Download citation
Download citation
link to html
In the title compound, [Cu(C10H18N5)(CH4O)]ClO4, four N atoms from the deprotonated ligand derived from bis(3-amino­propyl)­amine and 2-imidazole­carbox­aldehyde are coordinated to the Cu atom. The four N atoms occupy equatorial positions with Cu-N bond distances ranging from 1.998 (2) to 2.046 (3) Å. The methanol O atom occupies one axial position with a Cu-O bond distance of 2.295 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100000494/qb0169sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100000494/qb0169Isup2.hkl
Contains datablock I

CCDC reference: 142933

Comment top

A good strategy to prepare heteronuclear complexes is that of using metal complexes as ligands. Among the precursors that have been commonly used to prepare heteronuclear complexes the mononuclear complexes containing imidazole ligands (Dominques-Vera et al., 1996) deserve special attention. In basic medium, these precursors can coordinate to another metal ion or metal complex leading to a heteronuclear complex (Dominques-Vera et al., 1998). In this paper, we report the synthesis of a new mononuclear copper(II) complex, (I), containing an imidazole ligand, which may be used as a precursor in the preparation of homo- and heteronuclear complexes.

The structure consists of a mononuclear complex cation and a perchlorate anion. Although the amine:aldehyde ratio was 1:2, the ligand is formed by condensation of only one aldehyde molecule with one amine molecule. The ligand contains two imidazole, two amine and one imino N atoms. In the title compound, the ligand coordinates by four of its five N atoms in its deprotonated form leaving the deprotonated N2 atom uncoordinated. The tetradentate behaviour of the ligand results in the formation of one five- and two six-membered chelate rings around the Cu atom. The four N atoms of the coordination plane are almost coplanar with deviations from the least-squares plane < 0.006 Å. The Cu atom deviates by 0.203 (1) Å from the basal plane towards the O atom of the coordinated methanol molecule at 2.295 (2) Å. The nearest atom in the direction of the sixth coordination position is N2(1 − x,-y,1 − z) at 3.738 (3) Å. The five-membered chelate ring and the imidazole ring are planar, the six-membered rings adopt chair conformations. The complex cations and anions are connected by hydrogen bonds involving the methanol O—H, the three amino H atoms, the deprotonated N2 of the imidazole ring, and O1 and O2 of the perchlorate ion.

Experimental top

2-Imidazolecarboxaldehyde (2 mmol) was reacted with bis(3-aminopropyl)amine (1 mmol) in 50 ml of methanol. To the yellow solution, Cu(ClO4)·6H2O (1 mmol) was added with continuous stirring. The resulting blue solution was allowed to stand at room temperature for one day, upon which blue needle-like crystals of the compound were obtained.

Refinement top

The H5 atom of the methanol molecule was refined in a riding model with an O—H bond length of 0.85 Å and all other H-atom coordinates were constrained using the SHELXL97 default N—H and C—H distances.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993a); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993a); data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1993b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

{2-[(3-aminopropyl)aminopropyliminomethyl]imidazolato-N, N', N'', N'''}- (methanol-O)copper(II) perchlorate. top
Crystal data top
[Cu(C10H18N5)(CH4O)]ClO4F(000) = 836
Mr = 403.33Dx = 1.590 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.488 (3) ÅCell parameters from 25 reflections
b = 12.475 (5) Åθ = 6.4–10.1°
c = 18.176 (6) ŵ = 1.49 mm1
β = 97.15 (3)°T = 193 K
V = 1684.7 (11) Å3Needle, blue
Z = 40.45 × 0.30 × 0.30 mm
Data collection top
Rigaku AFC 7S
diffractometer
3122 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 26.5°, θmin = 2.7°
2θ/ω scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.565, Tmax = 0.640l = 2222
3676 measured reflections3 standard reflections every 200 reflections
3501 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.111H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0541P)2 + 2.3975P]
where P = (Fo2 + 2Fc2)/3
3501 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Cu(C10H18N5)(CH4O)]ClO4V = 1684.7 (11) Å3
Mr = 403.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.488 (3) ŵ = 1.49 mm1
b = 12.475 (5) ÅT = 193 K
c = 18.176 (6) Å0.45 × 0.30 × 0.30 mm
β = 97.15 (3)°
Data collection top
Rigaku AFC 7S
diffractometer
3122 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.565, Tmax = 0.6403 standard reflections every 200 reflections
3676 measured reflections intensity decay: 0.1%
3501 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.09Δρmax = 0.73 e Å3
3501 reflectionsΔρmin = 0.70 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.28951 (4)0.15313 (3)0.408792 (18)0.02844 (13)
Cl0.64242 (11)0.16484 (7)0.15727 (4)0.0410 (2)
O10.4630 (4)0.1600 (2)0.11883 (16)0.0595 (8)
O20.6417 (5)0.1233 (4)0.22867 (17)0.0885 (12)
O30.7025 (7)0.2693 (4)0.1593 (4)0.164 (3)
O40.7582 (5)0.1006 (5)0.1207 (2)0.1248 (19)
O50.0315 (3)0.24613 (18)0.42281 (13)0.0408 (5)
H50.04490.19660.42630.049*
N10.2976 (3)0.0671 (2)0.50190 (13)0.0313 (5)
N20.2200 (3)0.0905 (2)0.55052 (15)0.0361 (6)
N30.1486 (3)0.0217 (2)0.36674 (14)0.0331 (5)
N40.3138 (4)0.2136 (2)0.30639 (14)0.0376 (6)
H410.41350.18320.29270.045*
N50.4710 (3)0.2559 (2)0.46126 (15)0.0348 (5)
H510.57890.22330.46410.042*
H520.44470.26210.50800.042*
C10.3628 (4)0.0663 (3)0.57553 (16)0.0349 (6)
H10.42970.12190.60190.042*
C20.3141 (4)0.0299 (3)0.60454 (17)0.0376 (7)
H20.34200.05090.65490.045*
C30.2147 (4)0.0280 (2)0.49006 (16)0.0312 (6)
C40.1328 (4)0.0503 (2)0.41575 (17)0.0341 (6)
H40.06990.11530.40360.041*
C50.0608 (4)0.0034 (3)0.29100 (17)0.0428 (8)
H5A0.06600.02750.28720.051*
H5B0.06100.07430.27980.051*
C60.1565 (5)0.0633 (3)0.23499 (18)0.0478 (9)
H6A0.09370.04930.18470.057*
H6B0.28060.03520.23680.057*
C70.1649 (5)0.1833 (3)0.24795 (18)0.0464 (8)
H7A0.18250.21990.20100.056*
H7B0.04910.20800.26290.056*
C80.3449 (5)0.3308 (3)0.3039 (2)0.0488 (9)
H8A0.24050.36840.32040.059*
H8B0.35320.35230.25200.059*
C90.5152 (5)0.3658 (3)0.3522 (2)0.0501 (9)
H9A0.61460.31690.34360.060*
H9B0.54810.43880.33720.060*
C100.4963 (5)0.3666 (3)0.4340 (2)0.0422 (7)
H10A0.60550.39850.46190.051*
H10B0.39180.41130.44270.051*
C110.0275 (6)0.3265 (4)0.4787 (3)0.0766 (15)
H11A0.09390.35690.47570.115*
H11B0.11340.38340.47100.115*
H11C0.06010.29430.52770.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0287 (2)0.0305 (2)0.0258 (2)0.00042 (13)0.00220 (13)0.00113 (13)
Cl0.0368 (4)0.0508 (5)0.0348 (4)0.0015 (3)0.0016 (3)0.0138 (3)
O10.0416 (14)0.082 (2)0.0520 (16)0.0041 (13)0.0068 (12)0.0200 (14)
O20.069 (2)0.154 (4)0.0421 (16)0.022 (2)0.0056 (14)0.040 (2)
O30.116 (4)0.077 (3)0.271 (7)0.046 (3)0.086 (4)0.075 (4)
O40.066 (2)0.229 (6)0.081 (3)0.033 (3)0.017 (2)0.039 (3)
O50.0341 (11)0.0379 (12)0.0520 (14)0.0004 (9)0.0109 (10)0.0001 (10)
N10.0317 (12)0.0318 (12)0.0301 (12)0.0008 (10)0.0022 (10)0.0002 (10)
N20.0311 (12)0.0358 (14)0.0420 (14)0.0037 (10)0.0073 (11)0.0096 (11)
N30.0283 (12)0.0370 (13)0.0326 (13)0.0036 (10)0.0015 (10)0.0031 (10)
N40.0355 (13)0.0465 (15)0.0309 (13)0.0036 (12)0.0049 (10)0.0060 (11)
N50.0331 (13)0.0336 (13)0.0373 (14)0.0016 (10)0.0032 (10)0.0016 (11)
C10.0360 (15)0.0398 (16)0.0285 (14)0.0003 (13)0.0021 (12)0.0005 (12)
C20.0350 (15)0.0455 (18)0.0327 (15)0.0070 (13)0.0054 (12)0.0080 (13)
C30.0246 (13)0.0345 (15)0.0344 (15)0.0034 (11)0.0037 (11)0.0020 (12)
C40.0269 (13)0.0337 (15)0.0412 (16)0.0002 (12)0.0015 (12)0.0043 (13)
C50.0381 (17)0.053 (2)0.0342 (16)0.0004 (15)0.0066 (13)0.0086 (14)
C60.0397 (17)0.073 (3)0.0296 (16)0.0035 (17)0.0006 (13)0.0096 (16)
C70.0437 (18)0.064 (2)0.0298 (16)0.0064 (16)0.0007 (13)0.0067 (15)
C80.057 (2)0.047 (2)0.0426 (19)0.0017 (16)0.0072 (16)0.0146 (15)
C90.053 (2)0.0439 (19)0.055 (2)0.0077 (16)0.0146 (17)0.0123 (16)
C100.0417 (18)0.0322 (16)0.052 (2)0.0032 (13)0.0045 (15)0.0040 (14)
C110.054 (2)0.068 (3)0.114 (4)0.007 (2)0.035 (3)0.039 (3)
Geometric parameters (Å, º) top
Cu—N11.998 (2)C1—H10.9500
Cu—N52.020 (3)C2—H20.9500
Cu—N42.037 (3)C3—C41.439 (4)
Cu—N32.046 (3)C4—H40.9500
Cu—O52.295 (2)C5—C61.513 (5)
Cl—O31.378 (4)C5—H5A0.9900
Cl—O21.398 (3)C5—H5B0.9900
Cl—O41.407 (4)C6—C71.516 (6)
Cl—O11.436 (3)C6—H6A0.9900
O5—C111.431 (5)C6—H6B0.9900
O5—H50.8500C7—H7A0.9900
N1—C31.345 (4)C7—H7B0.9899
N1—C11.366 (4)C8—C91.520 (6)
N2—C31.344 (4)C8—H8A0.9900
N2—C21.364 (4)C8—H8B0.9899
N3—C41.281 (4)C9—C101.510 (5)
N3—C51.468 (4)C9—H9A0.9900
N4—C81.482 (5)C9—H9B0.9900
N4—C71.490 (4)C10—H10A0.9900
N4—H410.9000C10—H10B0.9900
N5—C101.487 (4)C11—H11A0.9800
N5—H510.9000C11—H11B0.9800
N5—H520.9000C11—H11C0.9799
C1—C21.378 (5)
N1—Cu—N589.61 (11)N1—C3—C4117.1 (3)
N1—Cu—N4167.36 (11)N3—C4—C3116.9 (3)
N5—Cu—N493.73 (11)N3—C4—H4121.6
N1—Cu—N381.15 (10)C3—C4—H4121.6
N5—Cu—N3166.12 (10)N3—C5—C6111.1 (3)
N4—Cu—N393.20 (11)N3—C5—H5A109.4
N1—Cu—O596.58 (10)C6—C5—H5A109.4
N5—Cu—O598.80 (10)N3—C5—H5B109.4
N4—Cu—O594.95 (10)C6—C5—H5B109.4
N3—Cu—O592.57 (9)H5A—C5—H5B108.0
O3—Cl—O2111.4 (3)C5—C6—C7113.4 (3)
O3—Cl—O4109.5 (4)C5—C6—H6A108.9
O2—Cl—O4107.5 (3)C7—C6—H6A108.9
O3—Cl—O1109.6 (2)C5—C6—H6B108.9
O2—Cl—O1108.96 (19)C7—C6—H6B108.9
O4—Cl—O1109.9 (2)H6A—C6—H6B107.7
C11—O5—Cu121.7 (2)N4—C7—C6112.0 (3)
C11—O5—H5112.5N4—C7—H7A109.2
Cu—O5—H5103.0C6—C7—H7A109.2
C3—N1—C1104.6 (2)N4—C7—H7B109.2
C3—N1—Cu111.94 (19)C6—C7—H7B109.2
C1—N1—Cu143.5 (2)H7A—C7—H7B107.9
C3—N2—C2103.1 (3)N4—C8—C9113.0 (3)
C4—N3—C5118.3 (3)N4—C8—H8A109.0
C4—N3—Cu113.0 (2)C9—C8—H8A109.0
C5—N3—Cu128.7 (2)N4—C8—H8B109.0
C8—N4—C7109.6 (3)C9—C8—H8B109.0
C8—N4—Cu115.2 (2)H8A—C8—H8B107.8
C7—N4—Cu114.4 (2)C10—C9—C8113.3 (3)
C8—N4—H41105.6C10—C9—H9A108.9
C7—N4—H41105.6C8—C9—H9A108.9
Cu—N4—H41105.6C10—C9—H9B108.9
C10—N5—Cu122.6 (2)C8—C9—H9B108.9
C10—N5—H51106.7H9A—C9—H9B107.7
Cu—N5—H51106.7N5—C10—C9110.7 (3)
C10—N5—H52106.7N5—C10—H10A109.5
Cu—N5—H52106.7C9—C10—H10A109.5
H51—N5—H52106.6N5—C10—H10B109.5
N1—C1—C2107.6 (3)C9—C10—H10B109.5
N1—C1—H1126.2H10A—C10—H10B108.1
C2—C1—H1126.2O5—C11—H11A109.5
N2—C2—C1110.2 (3)O5—C11—H11B109.5
N2—C2—H2124.9H11A—C11—H11B109.5
C1—C2—H2124.9O5—C11—H11C109.5
N2—C3—N1114.5 (3)H11A—C11—H11C109.5
N2—C3—C4128.4 (3)H11B—C11—H11C109.5
N1—Cu—O5—C1170.3 (3)N4—Cu—N5—C1032.0 (3)
N5—Cu—O5—C1120.3 (3)N3—Cu—N5—C10151.8 (4)
N4—Cu—O5—C11114.8 (3)O5—Cu—N5—C1063.6 (3)
N3—Cu—O5—C11151.7 (3)C3—N1—C1—C20.5 (3)
N5—Cu—N1—C3168.5 (2)Cu—N1—C1—C2177.3 (3)
N4—Cu—N1—C363.0 (5)C3—N2—C2—C10.2 (3)
N3—Cu—N1—C31.09 (19)N1—C1—C2—N20.4 (4)
O5—Cu—N1—C392.7 (2)C2—N2—C3—N10.2 (3)
N5—Cu—N1—C18.2 (4)C2—N2—C3—C4179.8 (3)
N4—Cu—N1—C1113.6 (5)C1—N1—C3—N20.4 (3)
N3—Cu—N1—C1177.8 (4)Cu—N1—C3—N2178.38 (19)
O5—Cu—N1—C190.6 (4)C1—N1—C3—C4179.5 (3)
N1—Cu—N3—C40.4 (2)Cu—N1—C3—C41.6 (3)
N5—Cu—N3—C448.3 (5)C5—N3—C4—C3177.7 (3)
N4—Cu—N3—C4168.2 (2)Cu—N3—C4—C30.3 (3)
O5—Cu—N3—C496.7 (2)N2—C3—C4—N3178.7 (3)
N1—Cu—N3—C5176.6 (3)N1—C3—C4—N31.3 (4)
N5—Cu—N3—C5134.6 (4)C4—N3—C5—C6153.7 (3)
N4—Cu—N3—C514.7 (3)Cu—N3—C5—C629.4 (4)
O5—Cu—N3—C580.4 (3)N3—C5—C6—C758.5 (4)
N1—Cu—N4—C8140.1 (4)C8—N4—C7—C6166.0 (3)
N5—Cu—N4—C835.1 (2)Cu—N4—C7—C662.8 (3)
N3—Cu—N4—C8156.9 (2)C5—C6—C7—N481.3 (4)
O5—Cu—N4—C864.1 (2)C7—N4—C8—C9169.8 (3)
N1—Cu—N4—C791.5 (5)Cu—N4—C8—C959.4 (4)
N5—Cu—N4—C7163.4 (2)N4—C8—C9—C1075.4 (4)
N3—Cu—N4—C728.6 (2)Cu—N5—C10—C948.8 (4)
O5—Cu—N4—C764.3 (2)C8—C9—C10—N566.2 (4)
N1—Cu—N5—C10160.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N2i0.851.952.789 (4)171
N4—H41···O20.902.313.188 (5)166
N5—H51···N2ii0.902.283.127 (4)158
N5—H52···O1iii0.902.223.057 (4)154
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H18N5)(CH4O)]ClO4
Mr403.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)7.488 (3), 12.475 (5), 18.176 (6)
β (°) 97.15 (3)
V3)1684.7 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.45 × 0.30 × 0.30
Data collection
DiffractometerRigaku AFC 7S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.565, 0.640
No. of measured, independent and
observed [I > 2σ(I)] reflections
3676, 3501, 3122
Rint0.022
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.09
No. of reflections3501
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.70

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993a), TEXSAN PROCESS (Molecular Structure Corporation, 1993b), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990).

Selected geometric parameters (Å, º) top
Cu—N11.998 (2)N1—C31.345 (4)
Cu—N52.020 (3)N1—C11.366 (4)
Cu—N42.037 (3)N2—C31.344 (4)
Cu—N32.046 (3)N2—C21.364 (4)
Cu—O52.295 (2)C1—C21.378 (5)
N5—Cu—N493.73 (11)N5—Cu—O598.80 (10)
N1—Cu—N381.15 (10)N4—Cu—O594.95 (10)
N4—Cu—N393.20 (11)N3—Cu—O592.57 (9)
N1—Cu—O596.58 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N2i0.851.952.789 (4)171.4
N4—H41···O20.902.313.188 (5)165.5
N5—H51···N2ii0.902.283.127 (4)157.5
N5—H52···O1iii0.902.223.057 (4)153.8
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds