Download citation
Download citation
link to html
The title compound, C23H19N2O3P, was prepared by the reaction of ethynyldi­phenyl­phosphine oxide with phenyl isocyanate, triethyl­amine and nitoethane in benzene. The molecular structure is stabilized by an intramolecular N-H...O hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001098/qa0211sup1.cif
Contains datablocks I, ccd1072

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001098/qa0211Isup2.hkl
Contains datablock I

CCDC reference: 142948

Comment top

Ethynyldiphenylphosphine oxide (Charrier et al., 1966) was treated by the method of Mukaiyama & Hoshino (1960) with phenyl isocyanate, triethylamine and nitroethane in benzene to give 4-(diphenylphosphinoyl)-3-methylisoxazole and 5-(diphenylphosphinoyl)-3-methylisoxazole in a 1:1 ratio. The title compound, (I), was formed as a by-product in 16% yield.

Experimental top

The title compound was obtained in 16% yield from the reaction of ethynyldiphenylphosphine oxide with phenyl isocyanate, triethylamine and nitroethane in benzene (Charrier et al., 1966; Mukaiyama & Hoshino, 1960). The solvent was removed and the residue chromatographed on a silica-gel column with ethyl acetate as eluent. Colourless crystals were grown by slow evaporation from the ethyl acetate solution at room temperature, m.p. 467–468 K.

Refinement top

Crystal decay was monitored by repeating the initial frames at the end of data collection. Analysing the duplicate reflections there were no indications for any decay. H atoms were placed geometrically and refined with a riding model (including free rotation about C—C) with Uiso constrained to be 1.5Ueq of the carrier atom.

Computing details top

Data collection: Nonius KappaCCD software; cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PARST95 (Nardelli, 1995).

(I) top
Crystal data top
C23H19N2O3PZ = 2
Mr = 402.37F(000) = 420
Triclinic, P1Dx = 1.328 Mg m3
a = 7.4055 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 10.3008 (4) ÅCell parameters from 11324 reflections
c = 13.6543 (5) Åθ = 3.4–25.0°
α = 79.896 (1)°µ = 0.16 mm1
β = 79.283 (2)°T = 291 K
γ = 85.338 (2)°Block, colourless
V = 1006.27 (6) Å30.30 × 0.20 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
2477 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.0°, θmin = 3.4°
Detector resolution: 10 vertical, 18 horizontal pixels mm-1h = 77
360 frames via ω–rotation (Δω = 1°) at different θ values and two times 20 s per frame scansk = 1212
11324 measured reflectionsl = 1516
3308 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.00Calculated w = 1/[σ2(Fo2) + (0.0617P)2]
where P = (Fo2 + 2Fc2)/3
3308 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C23H19N2O3Pγ = 85.338 (2)°
Mr = 402.37V = 1006.27 (6) Å3
Triclinic, P1Z = 2
a = 7.4055 (2) ÅMo Kα radiation
b = 10.3008 (4) ŵ = 0.16 mm1
c = 13.6543 (5) ÅT = 291 K
α = 79.896 (1)°0.30 × 0.20 × 0.20 mm
β = 79.283 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2477 reflections with I > 2σ(I)
11324 measured reflectionsRint = 0.017
3308 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
3308 reflectionsΔρmin = 0.25 e Å3
263 parameters
Special details top

Experimental. The data collection covered the whole sphere of the reciprocal space. The crystal to detector distance was 3.0 cm with a detector offset of 5°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The structure was solved by direct methods (Sheldrick, 1990) and successive difference Fourier syntheses. Refinement applied full-matrix least-squares methods (Sheldrick, 1997).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.39934 (6)0.86003 (4)0.79232 (3)0.04088 (16)
O10.57658 (15)1.11888 (12)0.54818 (9)0.0518 (3)
O20.24260 (15)0.93150 (12)0.84930 (9)0.0523 (3)
O30.26237 (17)1.24690 (13)0.55543 (10)0.0639 (4)
N10.14088 (18)1.13211 (14)0.70841 (11)0.0488 (4)
H60.16411.06630.75330.073*
N20.73838 (18)1.03827 (15)0.55140 (12)0.0549 (4)
C10.2730 (2)1.15941 (17)0.62718 (14)0.0460 (4)
C20.8536 (2)0.8487 (2)0.65513 (16)0.0651 (6)
H4A0.96060.86380.60360.098*
H4B0.81300.76180.65780.098*
H4C0.88350.85630.71930.098*
C30.7040 (2)0.94870 (18)0.63144 (14)0.0457 (4)
C40.5181 (2)0.96539 (16)0.68440 (12)0.0398 (4)
C50.4488 (2)1.07401 (16)0.62770 (12)0.0406 (4)
C110.3263 (2)0.72537 (16)0.74497 (12)0.0397 (4)
C120.1723 (2)0.65971 (19)0.80026 (15)0.0549 (5)
H120.11400.68410.86130.082*
C130.1064 (3)0.5588 (2)0.76444 (19)0.0695 (6)
H130.00440.51490.80160.104*
C140.1916 (3)0.5231 (2)0.6739 (2)0.0719 (6)
H140.14650.45540.64970.108*
C150.3419 (3)0.5866 (2)0.61951 (17)0.0672 (6)
H150.39880.56190.55840.101*
C160.4107 (2)0.68731 (18)0.65433 (14)0.0515 (5)
H160.51370.72960.61680.077*
C210.5644 (2)0.79572 (17)0.87200 (12)0.0421 (4)
C220.6064 (2)0.66234 (18)0.89799 (14)0.0510 (5)
H220.56010.60160.86730.077*
C230.7175 (3)0.6190 (2)0.96973 (15)0.0623 (5)
H230.74380.52910.98800.093*
C240.7885 (3)0.7086 (2)1.01374 (15)0.0664 (6)
H240.86300.67911.06180.100*
C250.7508 (3)0.8408 (2)0.98772 (16)0.0694 (6)
H250.80090.90091.01730.104*
C260.6380 (3)0.8853 (2)0.91719 (15)0.0596 (5)
H260.61130.97530.90000.089*
C310.0327 (2)1.19999 (16)0.72818 (14)0.0453 (4)
C320.1179 (2)1.19170 (19)0.82779 (15)0.0550 (5)
H320.06131.14250.87860.083*
C330.2882 (3)1.2567 (2)0.85243 (17)0.0657 (6)
H330.34461.25100.91970.099*
C340.3730 (3)1.3287 (2)0.77833 (19)0.0706 (6)
H340.48671.37240.79470.106*
C350.2884 (3)1.3357 (2)0.67964 (18)0.0736 (6)
H350.34621.38460.62920.110*
C360.1199 (3)1.2724 (2)0.65308 (16)0.0611 (5)
H360.06521.27800.58550.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0441 (3)0.0398 (3)0.0364 (3)0.00124 (18)0.00301 (18)0.0048 (2)
O10.0493 (7)0.0479 (7)0.0507 (8)0.0017 (5)0.0005 (6)0.0028 (6)
O20.0542 (7)0.0507 (7)0.0456 (7)0.0054 (6)0.0040 (6)0.0081 (6)
O30.0691 (9)0.0540 (8)0.0567 (9)0.0113 (6)0.0015 (7)0.0065 (7)
N10.0453 (8)0.0489 (9)0.0468 (9)0.0059 (6)0.0035 (7)0.0015 (7)
N20.0434 (8)0.0577 (10)0.0571 (10)0.0004 (7)0.0006 (7)0.0014 (9)
C10.0529 (10)0.0384 (10)0.0465 (11)0.0001 (8)0.0084 (8)0.0073 (9)
C20.0449 (11)0.0782 (14)0.0635 (13)0.0097 (9)0.0025 (9)0.0017 (11)
C30.0421 (9)0.0485 (11)0.0439 (11)0.0030 (8)0.0037 (7)0.0045 (9)
C40.0406 (9)0.0402 (10)0.0383 (10)0.0027 (7)0.0038 (7)0.0085 (8)
C50.0431 (9)0.0391 (10)0.0382 (10)0.0059 (7)0.0025 (7)0.0054 (8)
C110.0397 (9)0.0391 (9)0.0385 (10)0.0011 (7)0.0083 (7)0.0006 (8)
C120.0479 (10)0.0556 (12)0.0582 (13)0.0063 (9)0.0051 (9)0.0037 (10)
C130.0573 (12)0.0531 (13)0.0966 (18)0.0138 (10)0.0177 (12)0.0011 (12)
C140.0819 (15)0.0477 (12)0.0965 (19)0.0023 (11)0.0381 (14)0.0166 (13)
C150.0890 (16)0.0535 (13)0.0647 (14)0.0053 (11)0.0212 (12)0.0207 (11)
C160.0604 (11)0.0462 (11)0.0464 (11)0.0016 (8)0.0067 (9)0.0071 (9)
C210.0469 (9)0.0441 (10)0.0331 (9)0.0043 (7)0.0020 (7)0.0048 (8)
C220.0537 (11)0.0485 (11)0.0504 (12)0.0035 (8)0.0104 (8)0.0052 (9)
C230.0624 (12)0.0585 (13)0.0613 (13)0.0017 (9)0.0154 (10)0.0057 (10)
C240.0603 (12)0.0871 (17)0.0511 (13)0.0028 (11)0.0196 (10)0.0004 (12)
C250.0741 (14)0.0792 (17)0.0636 (14)0.0088 (11)0.0271 (11)0.0165 (12)
C260.0688 (13)0.0546 (12)0.0591 (13)0.0060 (9)0.0181 (10)0.0111 (10)
C310.0441 (10)0.0405 (10)0.0530 (12)0.0022 (7)0.0098 (8)0.0105 (9)
C320.0496 (11)0.0589 (12)0.0545 (13)0.0032 (9)0.0062 (9)0.0067 (10)
C330.0546 (12)0.0761 (15)0.0638 (14)0.0011 (10)0.0032 (10)0.0199 (12)
C340.0548 (12)0.0718 (14)0.0849 (18)0.0122 (10)0.0093 (11)0.0222 (13)
C350.0599 (13)0.0846 (16)0.0764 (17)0.0224 (11)0.0218 (11)0.0152 (13)
C360.0589 (12)0.0710 (14)0.0553 (13)0.0091 (9)0.0149 (9)0.0156 (11)
Geometric parameters (Å, º) top
P1—O21.4903 (11)C15—C161.382 (3)
P1—C111.7891 (17)C15—H150.9300
P1—C211.7962 (17)C16—H160.9300
P1—C41.7986 (17)C21—C221.382 (2)
O1—C51.3420 (19)C21—C261.391 (2)
O1—N21.4043 (17)C22—C231.386 (2)
O3—C11.219 (2)C22—H220.9300
N1—C11.341 (2)C23—C241.372 (3)
N1—C311.416 (2)C23—H230.9300
N1—H60.8600C24—C251.365 (3)
N2—C31.301 (2)C24—H240.9300
C1—C51.511 (2)C25—C261.385 (3)
C2—C31.491 (2)C25—H250.9300
C2—H4A0.9600C26—H260.9300
C2—H4B0.9600C31—C321.380 (2)
C2—H4C0.9600C31—C361.387 (2)
C3—C41.443 (2)C32—C331.391 (2)
C4—C51.366 (2)C32—H320.9300
C11—C161.385 (2)C33—C341.366 (3)
C11—C121.398 (2)C33—H330.9300
C12—C131.381 (3)C34—C351.369 (3)
C12—H120.9300C34—H340.9300
C13—C141.376 (3)C35—C361.377 (3)
C13—H130.9300C35—H350.9300
C14—C151.364 (3)C36—H360.9300
C14—H140.9300
O2—P1—C11112.25 (7)C14—C15—H15119.7
O2—P1—C21110.38 (7)C16—C15—H15119.7
C11—P1—C21108.13 (7)C15—C16—C11120.13 (18)
O2—P1—C4112.25 (7)C15—C16—H16119.9
C11—P1—C4106.19 (8)C11—C16—H16119.9
C21—P1—C4107.39 (7)C22—C21—C26119.13 (16)
C5—O1—N2108.92 (12)C22—C21—P1123.30 (13)
C1—N1—C31126.99 (15)C26—C21—P1117.23 (13)
C1—N1—H6116.5C21—C22—C23120.09 (17)
C31—N1—H6116.5C21—C22—H22120.0
C3—N2—O1106.27 (13)C23—C22—H22120.0
O3—C1—N1125.43 (16)C24—C23—C22120.02 (19)
O3—C1—C5118.75 (16)C24—C23—H23120.0
N1—C1—C5115.82 (15)C22—C23—H23120.0
C3—C2—H4A109.5C25—C24—C23120.63 (19)
C3—C2—H4B109.5C25—C24—H24119.7
H4A—C2—H4B109.5C23—C24—H24119.7
C3—C2—H4C109.5C24—C25—C26119.95 (19)
H4A—C2—H4C109.5C24—C25—H25120.0
H4B—C2—H4C109.5C26—C25—H25120.0
N2—C3—C4111.36 (15)C25—C26—C21120.18 (19)
N2—C3—C2118.32 (15)C25—C26—H26119.9
C4—C3—C2130.32 (16)C21—C26—H26119.9
C5—C4—C3103.33 (14)C32—C31—C36119.22 (17)
C5—C4—P1128.10 (13)C32—C31—N1117.35 (16)
C3—C4—P1128.34 (13)C36—C31—N1123.43 (17)
O1—C5—C4110.11 (14)C31—C32—C33120.25 (18)
O1—C5—C1110.36 (14)C31—C32—H32119.9
C4—C5—C1139.53 (16)C33—C32—H32119.9
C16—C11—C12118.85 (17)C34—C33—C32120.4 (2)
C16—C11—P1122.96 (13)C34—C33—H33119.8
C12—C11—P1118.13 (13)C32—C33—H33119.8
C13—C12—C11120.12 (19)C33—C34—C35119.07 (19)
C13—C12—H12119.9C33—C34—H34120.5
C11—C12—H12119.9C35—C34—H34120.5
C14—C13—C12120.1 (2)C34—C35—C36121.8 (2)
C14—C13—H13120.0C34—C35—H35119.1
C12—C13—H13120.0C36—C35—H35119.1
C15—C14—C13120.1 (2)C35—C36—C31119.30 (19)
C15—C14—H14119.9C35—C36—H36120.4
C13—C14—H14119.9C31—C36—H36120.4
C14—C15—C16120.7 (2)
C5—O1—N2—C30.03 (18)P1—C11—C12—C13177.32 (14)
C31—N1—C1—O31.6 (3)C11—C12—C13—C140.4 (3)
C31—N1—C1—C5177.49 (14)C12—C13—C14—C150.4 (3)
O1—N2—C3—C40.34 (19)C13—C14—C15—C160.0 (3)
O1—N2—C3—C2179.37 (15)C14—C15—C16—C110.4 (3)
N2—C3—C4—C50.5 (2)C12—C11—C16—C150.4 (3)
C2—C3—C4—C5179.15 (18)P1—C11—C16—C15176.79 (13)
N2—C3—C4—P1174.40 (13)O2—P1—C21—C22116.80 (15)
C2—C3—C4—P15.9 (3)C11—P1—C21—C226.34 (17)
O2—P1—C4—C528.55 (18)C4—P1—C21—C22120.54 (15)
C11—P1—C4—C594.47 (16)O2—P1—C21—C2656.50 (15)
C21—P1—C4—C5150.04 (15)C11—P1—C21—C26179.64 (13)
O2—P1—C4—C3157.75 (14)C4—P1—C21—C2666.16 (15)
C11—P1—C4—C379.24 (16)C26—C21—C22—C231.3 (3)
C21—P1—C4—C336.25 (17)P1—C21—C22—C23171.87 (13)
N2—O1—C5—C40.31 (18)C21—C22—C23—C241.1 (3)
N2—O1—C5—C1179.47 (12)C22—C23—C24—C250.1 (3)
C3—C4—C5—O10.48 (18)C23—C24—C25—C260.8 (3)
P1—C4—C5—O1174.45 (12)C24—C25—C26—C210.7 (3)
C3—C4—C5—C1179.19 (19)C22—C21—C26—C250.4 (3)
P1—C4—C5—C15.9 (3)P1—C21—C26—C25173.18 (15)
O3—C1—C5—O15.5 (2)C1—N1—C31—C32155.90 (17)
N1—C1—C5—O1173.71 (14)C1—N1—C31—C3624.6 (3)
O3—C1—C5—C4174.9 (2)C36—C31—C32—C330.8 (3)
N1—C1—C5—C46.0 (3)N1—C31—C32—C33179.64 (16)
O2—P1—C11—C16146.24 (14)C31—C32—C33—C340.3 (3)
C21—P1—C11—C1691.76 (15)C32—C33—C34—C350.2 (3)
C4—P1—C11—C1623.23 (16)C33—C34—C35—C360.1 (4)
O2—P1—C11—C1230.95 (15)C34—C35—C36—C310.4 (3)
C21—P1—C11—C1291.05 (14)C32—C31—C36—C350.8 (3)
C4—P1—C11—C12153.96 (13)N1—C31—C36—C35179.64 (17)
C16—C11—C12—C130.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O20.861.872.726 (2)172

Experimental details

Crystal data
Chemical formulaC23H19N2O3P
Mr402.37
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.4055 (2), 10.3008 (4), 13.6543 (5)
α, β, γ (°)79.896 (1), 79.283 (2), 85.338 (2)
V3)1006.27 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11324, 3308, 2477
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.00
No. of reflections3308
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: Nonius KappaCCD software, DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997) and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O20.861.872.726 (2)172
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds