xx104.5 (2)
Ge2v—Er3—Al1ii151.66 (9)Ni2xix—Al2—Ge2iii114.15 (4)
Ge2ii—Er3—Al1ii53.25 (7)Ni2xx—Al2—Ge2iii114.15 (4)
Ge2i—Er3—Al1ii108.12 (6)Ni2xix—Al2—Ge2114.15 (4)
Ge2iv—Er3—Al1ii88.32 (5)Ni2xx—Al2—Ge2114.15 (4)
Al2v—Er3—Al1ii154.56 (7)Ge2iii—Al2—Ge296.1 (2)
Al2iv—Er3—Al1ii93.79 (8)Ni2xix—Al2—Al1vi58.05 (12)
Ni2—Er3—Al1iv50.40 (6)Ni2xx—Al2—Al1vi58.05 (12)
Ge2v—Er3—Al1iv108.12 (6)Ge2iii—Al2—Al1vi162.12 (19)
Ge2ii—Er3—Al1iv88.32 (5)Ge2—Al2—Al1vi101.81 (9)
Ge2i—Er3—Al1iv151.66 (8)Ni2xix—Al2—Al1xviii58.05 (12)
Ge2iv—Er3—Al1iv53.25 (7)Ni2xx—Al2—Al1xviii58.05 (12)
Al2v—Er3—Al1iv154.56 (7)Ge2iii—Al2—Al1xviii101.81 (9)
Al2iv—Er3—Al1iv93.79 (8)Ge2—Al2—Al1xviii162.12 (19)
Al1ii—Er3—Al1iv50.04 (14)Al1vi—Al2—Al1xviii60.3 (2)
Ni2—Er3—Al1i50.40 (6)Ni2xix—Al2—Er3v168.25 (18)
Ge2v—Er3—Al1i88.32 (5)Ni2xx—Al2—Er3v87.21 (7)
Ge2ii—Er3—Al1i108.12 (6)Ge2iii—Al2—Er3v59.45 (10)
Ge2i—Er3—Al1i53.25 (7)Ge2—Al2—Er3v59.45 (10)
Ge2iv—Er3—Al1i151.66 (8)Al1vi—Al2—Er3v131.09 (5)
Al2v—Er3—Al1i93.79 (8)Al1xviii—Al2—Er3v131.09 (5)
Al2iv—Er3—Al1i154.56 (7)Ni2xix—Al2—Er3iv87.21 (7)
Al1ii—Er3—Al1i80.19 (9)Ni2xx—Al2—Er3iv168.25 (18)
Al1iv—Er3—Al1i100.79 (13)Ge2iii—Al2—Er3iv59.45 (10)
Ni2—Er3—Al1v50.40 (6)Ge2—Al2—Er3iv59.45 (10)
Ge2v—Er3—Al1v53.25 (7)Al1vi—Al2—Er3iv131.09 (5)
Ge2ii—Er3—Al1v151.66 (8)Al1xviii—Al2—Er3iv131.09 (5)
Ge2i—Er3—Al1v88.32 (5)Er3v—Al2—Er3iv81.04 (14)
Ge2iv—Er3—Al1v108.12 (6)Ni2xix—Al2—Er2v118.27 (13)
Al2v—Er3—Al1v93.79 (8)Ni2xx—Al2—Er2v57.40 (4)
Al2iv—Er3—Al1v154.56 (7)Ge2iii—Al2—Er2v57.70 (3)
Al1ii—Er3—Al1v100.79 (13)Ge2—Al2—Er2v127.27 (14)
Al1iv—Er3—Al1v80.19 (9)Al1vi—Al2—Er2v109.82 (16)
Al1i—Er3—Al1v50.04 (14)Al1xviii—Al2—Er2v64.47 (8)
Ni2—Er3—Er176.88 (2)Er3v—Al2—Er2v67.95 (5)
Ge2v—Er3—Er1134.86 (2)Er3iv—Al2—Er2v117.15 (12)
Ge2ii—Er3—Er152.76 (3)Ni2xix—Al2—Er2xvi57.40 (4)
Ge2i—Er3—Er152.76 (3)Ni2xx—Al2—Er2xvi118.27 (13)
Ge2iv—Er3—Er1134.86 (2)Ge2iii—Al2—Er2xvi127.27 (14)
Al2v—Er3—Er199.933 (18)Ge2—Al2—Er2xvi57.70 (3)
Al2iv—Er3—Er199.933 (19)Al1vi—Al2—Er2xvi64.46 (8)
Al1ii—Er3—Er156.18 (6)Al1xviii—Al2—Er2xvi109.82 (16)
Al1iv—Er3—Er1105.50 (8)Er3v—Al2—Er2xvi117.15 (12)
Al1i—Er3—Er156.18 (6)Er3iv—Al2—Er2xvi67.95 (5)
Al1v—Er3—Er1105.50 (8)Er2v—Al2—Er2xvi173.9 (2)
Ni2—Er3—Er1xi76.88 (2)Ni2xix—Al2—Er2iv57.40 (4)
Ge2v—Er3—Er1xi52.76 (3)Ni2xx—Al2—Er2iv118.27 (13)
Ge2ii—Er3—Er1xi134.86 (2)Ge2iii—Al2—Er2iv57.70 (3)
Ge2i—Er3—Er1xi134.86 (2)Ge2—Al2—Er2iv127.27 (14)
Ge2iv—Er3—Er1xi52.76 (3)Al1vi—Al2—Er2iv109.82 (16)
Al2v—Er3—Er1xi99.933 (19)Al1xviii—Al2—Er2iv64.47 (8)
Al2iv—Er3—Er1xi99.933 (19)Er3v—Al2—Er2iv117.15 (12)
Al1ii—Er3—Er1xi105.50 (8)Er3iv—Al2—Er2iv67.95 (5)
Al1iv—Er3—Er1xi56.18 (6)Er2v—Al2—Er2iv79.59 (2)
Al1i—Er3—Er1xi105.50 (8)Er2xvi—Al2—Er2iv100.08 (3)
Al1v—Er3—Er1xi56.18 (6)Ni2xix—Al2—Er2xvii118.27 (13)
Er1—Er3—Er1xi153.77 (4)Ni2xx—Al2—Er2xvii57.40 (4)
Ni2—Er3—Er2xi136.301 (18)Ge2iii—Al2—Er2xvii127.27 (14)
Ge2v—Er3—Er2xi51.34 (3)Ge2—Al2—Er2xvii57.70 (3)
Ge2ii—Er3—Er2xi107.76 (4)Al1vi—Al2—Er2xvii64.47 (8)
Ge2i—Er3—Er2xi107.76 (4)Al1xviii—Al2—Er2xvii109.82 (16)
Ge2iv—Er3—Er2xi51.34 (3)Er3v—Al2—Er2xvii67.95 (5)
Al2v—Er3—Er2xi56.66 (4)Er3iv—Al2—Er2xvii117.15 (12)
Al2iv—Er3—Er2xi56.66 (4)Er2v—Al2—Er2xvii100.08 (3)
Al1ii—Er3—Er2xi138.85 (5)Er2xvi—Al2—Er2xvii79.59 (2)
Al1iv—Er3—Er2xi99.71 (7)Er2iv—Al2—Er2xvii173.9 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x, y, z1; (vii) x, y, z+1; (viii) x1/2, y+1/2, z+2; (ix) x+1/2, y+1/2, z+2; (x) x+1/2, y+1/2, z+1; (xi) x+1/2, y+3/2, z; (xii) x, y, z+1; (xiii) x+1, y, z+1; (xiv) x+1/2, y1/2, z+2; (xv) x1/2, y1/2, z+2; (xvi) x1/2, y1/2, z+1; (xvii) x+1/2, y1/2, z+1; (xviii) x+1/2, y+1/2, z1; (xix) x, y+1, z; (xx) x+1, y+1, z; (xxi) x+1/2, y+3/2, z1.

Experimental details

Crystal data
Chemical formulaEr5Ni3Al3Ge4
Mr1383.73
Crystal system, space groupOrthorhombic, Pmmn
Temperature (K)295
a, b, c (Å)4.1561 (6), 19.069 (1), 6.8369 (5)
V3)541.84 (9)
Z2
Radiation typeCu Kα
µ (mm1)87.55
Crystal size (mm)0.11 × 0.02 × 0.01
Data collection
DiffractometerKuma KM-4
diffractometer
Absorption correctionFor a cylinder mounted on the ϕ axis
(Dwiggins, 1975)
Tmin, Tmax0.169, 0.382
No. of measured, independent and
observed [I > 2σ(I)] reflections
3581, 580, 501
Rint0.085
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.16
No. of reflections580
No. of parameters50
Δρmax, Δρmin (e Å3)3.99, 2.75

Computer programs: KM4B8 Software (Galdecki et al., 1996), KM4B8 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), SHELXL97.

Selected bond lengths (Å) top
Er1—Ge2i2.9027 (13)Er2—Ge1ii3.314 (2)
Er1—Ge1ii2.9215 (18)Er2—Er33.6020 (12)
Er1—Ni1ii2.942 (3)Er3—Ni22.798 (4)
Er1—Ge1iii2.9690 (14)Er3—Ge2x2.9433 (12)
Er1—Al1i3.173 (3)Er3—Al2x3.198 (5)
Er1—Ni1i3.207 (2)Er3—Al1iii3.227 (3)
Er1—Er1iv3.4299 (15)Ge1—Ni1xi2.4293 (18)
Er1—Er33.4940 (9)Ge1—Ni1vi2.540 (3)
Er1—Er23.5180 (10)Ge1—Al12.771 (4)
Er1—Er2v3.5593 (10)Ge2—Ni12.442 (3)
Er2—Ni2vi2.873 (2)Ge2—Al22.663 (4)
Er2—Ge2iii2.8971 (12)Ge2—Al12.777 (4)
Er2—Ge1vii2.9475 (13)Ni2—Al1x2.594 (3)
Er2—Ni1iii2.9576 (19)Ni2—Al2xii2.627 (4)
Er2—Ni1viii3.005 (3)Al1—Al2vi2.716 (6)
Er2—Al1ix3.212 (3)Al1—Al1ii2.729 (8)
Er2—Al2x3.2467 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z+1; (iv) x, y+1, z+1; (v) x, y, z1; (vi) x, y, z+1; (vii) x1/2, y+1/2, z+2; (viii) x+1/2, y+1/2, z+1; (ix) x+1/2, y+1/2, z+2; (x) x+1, y+1, z+1; (xi) x, y, z+1; (xii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds