organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1223

N-(3-Chloro­phen­yl)-N′-(2-methyl­phenyl)succinamide monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 8 April 2011; accepted 20 April 2011; online 29 April 2011)

In the title compound, C17H17ClN2O2·H2O, the dihedral angles formed by the aromatic rings of the chloro­benzene and methyl­benzene groups with the mean planes of the attached NH–C(O)–CH2 fragments are 9.4 (4) and 62.9 (2)°, respectively. In the crystal, mol­ecules are packed into layers parallel to the bc plane by O—H⋯O and N—H⋯O hydrogen-bond inter­actions.

Related literature

For our study on the effects of substituents on the structures of N-(ar­yl)amides, see: Gowda et al. (2004[Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845-852.]); Saraswathi et al. (2011a[Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o607.],b[Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o966.]). For the oxidative strengths of N-chloro-N-aryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17ClN2O2·H2O

  • Mr = 334.79

  • Monoclinic, P 21 /c

  • a = 14.875 (4) Å

  • b = 13.908 (3) Å

  • c = 8.088 (2) Å

  • β = 90.11 (2)°

  • V = 1673.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.44 × 0.12 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.900, Tmax = 0.981

  • 6273 measured reflections

  • 3080 independent reflections

  • 1436 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.115

  • wR(F2) = 0.285

  • S = 1.14

  • 3080 reflections

  • 221 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 (2) 2.08 (2) 2.940 (7) 175 (6)
N2—H2N⋯O2ii 0.86 (2) 2.25 (4) 2.991 (7) 145 (6)
O3—H31O⋯O2 0.85 (2) 2.04 (3) 2.861 (6) 163 (8)
O3—H32O⋯O1iii 0.84 (2) 2.05 (3) 2.877 (6) 171 (9)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are important constituents of many biologically important compounds. As a part of studying the substituent effects on the structures and other aspects of this class of compounds (Gowda & Kumar, 2003; Gowda et al., 2004; Saraswathi et al., 2011a,b), in the present work, the structure of N-(3-chlorophenyl)-N-(2-methylphenyl)-succinamide monohydrate is reported (Fig. 1). The conformations of the N—H and CO bonds in the C—NH—C(O)—C—C—C(O)—NH—C fragment are anti to each other and the amide O atom is anti to the H atoms attached to the adjacent C atoms. Further, the conformations of the N—H bonds in the amide fragments are anti to the meta-chloro or the ortho-methyl groups in the respective adjacent benzene rings, similar to the anti conformations observed with respect to the ortho-methyl groups in N,N'-bis(2-methylphenyl)succinamide (II; Saraswathi et al., 2011a) and the meta-chloro groups in N,N'-bis(3-chlorophenyl)-succinamide (III; Saraswathi et al., 2011b).

The dihedral angle between the 3-chlorobenzene ring and the adjacent NH—C(O)—CH2 group is 9.4 (4)° and that between the 2-methylbenzene ring and the adjacent NH—C(O)—CH2 group is 62.9 (2)°, compared to the values of 62.1 (2)° for that between the benzene ring and the NH—C(O)—CH2 group in the two halves of (II), and 32.8 (1)° in (III)

The torsion angles C1—N1—C7—C8 and C11—N2—C10—C9 are -173.0 (6)° and -177.9 (6)°, in contrast to the value of 69.5 (7)° for the torsion angle C7—C8—C9—C10.

In the crystal packing, molecules are linked by N1—H1N···O3, N2—H2N···O2, O3—H31O···O2 and O3—H32O···O1 hydrogen bonds (Table 1; Fig. 2) to form layers parallel to the bc plane.

Related literature top

For our study on the effects of substituents on the structures of N-(aryl)amides, see: Gowda et al. (2004); Saraswathi et al. (2011a,b). For the oxidative strengths of N-chloro-N-arylsulfonamides, see: Gowda & Kumar (2003).

Experimental top

Succinic anhydride (0.01 mol) in toluene (25 ml) was treated drop wise with o-toluidine (0.01 mol) in toluene (20 ml) with constant stirring. The resulting mixture was stirred for one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove unreacted o-toluidine. The resultant solid N-(2-methylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. The compound was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra.

The N-(2-methylphenyl)succinamic acid obtained was then treated with phosphorous oxychloride and excess of 3-chloroaniline at room temperature with constant stirring. The resultant mixture was stirred for 4 h, kept aside for additional 6 h for completion of the reaction and poured slowly into crushed ice with constant stirring. It was kept aside for a day. The resultant solid, N-(3-chlorophenyl)-N'-(2-methylphenyl)succinamide monohydrate was filtered under suction, washed thoroughly with water, with a dilute sodium hydroxide solution and finally with water. It was recrystallized to constant melting point from an acetone/chloroform (1:1 v/v) solution. The purity of the compound was checked by elemental analysis, and characterized by its infrared and NMR spectra. Needle-like colourless single crystals used for the X-ray diffraction studies were grown by slow evaporation of an acetone/chloroform (1:1 v/v) solution at room temperature.

Refinement top

The amine and water H atoms were located in a difference Fourier map and refined with the N—H and O—H distances restrained to 0.86 (2) and 0.85 (2) Å, respectively. All other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.97 mÅ and methylene C—H = 0.97 Å, and with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atoms. The crystals available for X-ray analysis were of rather poor quality and weak scatterers at high theta value, resulting in relatively high R values.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. The intermolecular O—H···O hydrogen bond involving the water molecule is drawn as a dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound viewed along the b axis, showing the hydrogen-bonding scheme with dashed lines.
N-(3-Chlorophenyl)-N'-(2-methylphenyl)butanediamide monohydrate top
Crystal data top
C17H17ClN2O2·H2OF(000) = 704
Mr = 334.79Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1620 reflections
a = 14.875 (4) Åθ = 2.7–27.9°
b = 13.908 (3) ŵ = 0.24 mm1
c = 8.088 (2) ÅT = 293 K
β = 90.11 (2)°Needle, colourless
V = 1673.3 (7) Å30.44 × 0.12 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3080 independent reflections
Radiation source: fine-focus sealed tube1436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Rotation method data acquisition using ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1814
Tmin = 0.900, Tmax = 0.981k = 1616
6273 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.115Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.285H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.104P)2 + 1.4616P]
where P = (Fo2 + 2Fc2)/3
3080 reflections(Δ/σ)max = 0.010
221 parametersΔρmax = 0.66 e Å3
5 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H17ClN2O2·H2OV = 1673.3 (7) Å3
Mr = 334.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.875 (4) ŵ = 0.24 mm1
b = 13.908 (3) ÅT = 293 K
c = 8.088 (2) Å0.44 × 0.12 × 0.08 mm
β = 90.11 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3080 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1436 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.981Rint = 0.074
6273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1155 restraints
wR(F2) = 0.285H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.66 e Å3
3080 reflectionsΔρmin = 0.27 e Å3
221 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24505 (16)0.43031 (14)0.5534 (3)0.0888 (8)
O10.4988 (3)0.2577 (3)0.2806 (6)0.0588 (13)
O20.6939 (3)0.1531 (3)0.3675 (5)0.0509 (12)
N10.4157 (4)0.1301 (4)0.3620 (7)0.0526 (14)
H1N0.414 (4)0.0680 (15)0.367 (8)0.063*
N20.7588 (4)0.2301 (4)0.1544 (6)0.0511 (15)
H2N0.757 (4)0.246 (4)0.052 (3)0.061*
C10.3450 (4)0.1731 (5)0.4498 (8)0.0480 (17)
C20.3334 (4)0.2716 (4)0.4599 (8)0.0497 (17)
H20.37460.31340.41200.060*
C30.2595 (5)0.3062 (5)0.5426 (9)0.0571 (19)
C40.1978 (5)0.2489 (6)0.6174 (9)0.0622 (19)
H40.14880.27490.67290.075*
C50.2105 (5)0.1503 (5)0.6079 (10)0.072 (2)
H50.16950.10930.65820.087*
C60.2826 (5)0.1127 (5)0.5254 (9)0.062 (2)
H60.29000.04640.51980.074*
C70.4836 (4)0.1708 (5)0.2793 (8)0.0446 (16)
C80.5394 (4)0.1008 (5)0.1842 (8)0.0542 (18)
H8A0.50220.07150.09940.065*
H8B0.55910.05020.25850.065*
C90.6221 (5)0.1455 (5)0.1022 (8)0.0540 (18)
H9A0.64790.09910.02630.065*
H9B0.60330.20090.03800.065*
C100.6931 (4)0.1764 (4)0.2227 (8)0.0404 (15)
C110.8362 (5)0.2665 (5)0.2395 (7)0.0478 (17)
C120.9000 (5)0.2044 (5)0.3062 (8)0.059 (2)
C130.9760 (5)0.2453 (7)0.3794 (9)0.073 (2)
H131.01950.20580.42640.087*
C140.9870 (6)0.3428 (8)0.3827 (10)0.083 (3)
H141.03840.36850.43120.100*
C150.9247 (6)0.4031 (6)0.3169 (11)0.081 (3)
H150.93350.46930.31960.097*
C160.8483 (6)0.3649 (5)0.2460 (9)0.066 (2)
H160.80470.40560.20240.079*
C170.8932 (6)0.0992 (6)0.2956 (10)0.087 (3)
H17A0.84380.07750.36210.131*
H17B0.94790.07080.33520.131*
H17C0.88340.08070.18270.131*
O30.5938 (4)0.0811 (3)0.6426 (6)0.0690 (15)
H31O0.614 (5)0.098 (5)0.549 (5)0.104*
H32O0.561 (5)0.125 (4)0.679 (8)0.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0963 (17)0.0478 (12)0.1224 (19)0.0147 (12)0.0074 (14)0.0092 (12)
O10.062 (3)0.036 (3)0.079 (3)0.011 (2)0.007 (2)0.005 (2)
O20.054 (3)0.055 (3)0.044 (3)0.002 (2)0.006 (2)0.005 (2)
N10.047 (3)0.036 (3)0.074 (4)0.002 (3)0.006 (3)0.004 (3)
N20.059 (4)0.056 (4)0.039 (3)0.004 (3)0.006 (3)0.005 (3)
C10.046 (4)0.046 (4)0.052 (4)0.007 (3)0.006 (3)0.001 (3)
C20.044 (4)0.042 (4)0.062 (4)0.001 (3)0.001 (4)0.001 (3)
C30.059 (5)0.048 (4)0.065 (4)0.001 (4)0.006 (4)0.008 (4)
C40.053 (4)0.069 (5)0.066 (5)0.005 (4)0.007 (4)0.003 (4)
C50.067 (5)0.059 (5)0.091 (6)0.009 (4)0.017 (5)0.003 (4)
C60.064 (5)0.048 (4)0.075 (5)0.004 (4)0.013 (4)0.001 (4)
C70.040 (4)0.042 (4)0.052 (4)0.002 (3)0.002 (3)0.002 (3)
C80.055 (4)0.040 (4)0.067 (4)0.007 (3)0.006 (4)0.011 (3)
C90.068 (5)0.048 (4)0.046 (4)0.004 (4)0.003 (4)0.010 (3)
C100.049 (4)0.036 (3)0.036 (4)0.004 (3)0.004 (3)0.007 (3)
C110.047 (4)0.058 (4)0.039 (4)0.002 (4)0.002 (3)0.002 (3)
C120.062 (5)0.058 (5)0.056 (4)0.002 (4)0.019 (4)0.002 (4)
C130.046 (5)0.098 (7)0.073 (5)0.002 (5)0.000 (4)0.008 (5)
C140.057 (5)0.111 (8)0.082 (6)0.019 (6)0.007 (5)0.016 (6)
C150.082 (6)0.061 (5)0.099 (7)0.014 (5)0.008 (6)0.006 (5)
C160.069 (5)0.051 (5)0.076 (5)0.009 (4)0.007 (4)0.006 (4)
C170.089 (7)0.071 (6)0.102 (7)0.010 (5)0.014 (5)0.000 (5)
O30.091 (4)0.034 (3)0.083 (4)0.008 (3)0.028 (3)0.008 (3)
Geometric parameters (Å, º) top
Cl1—C31.742 (7)C8—H8A0.9700
O1—C71.230 (7)C8—H8B0.9700
O2—C101.215 (7)C9—C101.499 (9)
N1—C71.338 (8)C9—H9A0.9700
N1—C11.404 (8)C9—H9B0.9700
N1—H1N0.86 (2)C11—C161.381 (9)
N2—C101.350 (8)C11—C121.391 (9)
N2—C111.432 (8)C12—C131.396 (10)
N2—H2N0.86 (2)C12—C171.469 (10)
C1—C21.384 (9)C13—C141.366 (11)
C1—C61.393 (9)C13—H130.9300
C2—C31.375 (9)C14—C151.357 (11)
C2—H20.9300C14—H140.9300
C3—C41.358 (9)C15—C161.378 (11)
C4—C51.386 (9)C15—H150.9300
C4—H40.9300C16—H160.9300
C5—C61.368 (10)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C7—C81.494 (9)O3—H31O0.85 (2)
C8—C91.531 (9)O3—H32O0.84 (2)
C7—N1—C1129.7 (6)C10—C9—H9A108.9
C7—N1—H1N118 (4)C8—C9—H9A108.8
C1—N1—H1N113 (4)C10—C9—H9B108.8
C10—N2—C11125.5 (5)C8—C9—H9B108.8
C10—N2—H2N121 (5)H9A—C9—H9B107.7
C11—N2—H2N113 (5)O2—C10—N2122.4 (6)
C2—C1—C6119.2 (6)O2—C10—C9123.8 (6)
C2—C1—N1123.0 (6)N2—C10—C9113.7 (5)
C6—C1—N1117.8 (6)C16—C11—C12120.8 (7)
C3—C2—C1118.3 (6)C16—C11—N2118.2 (6)
C3—C2—H2120.8C12—C11—N2120.9 (6)
C1—C2—H2120.8C11—C12—C13117.6 (7)
C4—C3—C2123.6 (7)C11—C12—C17123.3 (7)
C4—C3—Cl1118.4 (6)C13—C12—C17119.1 (8)
C2—C3—Cl1118.0 (6)C14—C13—C12120.6 (8)
C3—C4—C5117.6 (7)C14—C13—H13119.7
C3—C4—H4121.2C12—C13—H13119.7
C5—C4—H4121.2C15—C14—C13121.6 (9)
C6—C5—C4120.8 (7)C15—C14—H14119.2
C6—C5—H5119.6C13—C14—H14119.2
C4—C5—H5119.6C14—C15—C16119.1 (8)
C5—C6—C1120.5 (7)C14—C15—H15120.4
C5—C6—H6119.7C16—C15—H15120.4
C1—C6—H6119.7C15—C16—C11120.3 (8)
O1—C7—N1123.5 (6)C15—C16—H16119.8
O1—C7—C8122.8 (6)C11—C16—H16119.8
N1—C7—C8113.7 (6)C12—C17—H17A109.5
C7—C8—C9114.0 (5)C12—C17—H17B109.5
C7—C8—H8A108.8H17A—C17—H17B109.5
C9—C8—H8A108.8C12—C17—H17C109.5
C7—C8—H8B108.8H17A—C17—H17C109.5
C9—C8—H8B108.8H17B—C17—H17C109.5
H8A—C8—H8B107.7H31O—O3—H32O108 (3)
C10—C9—C8113.6 (5)
C7—N1—C1—C22.1 (11)C11—N2—C10—O20.2 (10)
C7—N1—C1—C6180.0 (7)C11—N2—C10—C9177.8 (6)
C6—C1—C2—C31.0 (10)C8—C9—C10—O213.0 (9)
N1—C1—C2—C3177.0 (6)C8—C9—C10—N2169.4 (5)
C1—C2—C3—C41.1 (10)C10—N2—C11—C16119.5 (7)
C1—C2—C3—Cl1179.5 (5)C10—N2—C11—C1263.9 (8)
C2—C3—C4—C50.4 (11)C16—C11—C12—C130.1 (9)
Cl1—C3—C4—C5179.9 (6)N2—C11—C12—C13176.6 (6)
C3—C4—C5—C60.2 (12)C16—C11—C12—C17176.8 (7)
C4—C5—C6—C10.3 (12)N2—C11—C12—C170.2 (9)
C2—C1—C6—C50.3 (11)C11—C12—C13—C140.8 (10)
N1—C1—C6—C5177.7 (7)C17—C12—C13—C14176.2 (7)
C1—N1—C7—O16.9 (11)C12—C13—C14—C150.6 (13)
C1—N1—C7—C8173.0 (6)C13—C14—C15—C160.4 (13)
O1—C7—C8—C95.4 (9)C14—C15—C16—C111.2 (12)
N1—C7—C8—C9174.7 (6)C12—C11—C16—C150.9 (10)
C7—C8—C9—C1069.5 (7)N2—C11—C16—C15175.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.86 (2)2.08 (2)2.940 (7)175 (6)
N2—H2N···O2ii0.86 (2)2.25 (4)2.991 (7)145 (6)
O3—H31O···O20.85 (2)2.04 (3)2.861 (6)163 (8)
O3—H32O···O1iii0.84 (2)2.05 (3)2.877 (6)171 (9)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H17ClN2O2·H2O
Mr334.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.875 (4), 13.908 (3), 8.088 (2)
β (°) 90.11 (2)
V3)1673.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.44 × 0.12 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.900, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
6273, 3080, 1436
Rint0.074
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.115, 0.285, 1.14
No. of reflections3080
No. of parameters221
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.86 (2)2.08 (2)2.940 (7)175 (6)
N2—H2N···O2ii0.86 (2)2.25 (4)2.991 (7)145 (6)
O3—H31O···O20.85 (2)2.04 (3)2.861 (6)163 (8)
O3—H32O···O1iii0.84 (2)2.05 (3)2.877 (6)171 (9)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement programme.

References

First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSaraswathi, B. S., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaraswathi, B. S., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o966.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1223
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds