Download citation
Download citation
link to html
Rubidium metaborate, Rb3B3O6, was obtained by the reaction of Rb2CO3 and BN using a radiofrequency furnace at a maximum reaction temperature of 1173 K. The crystal structure has been determined by single-crystal X-ray diffraction. The space group is R\overline 3c, with all atoms positioned on a twofold axis (Wyckoff site 18e). The ionic compound is isotypic with Na3B3O6, K3B3O6 and Cs3B3O6.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104010066/iz1042sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010066/iz1042Isup2.hkl
Contains datablock I

Comment top

A wide variety of alkali borates have been reported. Rb3B3O6 belongs to the series of alkali metaborates M3B3O6 (M = Li, Na, K, Rb and Cs). Surprisingly, a single-crystal structure determination of Rb3B3O6 has not been published as yet. For many years, Schneider (1970) and Hoppe (1994) assumed Rb3B3O6 to be isotypic with the other alkali metaborates, but the structure has never been examined by single-crystal X-ray diffraction. We present here the crystal structure of Rb3B3O6, solved and refined from X-ray diffraction data.

We confirm that Rb3B3O6 is isotypic with Na3B3O6 (Marezio et al., 1963), K3B3O6 (Schneider, 1970) and Cs3B3O6 (Hoppe, 1994).

The lattice parameters increase from Na to Cs, along with the size of the cations. The already published lattice parameters of Rb3B3O6 (Schneider, 1970) are nearly equivalent to those found in this investigation [a = 13.157 (2) Å and b = 7.744 (1) Å]. The characteristic building units are cyclic planar B3O63− anions, which can be described as three corner-sharing BO33− groups. The B—O bond length for the terminal atom O1 is 1.315 (6) Å, while the B—O bond to bridging atom O2 [1.407 (3) Å] is significantly longer. The B—O distances of the M3B3O6 (M = Na, K, Rb and Cs) series are compared in Table 1. The B3O63− rings are stacked in a staggered manner along [001], rotated against each other by 60° (Fig. 1 and 2). Each Rb atom is surrounded by seven O atoms, with distances of about 300 pm.

Experimental top

Rb3B3O6 was obtained by the high-temperature reaction of Rb2CO3 (2.0 mmol) and BN (2.0 mmol) using a radiofrequency (rf) furnace. Details of the experimental setup are given by Schnick et al. (1999). Under an atmosphere of pure argon, the starting compounds were placed in a tungsten crucible, which was positioned at the center of the induction coil of an rf furnace. The reaction was performed under an atmosphere of pure nitrogen (purified by silica gel, potassium hydroxide, molecular sieve, P4O10 and a BTS catalyst). The reaction batch was heated to 1173 K at a rate of 7.3 K min−1. The temperature was maintained for 2 h, and then the product was cooled at 0.2 K min−1 to 473 K. Subsequently, the mixture was quenched to room temperature. Rb3B3O6 was obtained as a coarse crystalline white solid mixed with RbCN.

Computing details top

Data collection: Collect (Nonius, 1997–2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 2003).

Figures top
[Figure 1] Fig. 1. The crystal structure of Rb3B3O6, viewed along the crystallographic c axis, with 99% probability displacement ellipsoids.
[Figure 2] Fig. 2. The Rb atom surrounded by B3O63− rings, with 99% probability displacement ellipsoids.
(I) top
Crystal data top
Rb3B3O6Dx = 3.303 Mg m3
Mr = 384.85Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 8606 reflections
Hall symbol: -R32"cθ = 3.1–40.3°
a = 13.1572 (19) ŵ = 18.87 mm1
c = 7.7434 (15) ÅT = 293 K
V = 1160.9 (3) Å3Block, colourless
Z = 60.38 × 0.19 × 0.17 mm
F(000) = 1044
Data collection top
Nonius KappaCCD
diffractometer
231 independent reflections
Vertically mounted graphite crystal monochromator226 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.082
ϕ and ω scansθmax = 25°, θmin = 5.4°
Absorption correction: numerical
X-SHAPE (Stoe & Cie, 1999),
h = 1515
Tmin = 0.056, Tmax = 0.154k = 1515
5001 measured reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0139P)2 + 8.1199P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.046Δρmax = 0.43 e Å3
S = 1.22Δρmin = 0.40 e Å3
231 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
22 parametersExtinction coefficient: 0.00105 (19)
Crystal data top
Rb3B3O6Z = 6
Mr = 384.85Mo Kα radiation
Trigonal, R3cµ = 18.87 mm1
a = 13.1572 (19) ÅT = 293 K
c = 7.7434 (15) Å0.38 × 0.19 × 0.17 mm
V = 1160.9 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
231 independent reflections
Absorption correction: numerical
X-SHAPE (Stoe & Cie, 1999),
226 reflections with I > 2σ(I)
Tmin = 0.056, Tmax = 0.154Rint = 0.082
5001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01922 parameters
wR(F2) = 0.0460 restraints
S = 1.22Δρmax = 0.43 e Å3
231 reflectionsΔρmin = 0.40 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.43824 (3)0.00000.25000.0190 (3)
O10.2091 (2)0.00000.25000.0185 (8)
O20.1046 (2)0.1046 (2)0.25000.0198 (8)
B10.1092 (4)0.00000.25000.0171 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0178 (3)0.0169 (3)0.0221 (4)0.00846 (16)0.00203 (9)0.00407 (17)
O10.0132 (12)0.0190 (18)0.0252 (19)0.0095 (9)0.0003 (8)0.0005 (15)
O20.0104 (12)0.0104 (12)0.036 (2)0.0036 (13)0.0013 (7)0.0013 (7)
B10.017 (2)0.019 (3)0.015 (3)0.0095 (14)0.0004 (10)0.001 (2)
Geometric parameters (Å, º) top
Rb1—O1i2.9082 (16)O1—Rb1vi2.9081 (5)
Rb1—O1ii2.908 (3)O1—Rb1vii2.9081 (5)
Rb1—O2iii2.911 (3)O1—Rb1v2.9970 (11)
Rb1—O2ii2.911 (2)O1—Rb1iv2.9971 (11)
Rb1—O1iv2.9971 (11)O2—B11.407 (3)
Rb1—O1v2.9971 (11)O2—B1viii1.407 (3)
Rb1—O13.014 (3)O2—Rb1vii2.911 (2)
Rb1—B1i3.245 (2)O2—Rb1iii2.911 (2)
Rb1—B1ii3.245 (5)B1—O2ix1.407 (3)
Rb1—Rb1iv3.5182 (7)B1—Rb1vi3.245 (2)
Rb1—Rb1v3.5183 (7)B1—Rb1vii3.245 (2)
Rb1—B1v3.632 (3)B1—Rb1v3.632 (3)
O1—B11.315 (6)B1—Rb1iv3.632 (3)
O1i—Rb1—O1ii82.39 (10)Rb1iv—Rb1—Rb1v107.899 (18)
O1i—Rb1—O2iii48.35 (6)O1i—Rb1—B1v87.34 (8)
O1ii—Rb1—O2iii126.89 (7)O1ii—Rb1—B1v90.42 (4)
O1i—Rb1—O2ii126.89 (7)O2iii—Rb1—B1v71.60 (6)
O1ii—Rb1—O2ii48.35 (6)O2ii—Rb1—B1v108.26 (6)
O2iii—Rb1—O2ii175.10 (6)O1iv—Rb1—B1v161.60 (6)
O1i—Rb1—O1iv89.37 (2)O1v—Rb1—B1v20.10 (9)
O1ii—Rb1—O1iv107.09 (9)O1—Rb1—B1v91.49 (4)
O2iii—Rb1—O1iv92.81 (5)B1i—Rb1—B1v73.56 (12)
O2ii—Rb1—O1iv88.11 (5)B1ii—Rb1—B1v104.98 (8)
O1i—Rb1—O1v107.09 (9)Rb1iv—Rb1—B1v107.32 (2)
O1ii—Rb1—O1v89.37 (2)Rb1v—Rb1—B1v74.50 (7)
O2iii—Rb1—O1v88.11 (5)B1—O1—Rb1vi92.59 (6)
O2ii—Rb1—O1v92.81 (5)B1—O1—Rb1vii92.59 (6)
O1iv—Rb1—O1v158.34 (7)Rb1vi—O1—Rb1vii174.82 (12)
O1i—Rb1—O1138.81 (5)B1—O1—Rb1v108.36 (6)
O1ii—Rb1—O1138.81 (5)Rb1vi—O1—Rb1v90.63 (2)
O2iii—Rb1—O192.45 (3)Rb1vii—O1—Rb1v87.74 (2)
O2ii—Rb1—O192.45 (3)B1—O1—Rb1iv108.36 (6)
O1iv—Rb1—O179.17 (3)Rb1vi—O1—Rb1iv87.74 (2)
O1v—Rb1—O179.17 (3)Rb1vii—O1—Rb1iv90.63 (2)
O1i—Rb1—B1i23.88 (11)Rb1v—O1—Rb1iv143.28 (11)
O1ii—Rb1—B1i101.80 (9)B1—O1—Rb1180.0
O2iii—Rb1—B1i25.70 (8)Rb1vi—O1—Rb187.41 (6)
O2ii—Rb1—B1i149.40 (9)Rb1vii—O1—Rb187.41 (6)
O1iv—Rb1—B1i96.76 (4)Rb1v—O1—Rb171.64 (6)
O1v—Rb1—B1i93.41 (8)Rb1iv—O1—Rb171.64 (6)
O1—Rb1—B1i118.14 (8)B1—O2—B1viii124.3 (5)
O1i—Rb1—B1ii101.80 (9)B1—O2—Rb1vii90.54 (19)
O1ii—Rb1—B1ii23.88 (11)B1viii—O2—Rb1vii137.35 (18)
O2iii—Rb1—B1ii149.40 (9)B1—O2—Rb1iii137.35 (18)
O2ii—Rb1—B1ii25.70 (8)B1viii—O2—Rb1iii90.54 (19)
O1iv—Rb1—B1ii93.41 (8)Rb1vii—O2—Rb1iii74.36 (8)
O1v—Rb1—B1ii96.77 (4)O1—B1—O2ix122.1 (2)
O1—Rb1—B1ii118.15 (8)O1—B1—O2122.1 (2)
B1i—Rb1—B1ii123.71 (16)O2ix—B1—O2115.7 (5)
O1i—Rb1—Rb1iv87.24 (4)O1—B1—Rb1vi63.53 (9)
O1ii—Rb1—Rb1iv159.027 (14)O2ix—B1—Rb1vi63.76 (14)
O2iii—Rb1—Rb1iv52.82 (4)O2—B1—Rb1vi156.38 (6)
O2ii—Rb1—Rb1iv130.890 (9)O1—B1—Rb1vii63.53 (9)
O1iv—Rb1—Rb1iv54.41 (6)O2ix—B1—Rb1vii156.38 (6)
O1v—Rb1—Rb1iv111.15 (2)O2—B1—Rb1vii63.76 (14)
O1—Rb1—Rb1iv53.950 (9)Rb1vi—B1—Rb1vii127.06 (18)
B1i—Rb1—Rb1iv73.65 (5)O1—B1—Rb1v51.55 (7)
B1ii—Rb1—Rb1iv146.80 (7)O2ix—B1—Rb1v92.98 (12)
O1i—Rb1—Rb1v159.028 (14)O2—B1—Rb1v127.55 (9)
O1ii—Rb1—Rb1v87.25 (4)Rb1vi—B1—Rb1v75.02 (8)
O2iii—Rb1—Rb1v130.888 (8)Rb1vii—B1—Rb1v72.79 (7)
O2ii—Rb1—Rb1v52.82 (4)O1—B1—Rb1iv51.54 (7)
O1iv—Rb1—Rb1v111.15 (2)O2ix—B1—Rb1iv127.55 (9)
O1v—Rb1—Rb1v54.41 (6)O2—B1—Rb1iv92.98 (12)
O1—Rb1—Rb1v53.949 (9)Rb1vi—B1—Rb1iv72.79 (7)
B1i—Rb1—Rb1v146.80 (7)Rb1vii—B1—Rb1iv75.02 (8)
B1ii—Rb1—Rb1v73.65 (5)Rb1v—B1—Rb1iv103.09 (14)
Symmetry codes: (i) y+2/3, x+y+1/3, z+1/3; (ii) xy+1/3, x1/3, z+2/3; (iii) x+2/3, y+1/3, z+1/3; (iv) y+1/3, xy1/3, z1/3; (v) x+y+2/3, x+1/3, z+1/3; (vi) xy1/3, x2/3, z+1/3; (vii) y+1/3, x+y+2/3, z+2/3; (viii) y, xy, z; (ix) x+y, x, z.

Experimental details

Crystal data
Chemical formulaRb3B3O6
Mr384.85
Crystal system, space groupTrigonal, R3c
Temperature (K)293
a, c (Å)13.1572 (19), 7.7434 (15)
V3)1160.9 (3)
Z6
Radiation typeMo Kα
µ (mm1)18.87
Crystal size (mm)0.38 × 0.19 × 0.17
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionNumerical
X-SHAPE (Stoe & Cie, 1999),
Tmin, Tmax0.056, 0.154
No. of measured, independent and
observed [I > 2σ(I)] reflections
5001, 231, 226
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.046, 1.22
No. of reflections231
No. of parameters22
Δρmax, Δρmin (e Å3)0.43, 0.40

Computer programs: Collect (Nonius, 1997–2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), PLATON (Spek, 2003) and WinGX (Farrugia, 2003).

Comparative B-O distances (Å) and O-B-O angles (°) in Na3B3O6, K3B3O6, Rb3B3O6 and Cs3B3O6 top
CompoundB-O1B-O2O2-B-O2O2-B-O1
Na3B3O61.28 (2)1.43 (1)114.5 (6)122.8 (7)
K3B3O61.33 (1)1.398 (5)117.3 (8)121.3 (4)
Rb3B3O61.315 (6)1.407 (3)115.7 (5)122.1 (2)
Cs3B3O61.298 (8)1.416 (4)114.8 (3)122.6 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds