Download citation
Download citation
link to html
The title compound, 9(R)-[6(R)-hydroxy­methyl-1-oxa-4-thia­cyclo­hexan-2-yl]-1,9-di­hydro-6H-purin-6-one–water (4/3), C10H12N4O3S·0.75H2O, crystallizes in the triclinic space group P1 with four mol­ecules in the asymmetric unit and 0.75 waters of hydration per mol­ecule. The structure was refined to an R value of 0.072 for 3382 observed reflections. The four crystallographically independent mol­ecules are designated A, B, C and D. All four oxa­thia­ne rings adopt the chair conformation and the purine bases are in an anti orientation with respect to the sugar moieties. Molecules A and D and mol­ecules C and B are base paired by a single hydrogen bond of the type N—H...N. These base pairs are again hydrogen bonded to their translated pairs in the direction of a cell diagonal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100010799/de1134sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100010799/de1134Isup2.hkl
Contains datablock I

CCDC reference: 164643

Comment top

A number of sugar modified nucleosides display anti-viral activity because of their ability to interfere with virally encoded enzymes. The structure analysis of the title compound, (I), is a continuation of our earlier work involving systematic conformational studies on modified nucleosides with the aim of understanding structure-function relationships. The synthesis of (I) has been described (Van Aerschot et al., 1990). \sch

The crystal structure has been determined and the absolute configuration is indicated by a Flack parameter of 0.04 (9) (Flack, 1983). There are four crystallographically independent molecules in the crystal structure designated A, B, C and D. All bond lengths and bond angles of the four hypoxanthine residues agree well with the values quoted by Taylor and others (Taylor et al., 1982). The C6—O6 bond lengths in the four molecules vary from 1.204 (6) to 1.242 (6) Å with an average value of 1.217 (6) Å which agrees well with the quoted value of 1.215 Å for CO (Taylor et al., 1982). The pyrimidine rings and imidazole rings in the four molecules are planar within experimental error. The dihedral angles between pyrimidine and imidazole rings are 0.7 (2), 2.1 (1), 1.3 (2) and 0.2 (2) ° in molecules A, B, C and D, respectively. The bond lengths and bond angles of the sugar moieties of the four molecules agree well with each other within experimental error. The N-glycosidic bond lengths N9—C2' are in the range 1.443 (6)–1.465 (6) Å having an average value of 1.451 (6) Å which agrees well with the normal value of 1.464 (6) Å. In all four molecules, the C2'-O1' bond lengths lie in the range 1.402 (5)–1.422 (5) Å with an average value of 1.413 (5) Å. This is shorter than the adjacent bond length C6'-O1' lying in the range 1.420 (5)–1.444 (5) Å with an average value of 1.430 (6) Å. Similar shortening of bond lengths has been found in glucosides with an equatorial substituent at the anomeric carbon atom C1' (Berman et al., 1967; Jeffrey et al., 1978). This anomeric effect is commonly observed in other nucleosides (Birnbaum et al., 1984; Thewalt et al., 1970; Watson et al., 1965). The orientation of O7' with respect to the sugar moiety described by the torsion angle γ (O7'-C7'-C6'-C5') is different for all four molecules. In molecules, A, B and D, the γ values are -168.3 (5), 175.4 (5) and -179.3 (6) ° and they are in the gauche-trans (ap) orientation, whereas molecule C has γ = -70.2 (6)° which corresponds to a trans-gauche (-sc) orientation. The puckering parameters (Cremer & Pople, 1975) for the sequence C2'-C3'-S4'-C5'-C6'-O1' in the oxathiane ring are Q =. 631 (5) Å, ϕ2 = -134 (5) and θ2 = 175.2 (5) ° for A molecule, Q = 0.629 (5) Å, ϕ2 = -71 (4) and θ2 = 172.9 (4) ° for B molecule, Q = 0.623 (6) Å, ϕ2 = -44 (6) and θ2 = 173.9 (5) ° for C molecule and Q = 0.663 (8) Å, ϕ2 = -117 (3) and θ2 = 170.1 (7) ° for D molecule having an average value of Q = 0.639 (6) Å for total puckering amplitude Q and this value is close to the value 0.63 Å for an ideal cyclohexane ring (Cremer & Pople, 1975). Each molecule of the title compound has two protons capable of participating in hydrogen bonds and these are from nitrogen N1 of the purine bases and hydroxyl oxygen O7'of the sugar ring. There are hydrogen bonds between purine rings. Purine rings A and D and B and C form base pairs by a single hydrogen bond of the type N1—H···N7 and these paired bases are hydrogen bonded to their translated pairs in the direction of a axis. Bases in each pair are nearly parallel to each other, the dihedral angles between them being 170.9 (2)° for the AD base pairs and 171.1 (1)° for the BC base pairs.

Related literature top

For related literature, see: Berman et al. (1967); Birnbaum et al. (1984); Cremer & Pople (1975); Flack (1983); IUPAC-IUB (1983); Jeffrey et al. (1978); Taylor & Kennard (1982); Thewalt et al. (1970); Van Aerschot, Janssen & Herdewijn (1990).

Experimental top

The synthesis of the title compound has been described by Van Aerschot et al. (1990). Colorless prismatic crystals were grown by slow evaporation from methanol at room temperature (293 K).

Refinement top

H atoms of hydroxyl O atoms and water molecules were located from a difference map and not refined. Other H atoms were obtained from stereochemical considerations and were refined isotropically in riding mode. The numbering scheme is shown in Fig. 1 and consistent with the rules of the IUPAC-IUB commission on biochemical nomenclature (IUPAC-IUB, 1983).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS86 (Sheldrick, 1986); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL93.

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) plot of the molecule drawn at 30% probability.
(I) top
Crystal data top
C10H12N4O3S·0.75H2OZ = 4
Mr = 281.81F(000) = 590
Triclinic, P1Dx = 1.451 Mg m3
a = 7.995 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 9.261 (2) ÅCell parameters from 25 reflections
c = 18.062 (2) Åθ = 9.6–14.4°
α = 98.29 (1)°µ = 0.27 mm1
β = 94.47 (1)°T = 293 K
γ = 101.21 (1)°Plate, colorless
V = 1290.4 (4) Å30.25 × 0.21 × 0.12 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
3382 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.1°, θmin = 1.2°
ω–2θ scansh = 99
Absorption correction: emperical via ψ scan (north et al., 1968)
?
k = 1110
Tmin = 0.848, Tmax = 0.973l = 021
4559 measured reflections3 standard reflections every 100 reflections
4559 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full with fixed elements per cycleHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155Calculated w = 1/[σ2(Fo2) + (0.1004P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.007
4559 reflectionsΔρmax = 0.42 e Å3
673 parametersΔρmin = 0.53 e Å3
4 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (9)
Crystal data top
C10H12N4O3S·0.75H2Oγ = 101.21 (1)°
Mr = 281.81V = 1290.4 (4) Å3
Triclinic, P1Z = 4
a = 7.995 (2) ÅMo Kα radiation
b = 9.261 (2) ŵ = 0.27 mm1
c = 18.062 (2) ÅT = 293 K
α = 98.29 (1)°0.25 × 0.21 × 0.12 mm
β = 94.47 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3382 reflections with I > 2σ(I)
Absorption correction: emperical via ψ scan (north et al., 1968)
?
Rint = 0.000
Tmin = 0.848, Tmax = 0.9733 standard reflections every 100 reflections
4559 measured reflections intensity decay: none
4559 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155Δρmax = 0.42 e Å3
S = 0.96Δρmin = 0.53 e Å3
4559 reflectionsAbsolute structure: Flack (1983)
673 parametersAbsolute structure parameter: 0.04 (9)
4 restraints
Special details top

Experimental. Data collection CAD-4 Software (Enraf–Nonius,1989). Cell refinement: CAD-4 Software. Program(s) used to solve structure:SHELXL86 (Sheldrick,1986). Program(s) used to refine structure: SHELXL93 (Sheldrick,1993). Moleculer graphics: ORTEP II (Johnson,1976). Software used to prepare material for publication: SHELXL93 and PARST93 (Nardelli,1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1'A0.2401 (4)0.1350 (4)0.4721 (2)0.0443 (7)
C2'A0.3876 (5)0.0944 (4)0.4459 (3)0.0399 (9)
H2'A0.395 (5)0.005 (4)0.457 (3)0.048*
C3'A0.5520 (7)0.2076 (6)0.4808 (3)0.0576 (12)
H13A0.544 (7)0.307 (6)0.472 (3)0.069*
H23A0.650 (7)0.181 (6)0.458 (3)0.069*
S4'A0.5776 (2)0.2049 (2)0.58210 (9)0.0706 (4)
C5'A0.3608 (7)0.2255 (6)0.6026 (3)0.0571 (12)
H15A0.345 (7)0.208 (6)0.653 (3)0.068*
H25A0.349 (7)0.327 (6)0.599 (3)0.068*
C6'A0.2274 (6)0.1204 (6)0.5494 (3)0.0495 (10)
H6'A0.242 (6)0.019 (6)0.555 (3)0.059*
C7'A0.0467 (8)0.1294 (7)0.5662 (3)0.0616 (13)
H17A0.040 (8)0.129 (7)0.619 (3)0.074*
H27A0.023 (8)0.223 (7)0.555 (3)0.074*
O7'A0.0828 (6)0.0101 (5)0.5254 (2)0.0687 (11)
N9A0.3689 (5)0.0915 (4)0.3643 (2)0.0446 (8)
C8A0.4536 (6)0.1873 (5)0.3227 (3)0.0423 (9)
H8A0.536 (6)0.271 (5)0.344 (3)0.051*
N7A0.4082 (6)0.1512 (4)0.2504 (2)0.0477 (8)
C5A0.2830 (5)0.0230 (4)0.2446 (3)0.0377 (8)
C6A0.1814 (6)0.0689 (5)0.1795 (3)0.0465 (10)
N1A0.0709 (5)0.1868 (4)0.2004 (3)0.0486 (9)
H1A0.004 (5)0.247 (4)0.165 (3)0.058*
C2A0.0576 (7)0.2169 (5)0.2696 (3)0.0495 (10)
H2A0.021 (7)0.302 (5)0.275 (3)0.059*
N3A0.1462 (5)0.1359 (4)0.3314 (2)0.0463 (8)
C4A0.2591 (6)0.0146 (5)0.3131 (3)0.0456 (9)
O6A0.1926 (5)0.0514 (5)0.1144 (2)0.0630 (9)
H7'A0.1020.0290.4730.070*
O1'B0.9698 (4)0.5115 (3)0.3727 (2)0.0389 (6)
C2'B1.1034 (6)0.4301 (4)0.3719 (2)0.0383 (8)
H2'B1.064 (6)0.336 (4)0.390 (2)0.046*
C3'B1.2625 (6)0.5170 (6)0.4211 (3)0.0533 (11)
H13B1.302 (6)0.610 (6)0.403 (3)0.064*
H23B1.353 (6)0.461 (6)0.418 (3)0.064*
S4'B1.2210 (2)0.5544 (2)0.51735 (8)0.0603 (3)
C5'B1.0406 (6)0.6425 (6)0.5027 (3)0.0522 (12)
H15B0.991 (6)0.660 (6)0.549 (3)0.063*
H25B1.079 (6)0.738 (6)0.487 (3)0.063*
C6'B0.9051 (6)0.5438 (5)0.4429 (3)0.0421 (9)
H6'B0.860 (6)0.450 (5)0.461 (3)0.051*
C7'B0.7617 (7)0.6206 (7)0.4275 (3)0.0622 (15)
H17B0.705 (7)0.636 (7)0.473 (3)0.075*
H27B0.808 (7)0.718 (7)0.415 (3)0.075*
O7'B0.6376 (5)0.5358 (5)0.3668 (2)0.0626 (9)
N9B1.1294 (4)0.3973 (4)0.2935 (2)0.0369 (7)
C8B1.2296 (5)0.4838 (5)0.2539 (3)0.0440 (9)
H8B1.310 (5)0.568 (5)0.277 (3)0.053*
N7B1.2063 (5)0.4425 (4)0.1817 (2)0.0396 (7)
C5B1.0761 (5)0.3147 (4)0.1722 (2)0.0353 (8)
C6B0.9959 (5)0.2195 (4)0.1058 (2)0.0372 (8)
N1B0.8628 (5)0.1108 (4)0.1213 (2)0.0454 (9)
H1B0.799 (5)0.053 (4)0.084 (2)0.054*
C2B0.8285 (6)0.0908 (5)0.1906 (3)0.0465 (10)
H2B0.743 (6)0.009 (5)0.194 (3)0.056*
N3B0.9022 (5)0.1731 (4)0.2540 (2)0.0447 (8)
C4B1.0290 (5)0.2872 (4)0.2401 (2)0.0360 (8)
O6B1.0193 (5)0.2285 (4)0.0393 (2)0.0575 (9)
H7'B0.6560.5390.3220.070*
O1'C0.5874 (4)0.8178 (4)0.7811 (2)0.0484 (7)
C2'C0.4390 (5)0.7703 (5)0.8159 (3)0.0403 (8)
H2'C0.398 (5)0.663 (5)0.798 (3)0.048*
C3'C0.2984 (9)0.8463 (9)0.7988 (3)0.071 (2)
H13C0.337 (9)0.953 (9)0.816 (3)0.085*
H23C0.203 (9)0.811 (9)0.826 (3)0.085*
S4'C0.2273 (2)0.8148 (3)0.69994 (11)0.0965 (7)
C5'C0.4381 (4)0.8699 (7)0.6702 (3)0.0640 (13)
H15C0.429 (4)0.852 (7)0.616 (3)0.077*
H25C0.479 (4)0.976 (7)0.687 (3)0.077*
C6'C0.5640 (6)0.7877 (5)0.6999 (3)0.0464 (10)
H6'C0.525 (6)0.680 (5)0.682 (3)0.056*
C7'C0.7432 (7)0.8426 (7)0.6751 (3)0.0602 (13)
H17C0.775 (7)0.951 (7)0.686 (3)0.072*
H27C0.828 (7)0.802 (7)0.702 (3)0.072*
O7'C0.7386 (8)0.7961 (6)0.5986 (3)0.087 (2)
H7'C0.7220.8650.5760.070*
N9C0.4967 (4)0.7918 (4)0.8952 (2)0.0409 (7)
C8C0.6119 (7)0.9115 (5)0.9368 (3)0.0541 (13)
H8C0.673 (7)0.988 (5)0.915 (3)0.065*
N7C0.6286 (6)0.9095 (5)1.0071 (2)0.0523 (10)
C5C0.5097 (5)0.7815 (5)1.0164 (3)0.0406 (9)
C6C0.4673 (5)0.7257 (5)1.0841 (3)0.0428 (10)
N1C0.3415 (5)0.5938 (4)1.0637 (2)0.0467 (9)
H1C0.304 (5)0.549 (4)1.099 (2)0.056*
C2C0.2727 (6)0.5288 (6)0.9936 (3)0.0546 (12)
H2C0.190 (6)0.441 (6)0.989 (3)0.066*
N3C0.3123 (6)0.5785 (4)0.9319 (3)0.0509 (10)
C4C0.4312 (4)0.7096 (4)0.9467 (2)0.0357 (9)
O6C0.5208 (6)0.7770 (4)1.1486 (2)0.0580 (8)
O1'D0.8935 (5)0.3484 (4)0.8874 (2)0.0550 (8)
C2'D0.7552 (7)0.4235 (6)0.8901 (3)0.0522 (11)
H2'D0.647 (7)0.355 (6)0.870 (3)0.063*
C3'D0.7896 (16)0.5506 (11)0.8451 (4)0.105 (3)
H13D0.904 (16)0.611 (11)0.861 (4)0.126*
H23D0.707 (16)0.614 (11)0.853 (4)0.126*
S4'D0.7717 (5)0.4699 (4)0.74679 (12)0.1313 (14)
C5'D0.9295 (12)0.3608 (9)0.7580 (4)0.086 (2)
H15D0.932 (12)0.299 (9)0.710 (4)0.104*
H25D1.041 (12)0.427 (9)0.771 (4)0.104*
C6'D0.9015 (7)0.2654 (6)0.8152 (3)0.0549 (12)
H6'D0.793 (7)0.193 (6)0.800 (3)0.066*
C7'D1.0447 (12)0.1820 (8)0.8307 (5)0.086 (2)
H17D1.060 (12)0.119 (8)0.785 (5)0.103*
H27D1.152 (12)0.253 (8)0.848 (5)0.103*
O7'D0.9961 (10)0.0885 (6)0.8895 (4)0.099 (2)
N9D0.7569 (5)0.4764 (5)0.9701 (2)0.0500 (9)
C8D0.8698 (7)0.5971 (7)1.0153 (3)0.0581 (12)
H8D0.947 (7)0.666 (7)0.995 (3)0.070*
N7D0.8597 (5)0.6057 (5)1.0850 (2)0.0487 (9)
C5D0.7336 (5)0.4799 (4)1.0920 (2)0.0372 (8)
C6D0.6671 (6)0.4308 (5)1.1561 (3)0.0481 (11)
N1D0.5394 (6)0.2967 (5)1.1333 (3)0.0533 (10)
H1D0.493 (6)0.255 (5)1.168 (3)0.064*
C2D0.4882 (6)0.2333 (5)1.0639 (3)0.0500 (10)
H2D0.399 (6)0.149 (5)1.057 (3)0.060*
N3D0.5476 (6)0.2738 (5)1.0023 (3)0.0582 (11)
C4D0.6706 (6)0.4029 (5)1.0210 (3)0.0421 (9)
O6D0.7096 (6)0.4837 (5)1.2214 (2)0.0603 (9)
H7'D0.9820.1600.9200.070*
O1W0.7998 (6)0.0375 (5)0.3829 (2)0.0668 (10)
H1W10.7510.0510.3710.070*
H2W10.8270.0710.3440.070*
O2W0.5601 (6)0.2076 (5)0.3025 (3)0.0736 (12)
H1W20.5810.2910.3030.070*
H2W20.6100.1700.2550.070*
O3W0.1147 (8)0.8682 (6)0.9563 (3)0.0866 (14)
H1W30.1220.8851.0040.070*
H2W30.0870.9500.9400.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1'A0.033 (2)0.0577 (15)0.038 (2)0.0034 (12)0.0025 (13)0.0028 (13)
C2'A0.027 (2)0.040 (2)0.048 (3)0.0000 (14)0.000 (2)0.005 (2)
C3'A0.036 (2)0.077 (3)0.046 (3)0.005 (2)0.009 (2)0.006 (2)
S4'A0.0496 (7)0.1015 (10)0.0514 (8)0.0010 (7)0.0123 (6)0.0117 (7)
C5'A0.050 (3)0.077 (3)0.036 (3)0.003 (2)0.002 (2)0.007 (2)
C6'A0.038 (2)0.057 (2)0.050 (3)0.003 (2)0.005 (2)0.006 (2)
C7'A0.051 (3)0.087 (4)0.040 (3)0.011 (3)0.006 (2)0.004 (2)
O7'A0.051 (2)0.088 (3)0.057 (3)0.012 (2)0.001 (2)0.021 (2)
N9A0.037 (2)0.049 (2)0.039 (2)0.0059 (14)0.001 (2)0.0007 (14)
C8A0.042 (2)0.037 (2)0.043 (2)0.0087 (15)0.000 (2)0.014 (2)
N7A0.040 (2)0.047 (2)0.051 (2)0.0041 (5)0.005 (2)0.012 (2)
C5A0.025 (2)0.043 (2)0.040 (2)0.0001 (14)0.001 (2)0.000 (2)
C6A0.041 (2)0.064 (2)0.039 (2)0.025 (2)0.002 (2)0.005 (2)
N1A0.034 (2)0.041 (2)0.062 (3)0.0052 (13)0.011 (2)0.004 (2)
C2A0.040 (2)0.048 (2)0.052 (3)0.014 (2)0.001 (2)0.013 (2)
N3A0.035 (2)0.051 (2)0.049 (2)0.0001 (14)0.008 (2)0.007 (2)
C4A0.039 (2)0.050 (2)0.040 (2)0.002 (2)0.000 (2)0.001 (2)
O6A0.044 (2)0.077 (2)0.056 (2)0.006 (2)0.015 (2)0.009 (2)
O1'B0.0285 (14)0.0372 (13)0.040 (2)0.0068 (10)0.0107 (12)0.0026 (11)
C2'B0.039 (2)0.042 (2)0.029 (2)0.009 (2)0.014 (2)0.0044 (14)
C3'B0.025 (2)0.068 (3)0.057 (3)0.004 (2)0.008 (2)0.011 (2)
S4'B0.0463 (7)0.0810 (8)0.0461 (7)0.0163 (6)0.0196 (5)0.0053 (6)
C5'B0.038 (2)0.058 (2)0.052 (3)0.015 (2)0.019 (2)0.012 (2)
C6'B0.026 (2)0.049 (2)0.043 (2)0.000 (2)0.007 (2)0.005 (2)
C7'B0.038 (3)0.082 (3)0.054 (3)0.013 (2)0.008 (2)0.024 (3)
O7'B0.034 (2)0.090 (2)0.050 (2)0.002 (2)0.012 (2)0.009 (2)
N9B0.0191 (14)0.046 (2)0.040 (2)0.0032 (12)0.0054 (13)0.0086 (14)
C8B0.027 (2)0.048 (2)0.051 (3)0.0023 (15)0.001 (2)0.007 (2)
N7B0.026 (2)0.047 (2)0.041 (2)0.0049 (13)0.0041 (14)0.0113 (14)
C5B0.033 (2)0.038 (2)0.034 (2)0.0072 (15)0.002 (2)0.0014 (14)
C6B0.028 (2)0.046 (2)0.042 (2)0.009 (2)0.010 (2)0.016 (2)
N1B0.040 (2)0.056 (2)0.032 (2)0.005 (2)0.008 (2)0.0046 (15)
C2B0.030 (2)0.044 (2)0.058 (3)0.005 (2)0.004 (2)0.007 (2)
N3B0.034 (2)0.055 (2)0.043 (2)0.0009 (15)0.005 (2)0.010 (2)
C4B0.023 (2)0.043 (2)0.040 (2)0.004 (2)0.001 (2)0.005 (2)
O6B0.052 (2)0.068 (2)0.042 (2)0.011 (2)0.007 (2)0.010 (2)
O1'C0.031 (2)0.071 (2)0.037 (2)0.0005 (13)0.0037 (13)0.0075 (14)
C2'C0.029 (2)0.048 (2)0.042 (2)0.0038 (14)0.003 (2)0.008 (2)
C3'C0.065 (4)0.112 (5)0.038 (3)0.022 (4)0.002 (3)0.013 (3)
S4'C0.0527 (9)0.185 (2)0.0514 (9)0.0267 (12)0.0082 (8)0.0222 (11)
C5'C0.066 (4)0.082 (3)0.038 (3)0.005 (3)0.001 (3)0.008 (2)
C6'C0.045 (3)0.054 (2)0.032 (2)0.003 (2)0.001 (2)0.002 (2)
C7'C0.040 (3)0.091 (3)0.044 (3)0.006 (2)0.018 (2)0.009 (2)
O7'C0.093 (4)0.091 (3)0.062 (3)0.014 (3)0.018 (3)0.001 (2)
N9C0.028 (2)0.052 (2)0.039 (2)0.0091 (13)0.0039 (15)0.0172 (15)
C8C0.060 (3)0.059 (2)0.024 (2)0.028 (2)0.013 (2)0.006 (2)
N7C0.039 (2)0.058 (2)0.045 (2)0.025 (2)0.006 (2)0.012 (2)
C5C0.033 (2)0.040 (2)0.044 (2)0.0041 (15)0.006 (2)0.001 (2)
C6C0.027 (2)0.051 (2)0.051 (3)0.004 (2)0.009 (2)0.022 (2)
N1C0.037 (2)0.057 (2)0.043 (2)0.006 (2)0.001 (2)0.024 (2)
C2C0.020 (2)0.073 (3)0.056 (3)0.021 (2)0.002 (2)0.008 (2)
N3C0.042 (2)0.049 (2)0.046 (2)0.015 (2)0.006 (2)0.005 (2)
C4C0.017 (2)0.042 (2)0.048 (2)0.0069 (14)0.005 (2)0.013 (2)
O6C0.060 (2)0.073 (2)0.029 (2)0.009 (2)0.008 (2)0.0073 (14)
O1'D0.061 (2)0.052 (2)0.043 (2)0.0086 (15)0.011 (2)0.0067 (14)
C2'D0.047 (3)0.055 (2)0.052 (3)0.012 (2)0.004 (2)0.001 (2)
C3'D0.177 (10)0.108 (6)0.054 (4)0.087 (7)0.012 (5)0.015 (4)
S4'D0.234 (4)0.150 (2)0.0453 (10)0.120 (3)0.0108 (15)0.0283 (11)
C5'D0.094 (6)0.092 (4)0.066 (5)0.013 (4)0.028 (4)0.012 (3)
C6'D0.054 (3)0.053 (2)0.055 (3)0.008 (2)0.003 (2)0.009 (2)
C7'D0.095 (6)0.077 (4)0.084 (5)0.033 (4)0.004 (4)0.004 (4)
O7'D0.123 (5)0.078 (3)0.085 (4)0.017 (3)0.015 (4)0.006 (3)
N9D0.037 (2)0.069 (2)0.039 (2)0.007 (2)0.006 (2)0.005 (2)
C8D0.039 (2)0.078 (3)0.055 (3)0.006 (2)0.006 (2)0.016 (3)
N7D0.040 (2)0.058 (2)0.040 (2)0.007 (2)0.003 (2)0.009 (2)
C5D0.039 (2)0.033 (2)0.037 (2)0.0040 (15)0.003 (2)0.004 (2)
C6D0.037 (2)0.051 (2)0.058 (3)0.004 (2)0.006 (2)0.020 (2)
N1D0.050 (2)0.058 (2)0.050 (3)0.001 (2)0.011 (2)0.011 (2)
C2D0.036 (2)0.056 (2)0.052 (3)0.004 (2)0.007 (2)0.004 (2)
N3D0.038 (2)0.065 (2)0.052 (3)0.012 (2)0.012 (2)0.015 (2)
C4D0.030 (2)0.058 (2)0.039 (2)0.007 (2)0.007 (2)0.010 (2)
O6D0.064 (2)0.081 (2)0.032 (2)0.008 (2)0.000 (2)0.007 (2)
O1W0.055 (2)0.083 (2)0.053 (2)0.002 (2)0.006 (2)0.007 (2)
O2W0.068 (3)0.080 (3)0.055 (3)0.019 (2)0.022 (2)0.016 (2)
O3W0.092 (4)0.097 (3)0.066 (3)0.007 (3)0.005 (3)0.017 (3)
Geometric parameters (Å, º) top
O1'A—C2'A1.402 (5)C2'C—C3'C1.474 (7)
O1'A—C6'A1.431 (6)C2'C—H2'C0.98
C2'A—N9A1.465 (6)C3'C—S4'C1.796 (6)
C2'A—C3'A1.539 (6)C3'C—H13C0.97
C2'A—H2'A0.98C3'C—H23C0.97
C3'A—S4'A1.830 (6)S4'C—C5'C1.8097 (12)
C3'A—H13A0.97C5'C—C6'C1.487 (8)
C3'A—H23A0.97C5'C—H15C0.97
S4'A—C5'A1.840 (6)C5'C—H25C0.97
C5'A—C6'A1.475 (7)C6'C—C7'C1.547 (6)
C5'A—H15A0.97C6'C—H6'C0.98
C5'A—H25A0.97C7'C—O7'C1.383 (7)
C6'A—C7'A1.515 (7)C7'C—H17C0.97
C6'A—H6'A0.98C7'C—H27C0.97
C7'A—O7'A1.428 (7)O7'C—H7'C0.827 (6)
C7'A—H17A0.97N9C—C4C1.357 (5)
C7'A—H27A0.97N9C—C8C1.377 (5)
O7'A—H7'A0.986 (4)C8C—N7C1.269 (6)
N9A—C8A1.360 (5)C8C—H8C0.93
N9A—C4A1.366 (6)N7C—C5C1.408 (6)
C8A—N7A1.303 (6)C5C—C4C1.377 (6)
C8A—H8A0.93C5C—C6C1.433 (6)
N7A—C5A1.381 (6)C6C—O6C1.204 (6)
C5A—C4A1.351 (7)C6C—N1C1.405 (6)
C5A—C6A1.436 (6)N1C—C2C1.346 (7)
C6A—O6A1.217 (6)N1C—H1C0.86
C6A—N1A1.383 (6)C2C—N3C1.304 (7)
N1A—C2A1.327 (7)C2C—H2C0.93
N1A—H1A0.86N3C—C4C1.367 (5)
C2A—N3A1.319 (6)O1'D—C2'D1.417 (6)
C2A—H2A0.93O1'D—C6'D1.428 (7)
N3A—C4A1.395 (6)C2'D—N9D1.454 (7)
O1'B—C6'B1.420 (5)C2'D—C3'D1.518 (10)
O1'B—C2'B1.422 (5)C2'D—H2'D0.98
C2'B—N9B1.444 (6)C3'D—S4'D1.809 (8)
C2'B—C3'B1.508 (6)C3'D—H13D0.97
C2'B—H2'B0.98C3'D—H23D0.97
C3'B—S4'B1.793 (6)S4'D—C5'D1.780 (9)
C3'B—H13B0.97C5'D—C6'D1.456 (10)
C3'B—H23B0.97C5'D—H15D0.97
S4'B—C5'B1.811 (5)C5'D—H25D0.97
C5'B—C6'B1.525 (6)C6'D—C7'D1.531 (8)
C5'B—H15B0.97C6'D—H6'D0.98
C5'B—H25B0.97C7'D—O7'D1.492 (11)
C6'B—C7'B1.491 (6)C7'D—H17D0.97
C6'B—H6'B0.98C7'D—H27D0.97
C7'B—O7'B1.443 (6)O7'D—H7'D0.830 (6)
C7'B—H17B0.97N9D—C4D1.372 (6)
C7'B—H27B0.97N9D—C8D1.401 (7)
O7'B—H7'B0.837 (4)C8D—N7D1.260 (7)
N9B—C8B1.342 (6)C8D—H8D0.93
N9B—C4B1.375 (5)N7D—C5D1.412 (5)
C8B—N7B1.294 (6)C5D—C4D1.378 (6)
C8B—H8B0.93C5D—C6D1.409 (6)
N7B—C5B1.396 (5)C6D—O6D1.206 (7)
C5B—C4B1.355 (6)C6D—N1D1.431 (7)
C5B—C6B1.408 (6)N1D—C2D1.304 (7)
C6B—O6B1.242 (6)N1D—H1D0.86
C6B—N1B1.391 (5)C2D—N3D1.318 (7)
N1B—C2B1.333 (7)C2D—H2D0.93
N1B—H1B0.86N3D—C4D1.374 (6)
C2B—N3B1.308 (6)O1W—H1W10.826 (5)
C2B—H2B0.93O1W—H2W10.841 (4)
N3B—C4B1.381 (5)O2W—H1W20.822 (5)
O1'C—C2'C1.411 (5)O2W—H2W21.053 (5)
O1'C—C6'C1.444 (5)O3W—H1W30.846 (5)
C2'C—N9C1.443 (6)O3W—H2W30.911 (6)
C2'A—O1'A—C6'A112.6 (3)O1'C—C2'C—C3'C113.8 (4)
O1'A—C2'A—N9A106.3 (3)N9C—C2'C—C3'C113.3 (4)
O1'A—C2'A—C3'A112.0 (4)O1'C—C2'C—H2'C108.1 (2)
N9A—C2'A—C3'A108.9 (4)N9C—C2'C—H2'C108.1 (2)
O1'A—C2'A—H2'A109.8 (2)C3'C—C2'C—H2'C108.1 (3)
N9A—C2'A—H2'A109.8 (2)C2'C—C3'C—S4'C112.2 (4)
C3'A—C2'A—H2'A109.8 (3)C2'C—C3'C—H13C109.2 (3)
C2'A—C3'A—S4'A108.4 (4)S4'C—C3'C—H13C109.2 (3)
C2'A—C3'A—H13A110.0 (3)C2'C—C3'C—H23C109.2 (3)
S4'A—C3'A—H13A110.0 (2)S4'C—C3'C—H23C109.2 (2)
C2'A—C3'A—H23A110.0 (3)H13C—C3'C—H23C107.9
S4'A—C3'A—H23A110.0 (2)C3'C—S4'C—C5'C95.7 (3)
H13A—C3'A—H23A108.4C6'C—C5'C—S4'C112.8 (4)
C3'A—S4'A—C5'A98.4 (3)C6'C—C5'C—H15C109.0 (3)
C6'A—C5'A—S4'A111.6 (4)S4'C—C5'C—H15C109.0 (2)
C6'A—C5'A—H15A109.3 (3)C6'C—C5'C—H25C109.0 (3)
S4'A—C5'A—H15A109.3 (2)S4'C—C5'C—H25C109.0 (2)
C6'A—C5'A—H25A109.3 (3)H15C—C5'C—H25C107.8
S4'A—C5'A—H25A109.3 (2)O1'C—C6'C—C5'C110.5 (4)
H15A—C5'A—H25A108.0O1'C—C6'C—C7'C105.3 (4)
O1'A—C6'A—C5'A114.1 (4)C5'C—C6'C—C7'C110.7 (4)
O1'A—C6'A—C7'A108.1 (4)O1'C—C6'C—H6'C110.1 (2)
C5'A—C6'A—C7'A113.3 (4)C5'C—C6'C—H6'C110.1 (3)
O1'A—C6'A—H6'A107.0 (2)C7'C—C6'C—H6'C110.1 (3)
C5'A—C6'A—H6'A107.0 (3)O7'C—C7'C—C6'C109.0 (5)
C7'A—C6'A—H6'A107.0 (3)O7'C—C7'C—H17C109.9 (3)
O7'A—C7'A—C6'A114.2 (4)C6'C—C7'C—H17C109.9 (3)
O7'A—C7'A—H17A108.7 (3)O7'C—C7'C—H27C109.9 (4)
C6'A—C7'A—H17A108.7 (3)C6'C—C7'C—H27C109.9 (3)
O7'A—C7'A—H27A108.7 (3)H17C—C7'C—H27C108.3
C6'A—C7'A—H27A108.7 (3)C7'C—O7'C—H7'C108.8 (6)
H17A—C7'A—H27A107.6C4C—N9C—C8C104.9 (4)
C7'A—O7'A—H7'A108.4 (4)C4C—N9C—C2'C127.1 (3)
C8A—N9A—C4A105.0 (4)C8C—N9C—C2'C127.4 (3)
C8A—N9A—C2'A129.5 (4)N7C—C8C—N9C114.7 (4)
C4A—N9A—C2'A125.5 (3)N7C—C8C—H8C122.6 (2)
N7A—C8A—N9A114.1 (4)N9C—C8C—H8C122.6 (2)
N7A—C8A—H8A122.9 (2)C8C—N7C—C5C104.4 (4)
N9A—C8A—H8A122.9 (2)C4C—C5C—N7C108.7 (4)
C8A—N7A—C5A103.3 (4)C4C—C5C—C6C121.8 (4)
C4A—C5A—N7A110.8 (4)N7C—C5C—C6C129.5 (4)
C4A—C5A—C6A118.9 (4)O6C—C6C—N1C122.5 (4)
N7A—C5A—C6A130.3 (4)O6C—C6C—C5C129.6 (4)
O6A—C6A—N1A123.6 (5)N1C—C6C—C5C107.8 (4)
O6A—C6A—C5A126.1 (5)C2C—N1C—C6C126.9 (4)
N1A—C6A—C5A110.3 (4)C2C—N1C—H1C116.6 (3)
C2A—N1A—C6A126.9 (4)C6C—N1C—H1C116.6 (2)
C2A—N1A—H1A116.5 (3)N3C—C2C—N1C125.5 (4)
C6A—N1A—H1A116.5 (3)N3C—C2C—H2C117.3 (3)
N3A—C2A—N1A125.4 (4)N1C—C2C—H2C117.3 (3)
N3A—C2A—H2A117.3 (3)C2C—N3C—C4C111.6 (4)
N1A—C2A—H2A117.3 (3)N9C—C4C—N3C126.4 (4)
C2A—N3A—C4A109.8 (4)N9C—C4C—C5C107.1 (4)
C5A—C4A—N9A106.7 (4)N3C—C4C—C5C126.5 (4)
C5A—C4A—N3A128.7 (5)C2'D—O1'D—C6'D113.9 (4)
N9A—C4A—N3A124.6 (4)O1'D—C2'D—N9D103.4 (4)
C6'B—O1'B—C2'B116.5 (3)O1'D—C2'D—C3'D108.8 (5)
O1'B—C2'B—N9B104.9 (3)N9D—C2'D—C3'D112.4 (5)
O1'B—C2'B—C3'B111.4 (3)O1'D—C2'D—H2'D110.7 (2)
N9B—C2'B—C3'B113.4 (4)N9D—C2'D—H2'D110.7 (3)
O1'B—C2'B—H2'B109.0 (2)C3'D—C2'D—H2'D110.7 (5)
N9B—C2'B—H2'B109.0 (2)C2'D—C3'D—S4'D107.8 (6)
C3'B—C2'B—H2'B109.0 (3)C2'D—C3'D—H13D110.1 (5)
C2'B—C3'B—S4'B111.1 (4)S4'D—C3'D—H13D110.1 (4)
C2'B—C3'B—H13B109.4 (3)C2'D—C3'D—H23D110.1 (4)
S4'B—C3'B—H13B109.4 (2)S4'D—C3'D—H23D110.1 (3)
C2'B—C3'B—H23B109.4 (2)H13D—C3'D—H23D108.5
S4'B—C3'B—H23B109.4 (2)C5'D—S4'D—C3'D95.6 (4)
H13B—C3'B—H23B108.0C6'D—C5'D—S4'D114.4 (5)
C3'B—S4'B—C5'B97.9 (2)C6'D—C5'D—H15D108.7 (3)
C6'B—C5'B—S4'B110.5 (3)S4'D—C5'D—H15D108.7 (3)
C6'B—C5'B—H15B109.6 (3)C6'D—C5'D—H25D108.7 (4)
S4'B—C5'B—H15B109.6 (2)S4'D—C5'D—H25D108.7 (3)
C6'B—C5'B—H25B109.6 (3)H15D—C5'D—H25D107.6
S4'B—C5'B—H25B109.6 (2)O1'D—C6'D—C5'D112.2 (5)
H15B—C5'B—H25B108.1O1'D—C6'D—C7'D102.7 (5)
O1'B—C6'B—C7'B105.8 (4)C5'D—C6'D—C7'D115.0 (6)
O1'B—C6'B—C5'B112.7 (4)O1'D—C6'D—H6'D108.9 (3)
C7'B—C6'B—C5'B110.4 (4)C5'D—C6'D—H6'D108.9 (4)
O1'B—C6'B—H6'B109.3 (2)C7'D—C6'D—H6'D108.9 (4)
C7'B—C6'B—H6'B109.3 (3)O7'D—C7'D—C6'D108.5 (7)
C5'B—C6'B—H6'B109.3 (3)O7'D—C7'D—H17D110.0 (3)
O7'B—C7'B—C6'B112.0 (4)C6'D—C7'D—H17D110.0 (4)
O7'B—C7'B—H17B109.2 (3)O7'D—C7'D—H27D110.0 (4)
C6'B—C7'B—H17B109.2 (3)C6'D—C7'D—H27D110.0 (4)
O7'B—C7'B—H27B109.2 (3)H17D—C7'D—H27D108.4
C6'B—C7'B—H27B109.2 (3)C7'D—O7'D—H7'D93.7 (6)
H17B—C7'B—H27B107.9C4D—N9D—C8D103.6 (4)
C7'B—O7'B—H7'B119.7 (5)C4D—N9D—C2'D127.3 (4)
C8B—N9B—C4B104.6 (4)C8D—N9D—C2'D128.1 (5)
C8B—N9B—C2'B127.6 (4)N7D—C8D—N9D115.2 (5)
C4B—N9B—C2'B126.4 (3)N7D—C8D—H8D122.4 (3)
N7B—C8B—N9B115.5 (4)N9D—C8D—H8D122.4 (3)
N7B—C8B—H8B122.2 (2)C8D—N7D—C5D104.8 (4)
N9B—C8B—H8B122.2 (3)C4D—C5D—C6D120.4 (4)
C8B—N7B—C5B103.1 (4)C4D—C5D—N7D108.7 (4)
C4B—C5B—N7B109.9 (4)C6D—C5D—N7D130.8 (4)
C4B—C5B—C6B120.3 (4)O6D—C6D—C5D128.5 (5)
N7B—C5B—C6B129.8 (4)O6D—C6D—N1D122.1 (5)
O6B—C6B—N1B119.3 (4)C5D—C6D—N1D109.3 (4)
O6B—C6B—C5B129.3 (4)C2D—N1D—C6D125.2 (4)
N1B—C6B—C5B111.1 (4)C2D—N1D—H1D117.4 (3)
C2B—N1B—C6B123.9 (4)C6D—N1D—H1D117.4 (3)
C2B—N1B—H1B118.0 (3)N1D—C2D—N3D127.7 (5)
C6B—N1B—H1B118.0 (3)N1D—C2D—H2D116.2 (3)
N3B—C2B—N1B127.2 (4)N3D—C2D—H2D116.2 (3)
N3B—C2B—H2B116.4 (3)C2D—N3D—C4D109.4 (4)
N1B—C2B—H2B116.4 (3)N9D—C4D—N3D124.5 (4)
C2B—N3B—C4B110.0 (4)N9D—C4D—C5D107.6 (4)
C5B—C4B—N9B106.9 (4)N3D—C4D—C5D127.9 (4)
C5B—C4B—N3B127.2 (4)H1W1—O1W—H2W1108.3 (5)
N9B—C4B—N3B125.9 (4)H1W2—O2W—H2W2106.3 (6)
C2'C—O1'C—C6'C114.8 (4)H1W3—O3W—H2W3106.7 (6)
O1'C—C2'C—N9C105.2 (3)
C6'A—O1'A—C2'A—N9A171.0 (3)C6'C—O1'C—C2'C—N9C172.1 (3)
C6'A—O1'A—C2'A—C3'A70.1 (5)C6'C—O1'C—C2'C—C3'C63.3 (5)
O1'A—C2'A—C3'A—S4'A64.8 (4)O1'C—C2'C—C3'C—S4'C60.8 (6)
N9A—C2'A—C3'A—S4'A178.0 (3)N9C—C2'C—C3'C—S4'C179.0 (4)
C2'A—C3'A—S4'A—C5'A50.3 (4)C2'C—C3'C—S4'C—C5'C51.9 (5)
C3'A—S4'A—C5'A—C6'A48.5 (4)C3'C—S4'C—C5'C—C6'C53.8 (5)
C2'A—O1'A—C6'A—C5'A66.8 (5)C2'C—O1'C—C6'C—C5'C62.8 (5)
C2'A—O1'A—C6'A—C7'A166.2 (4)C2'C—O1'C—C6'C—C7'C177.6 (4)
S4'A—C5'A—C6'A—O1'A58.1 (5)S4'C—C5'C—C6'C—O1'C61.8 (5)
S4'A—C5'A—C6'A—C7'A177.6 (4)S4'C—C5'C—C6'C—C7'C178.1 (4)
O1'A—C6'A—C7'A—O7'A64.3 (6)O1'C—C6'C—C7'C—O7'C170.3 (5)
C5'A—C6'A—C7'A—O7'A168.3 (5)C5'C—C6'C—C7'C—O7'C70.2 (6)
O1'A—C2'A—N9A—C8A108.2 (5)O1'C—C2'C—N9C—C4C148.6 (4)
C3'A—C2'A—N9A—C8A12.7 (6)C3'C—C2'C—N9C—C4C86.5 (5)
O1'A—C2'A—N9A—C4A72.8 (5)O1'C—C2'C—N9C—C8C41.8 (6)
C3'A—C2'A—N9A—C4A166.3 (4)C3'C—C2'C—N9C—C8C83.1 (7)
C4A—N9A—C8A—N7A0.4 (5)C4C—N9C—C8C—N7C2.2 (7)
C2'A—N9A—C8A—N7A178.8 (4)C2'C—N9C—C8C—N7C173.7 (5)
N9A—C8A—N7A—C5A0.7 (5)N9C—C8C—N7C—C5C2.8 (7)
C8A—N7A—C5A—C4A0.8 (5)C8C—N7C—C5C—C4C2.3 (5)
C8A—N7A—C5A—C6A178.9 (4)C8C—N7C—C5C—C6C177.4 (5)
C4A—C5A—C6A—O6A177.6 (4)C4C—C5C—C6C—O6C178.0 (5)
N7A—C5A—C6A—O6A2.7 (7)N7C—C5C—C6C—O6C1.6 (8)
C4A—C5A—C6A—N1A0.1 (5)C4C—C5C—C6C—N1C0.6 (5)
N7A—C5A—C6A—N1A179.8 (4)N7C—C5C—C6C—N1C179.7 (4)
O6A—C6A—N1A—C2A176.5 (5)O6C—C6C—N1C—C2C179.3 (5)
C5A—C6A—N1A—C2A1.0 (6)C5C—C6C—N1C—C2C0.6 (6)
C6A—N1A—C2A—N3A1.9 (8)C6C—N1C—C2C—N3C0.0 (9)
N1A—C2A—N3A—C4A1.2 (7)N1C—C2C—N3C—C4C1.6 (8)
N7A—C5A—C4A—N9A0.6 (5)C8C—N9C—C4C—N3C179.3 (4)
C6A—C5A—C4A—N9A179.1 (3)C2'C—N9C—C4C—N3C9.2 (6)
N7A—C5A—C4A—N3A179.6 (4)C8C—N9C—C4C—C5C0.5 (4)
C6A—C5A—C4A—N3A0.7 (7)C2'C—N9C—C4C—C5C172.1 (4)
C8A—N9A—C4A—C5A0.2 (5)C2C—N3C—C4C—N9C178.6 (4)
C2'A—N9A—C4A—C5A179.4 (4)C2C—N3C—C4C—C5C3.0 (6)
C8A—N9A—C4A—N3A180.0 (4)N7C—C5C—C4C—N9C1.0 (4)
C2'A—N9A—C4A—N3A0.8 (7)C6C—C5C—C4C—N9C178.7 (4)
C2A—N3A—C4A—C5A0.0 (7)N7C—C5C—C4C—N3C177.7 (4)
C2A—N3A—C4A—N9A179.7 (4)C6C—C5C—C4C—N3C2.6 (6)
C6'B—O1'B—C2'B—N9B173.2 (3)C6'D—O1'D—C2'D—N9D170.5 (4)
C6'B—O1'B—C2'B—C3'B63.7 (5)C6'D—O1'D—C2'D—C3'D69.9 (7)
O1'B—C2'B—C3'B—S4'B61.7 (5)O1'D—C2'D—C3'D—S4'D69.4 (8)
N9B—C2'B—C3'B—S4'B179.8 (3)N9D—C2'D—C3'D—S4'D176.7 (5)
C2'B—C3'B—S4'B—C5'B54.3 (4)C2'D—C3'D—S4'D—C5'D56.9 (7)
C3'B—S4'B—C5'B—C6'B52.2 (4)C3'D—S4'D—C5'D—C6'D52.9 (7)
C2'B—O1'B—C6'B—C7'B176.8 (4)C2'D—O1'D—C6'D—C5'D62.8 (7)
C2'B—O1'B—C6'B—C5'B62.5 (4)C2'D—O1'D—C6'D—C7'D173.1 (5)
S4'B—C5'B—C6'B—O1'B58.4 (5)S4'D—C5'D—C6'D—O1'D57.5 (7)
S4'B—C5'B—C6'B—C7'B176.5 (4)S4'D—C5'D—C6'D—C7'D174.5 (5)
O1'B—C6'B—C7'B—O7'B53.1 (6)O1'D—C6'D—C7'D—O7'D58.5 (7)
C5'B—C6'B—C7'B—O7'B175.4 (5)C5'D—C6'D—C7'D—O7'D179.3 (6)
O1'B—C2'B—N9B—C8B86.0 (5)O1'D—C2'D—N9D—C4D90.2 (5)
C3'B—C2'B—N9B—C8B35.9 (5)C3'D—C2'D—N9D—C4D152.7 (6)
O1'B—C2'B—N9B—C4B78.4 (4)O1'D—C2'D—N9D—C8D76.0 (6)
C3'B—C2'B—N9B—C4B159.8 (4)C3'D—C2'D—N9D—C8D41.1 (8)
C4B—N9B—C8B—N7B0.2 (5)C4D—N9D—C8D—N7D1.1 (6)
C2'B—N9B—C8B—N7B167.2 (4)C2'D—N9D—C8D—N7D169.8 (5)
N9B—C8B—N7B—C5B0.1 (5)N9D—C8D—N7D—C5D1.7 (6)
C8B—N7B—C5B—C4B0.0 (4)C8D—N7D—C5D—C4D1.7 (5)
C8B—N7B—C5B—C6B179.7 (4)C8D—N7D—C5D—C6D179.7 (4)
C4B—C5B—C6B—O6B178.4 (4)C4D—C5D—C6D—O6D178.7 (5)
N7B—C5B—C6B—O6B1.9 (7)N7D—C5D—C6D—O6D3.4 (8)
C4B—C5B—C6B—N1B4.8 (5)C4D—C5D—C6D—N1D1.7 (6)
N7B—C5B—C6B—N1B175.5 (4)N7D—C5D—C6D—N1D179.6 (4)
O6B—C6B—N1B—C2B179.1 (4)O6D—C6D—N1D—C2D179.7 (5)
C5B—C6B—N1B—C2B6.5 (6)C5D—C6D—N1D—C2D2.4 (7)
C6B—N1B—C2B—N3B5.4 (7)C6D—N1D—C2D—N3D3.7 (9)
N1B—C2B—N3B—C4B1.4 (7)N1D—C2D—N3D—C4D3.5 (8)
N7B—C5B—C4B—N9B0.2 (4)C8D—N9D—C4D—N3D178.5 (5)
C6B—C5B—C4B—N9B179.6 (4)C2'D—N9D—C4D—N3D9.7 (7)
N7B—C5B—C4B—N3B178.5 (4)C8D—N9D—C4D—C5D0.1 (5)
C6B—C5B—C4B—N3B1.8 (6)C2'D—N9D—C4D—C5D168.7 (4)
C8B—N9B—C4B—C5B0.2 (4)C2D—N3D—C4D—N9D179.1 (4)
C2'B—N9B—C4B—C5B167.5 (3)C2D—N3D—C4D—C5D2.8 (7)
C8B—N9B—C4B—N3B178.4 (4)C6D—C5D—C4D—N9D179.4 (4)
C2'B—N9B—C4B—N3B11.2 (6)N7D—C5D—C4D—N9D1.1 (5)
C2B—N3B—C4B—C5B0.3 (6)C6D—C5D—C4D—N3D2.3 (7)
C2B—N3B—C4B—N9B178.1 (4)N7D—C5D—C4D—N3D179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2W0.83 (4)2.07 (5)2.804 (7)147.5 (4)
O1W—H2W1···N3B0.84 (4)2.06 (4)2.901 (6)174.2 (4)
N1A—H1A···N7Di0.86 (6)1.96 (6)2.816 (7)176 (1)
O7A—H7A···O1Wii0.99 (4)1.78 (4)2.734 (5)162.6 (3)
O7C—H7C···O7Aiii0.83 (6)2.20 (5)2.769 (8)125.5 (5)
N1B—H1B···N7Civ0.86 (5)2.00 (6)2.858 (6)172 (1)
O2W—H2W2···O6C1.05 (6)1.95 (4)2.753 (7)130.2 (4)
O7B—H7B···O6Dv0.84 (4)1.92 (4)2.728 (6)161.7 (3)
N1C—H1C···N7Bvi0.86 (6)2.02 (6)2.882 (6)177 (1)
N1D—H1D···N7Avii0.86 (6)1.97 (6)2.829 (7)174 (1)
O7D—H7D···O6Bvii0.83 (6)2.14 (4)2.802 (8)137.1 (5)
O2W—H1W2···O7Bviii0.82 (5)2.20 (5)2.938 (8)149.5 (5)
O3W—H1W3···O6Aix0.85 (5)2.00 (4)2.833 (7)167.2 (4)
O3W—H2W3···O7Dx0.91 (6)1.89 (7)2.793 (9)167.1 (5)
Symmetry codes: (i) x1, y1, z1; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x, y1, z1; (v) x, y, z1; (vi) x1, y, z+1; (vii) x, y, z+1; (viii) x, y1, z; (ix) x, y+1, z+1; (x) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H12N4O3S·0.75H2O
Mr281.81
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.995 (2), 9.261 (2), 18.062 (2)
α, β, γ (°)98.29 (1), 94.47 (1), 101.21 (1)
V3)1290.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.25 × 0.21 × 0.12
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmperical via ψ scan (North et al., 1968)
Tmin, Tmax0.848, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
4559, 4559, 3382
Rint0.000
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.155, 0.96
No. of reflections4559
No. of parameters673
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.53
Absolute structureFlack (1983)
Absolute structure parameter0.04 (9)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS86 (Sheldrick, 1986), SHELXL93 (Sheldrick, 1993), ORTEPII (Johnson, 1976), SHELXL93.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2W.83 (4)2.07 (5)2.804 (7)147.5 (4)
O1W—H2W1···N3B.84 (4)2.06 (4)2.901 (6)174.2 (4)
N1A—H1A···N7Di.86 (6)1.96 (6)2.816 (7)176.1 (6)
O7'A—H7'A···O1Wii.99 (4)1.78 (4)2.734 (5)162.6 (3)
O7'C—H7'C···O7'Aiii.83 (6)2.20 (5)2.769 (8)125.5 (5)
N1B—H1B···N7Civ.86 (5)2.00 (6)2.858 (6)172.2 (5)
O2W—H2W2···O6C1.05 (6)1.95 (4)2.753 (7)130.2 (4)
O7'B—H7'B···O6Dv.84 (4)1.92 (4)2.728 (6)161.7 (3)
N1C—H1C···N7Bvi.86 (6)2.02 (6)2.882 (6)177.1 (5)
N1D—H1D···N7Avii.86 (6)1.97 (6)2.829 (7)174.1 (5)
O7'D—H7'D···O6Bvii.83 (6)2.14 (4)2.802 (8)137.1 (5)
O2W—H1W2···O7'Bviii.82 (5)2.20 (5)2.938 (8)149.5 (5)
O3W—H1W3···O6Aix.85 (5)2.00 (4)2.833 (7)167.2 (4)
O3W—H2W3···O7'Dx.91 (6)1.89 (7)2.793 (9)167.1 (5)
Symmetry codes: (i) x1, y1, z1; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x, y1, z1; (v) x, y, z1; (vi) x1, y, z+1; (vii) x, y, z+1; (viii) x, y1, z; (ix) x, y+1, z+1; (x) x1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds