Download citation
Download citation
link to html
The structure of the title compound, C11H13NO3, is characterized by a two-dimensional infinite network of intermolecular N-H...O and O-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001712/qb0164sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001712/qb0164Isup2.hkl
Contains datablock I

CCDC reference: 143333

Comment top

It is important to determine the crystal structures of amino acids and their derivatives because of their importance in defining the preferred conformations of large peptides and proteins. We have determined the structure of the title compound, (I), for a solid-state NMR tensor study. Few N15 chemical-shielding tensors have been determined (Harbison et al., 1984) and chemical-shielding tensors are important for accurate solution and solid-state NMR experiments (Oas et al., 1987; Hartzell et al., 1987; Lee & Ramamoorthy, 1998; Lee et al., 1998).

Experimental top

N-acetyl-L-phenylalanine was obtained from Sigma Chemical Corporation (St Louis, Missouri). Crystals were grown from water and analyzed.

Refinement top

H atoms were allowed to refine isotropically. The range of C—H distances is 0.92 (2)–1.01 (2) Å; N—H = 0.86 (2) Å; O—H = 0.87 (2) Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; software used to prepare material for publication: SHELXTL.

(I) top
Crystal data top
C11H13NO3Dx = 1.285 Mg m3
Mr = 207.22Melting point = 444–446 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 5.6528 (1) ÅCell parameters from 6900 reflections
b = 11.1532 (2) Åθ = 2.4–30.5°
c = 16.9897 (1) ŵ = 0.09 mm1
V = 1071.15 (3) Å3T = 158 K
Z = 4Needle, colourless
F(000) = 4400.54 × 0.14 × 0.12 mm
Data collection top
CCD area-detector
diffractometer
1778 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.019
Graphite monochromatorθmax = 30.5°, θmin = 2.4°
ω scansh = 87
15627 measured reflectionsk = 1515
1866 independent reflectionsl = 2422
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.1409P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1866 reflectionsΔρmax = 0.26 e Å3
190 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C11H13NO3V = 1071.15 (3) Å3
Mr = 207.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6528 (1) ŵ = 0.09 mm1
b = 11.1532 (2) ÅT = 158 K
c = 16.9897 (1) Å0.54 × 0.14 × 0.12 mm
Data collection top
CCD area-detector
diffractometer
1778 reflections with I > 2σ(I)
15627 measured reflectionsRint = 0.019
1866 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077All H-atom parameters refined
S = 1.08Δρmax = 0.26 e Å3
1866 reflectionsΔρmin = 0.18 e Å3
190 parameters
Special details top

Experimental. A single-crystal was mounted on a teflon cryo-loop using a thin, inert oil. Diffraction data were collected at 158 (2) K on a Brüker Platform SMART-CCD diffractometer fitted with Mo radiation and a graphite monochromator. A full sphere of data was collected to a theta max. of 30.49 degrees. The space group was uniquely determined by analysis of the systematic absences. The configuration was assigned based on the known ciral center. Friedel opposites were merged for the light-atom, non-centrosymmetric structure. Data were processed via SADABS [Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany] with u*r equal zero.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28171 (17)1.04065 (9)0.35019 (6)0.01924 (19)
H10.411 (4)1.0784 (17)0.3584 (10)0.033 (4)*
O10.07877 (16)0.92041 (9)0.26840 (5)0.0266 (2)
O20.07404 (17)1.25578 (9)0.32252 (6)0.0306 (2)
H20.013 (4)1.308 (2)0.2977 (13)0.053 (6)*
O30.27864 (17)1.18749 (9)0.36241 (7)0.0318 (2)
C10.4922 (2)0.94921 (13)0.24048 (8)0.0256 (3)
H1B0.508 (5)0.865 (2)0.2270 (13)0.057 (6)*
H1C0.628 (4)0.9705 (18)0.2670 (12)0.041 (5)*
H1D0.476 (4)0.9957 (18)0.1918 (12)0.049 (6)*
C20.2696 (2)0.96823 (10)0.28693 (6)0.0186 (2)
C30.0688 (2)1.07219 (10)0.39365 (6)0.0189 (2)
H30.043 (3)1.0033 (13)0.3907 (8)0.018 (4)*
C40.0645 (2)1.17777 (10)0.35682 (6)0.0201 (2)
C50.1275 (3)1.10111 (11)0.48030 (7)0.0237 (2)
H5A0.260 (4)1.1611 (16)0.4829 (11)0.035 (5)*
H5B0.012 (4)1.1380 (16)0.5021 (11)0.033 (5)*
C60.1905 (2)0.99041 (10)0.52759 (6)0.0212 (2)
C70.4023 (2)0.98254 (12)0.56921 (7)0.0277 (3)
H70.519 (4)1.0446 (18)0.5668 (11)0.041 (5)*
C80.4514 (3)0.88260 (15)0.61604 (8)0.0341 (3)
H80.593 (4)0.8773 (18)0.6437 (11)0.039 (5)*
C90.2903 (3)0.78902 (13)0.62067 (8)0.0344 (3)
H90.326 (4)0.7235 (19)0.6534 (12)0.049 (5)*
C100.0805 (3)0.79499 (12)0.57849 (8)0.0317 (3)
H100.034 (4)0.7316 (19)0.5787 (12)0.044 (5)*
C110.0306 (2)0.89513 (11)0.53248 (7)0.0249 (2)
H110.117 (3)0.9005 (16)0.5042 (11)0.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0171 (4)0.0193 (4)0.0214 (4)0.0020 (4)0.0004 (3)0.0014 (3)
O10.0213 (4)0.0306 (4)0.0279 (4)0.0051 (4)0.0024 (3)0.0103 (4)
O20.0212 (4)0.0308 (5)0.0399 (5)0.0027 (4)0.0030 (4)0.0180 (4)
O30.0189 (4)0.0279 (5)0.0485 (6)0.0006 (4)0.0019 (4)0.0032 (4)
C10.0187 (5)0.0319 (6)0.0264 (6)0.0019 (5)0.0022 (4)0.0034 (5)
C20.0192 (5)0.0170 (4)0.0194 (4)0.0006 (4)0.0001 (4)0.0014 (4)
C30.0204 (4)0.0171 (4)0.0191 (4)0.0011 (4)0.0015 (4)0.0004 (4)
C40.0205 (5)0.0199 (5)0.0200 (4)0.0009 (4)0.0007 (4)0.0014 (4)
C50.0335 (6)0.0188 (5)0.0187 (5)0.0007 (5)0.0012 (4)0.0023 (4)
C60.0251 (5)0.0210 (5)0.0173 (4)0.0012 (4)0.0012 (4)0.0018 (4)
C70.0248 (6)0.0338 (6)0.0246 (5)0.0006 (5)0.0004 (5)0.0030 (5)
C80.0296 (7)0.0455 (8)0.0270 (6)0.0121 (6)0.0023 (5)0.0004 (6)
C90.0443 (8)0.0312 (6)0.0279 (6)0.0138 (6)0.0034 (6)0.0058 (5)
C100.0395 (7)0.0245 (6)0.0312 (6)0.0004 (6)0.0043 (6)0.0046 (5)
C110.0260 (6)0.0244 (6)0.0241 (5)0.0005 (5)0.0003 (5)0.0012 (4)
Geometric parameters (Å, º) top
N1—C21.3463 (14)C5—C61.5154 (16)
N1—C31.4553 (15)C5—H5A1.01 (2)
N1—H10.86 (2)C5—H5B0.96 (2)
O1—C21.2439 (14)C6—C71.3934 (18)
O2—C41.3078 (15)C6—C111.3976 (17)
O2—H20.87 (2)C7—C81.397 (2)
O3—C41.2190 (16)C7—H70.96 (2)
C1—C21.5001 (17)C8—C91.387 (2)
C1—H1B0.97 (2)C8—H80.93 (2)
C1—H1C0.92 (2)C9—C101.387 (2)
C1—H1D0.98 (2)C9—H90.94 (2)
C3—C41.5316 (16)C10—C111.3923 (18)
C3—C51.5432 (15)C10—H100.96 (2)
C3—H30.996 (16)C11—H110.962 (19)
C2—N1—C3120.54 (9)C6—C5—H5A110.1 (11)
C2—N1—H1117.9 (12)C3—C5—H5A109.9 (11)
C3—N1—H1120.4 (12)C6—C5—H5B109.6 (11)
C4—O2—H2108.9 (16)C3—C5—H5B106.3 (11)
C2—C1—H1B109.7 (15)H5A—C5—H5B108.0 (14)
C2—C1—H1C113.9 (13)C7—C6—C11118.54 (11)
H1B—C1—H1C107 (2)C7—C6—C5121.48 (11)
C2—C1—H1D106.9 (14)C11—C6—C5119.95 (11)
H1B—C1—H1D108.7 (18)C6—C7—C8120.65 (13)
H1C—C1—H1D110.8 (18)C6—C7—H7121.5 (12)
O1—C2—N1120.22 (10)C8—C7—H7117.8 (12)
O1—C2—C1122.24 (10)C9—C8—C7120.14 (13)
N1—C2—C1117.53 (10)C9—C8—H8119.3 (12)
N1—C3—C4112.67 (9)C7—C8—H8120.6 (12)
N1—C3—C5110.88 (10)C10—C9—C8119.72 (13)
C4—C3—C5109.57 (9)C10—C9—H9121.8 (13)
N1—C3—H3108.2 (9)C8—C9—H9118.5 (13)
C4—C3—H3105.1 (9)C9—C10—C11120.13 (14)
C5—C3—H3110.3 (8)C9—C10—H10122.7 (12)
O3—C4—O2124.77 (12)C11—C10—H10117.2 (12)
O3—C4—C3121.67 (11)C10—C11—C6120.81 (12)
O2—C4—C3113.51 (10)C10—C11—H11120.4 (11)
C6—C5—C3112.71 (9)C6—C11—H11118.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.86 (2)2.14 (2)2.9835 (11)171.3 (14)
O2—H2···O1ii0.87 (2)1.74 (2)2.5502 (10)158.4 (18)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13NO3
Mr207.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)158
a, b, c (Å)5.6528 (1), 11.1532 (2), 16.9897 (1)
V3)1071.15 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.54 × 0.14 × 0.12
Data collection
DiffractometerCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15627, 1866, 1778
Rint0.019
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.08
No. of reflections1866
No. of parameters190
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: SMART (Bruker, 1997), SMART, SHELXTL (Bruker, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.86 (2)2.14 (2)2.9835 (11)171.3 (14)
O2—H2···O1ii0.87 (2)1.74 (2)2.5502 (10)158.4 (18)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds