Download citation
Download citation
link to html
The title compound was formed upon slow evaporation of a solution of the solvated dicationic complex bis­(aceto­nitrile)­bis­[1,2-bis­(di­phenyl-phosphino)­ethane]­palladium(II) bis(tetra­fluoro­borate) in deuterated chloro­form. The dinucleur palladium complex forms triclinic crystals and there is an inversion center between the Pd atoms. Compared to the corresponding monomeric compound, the Cl-Pd-Cl angles decrease upon briding from 94.19 (7) to 86.96 (4)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100000639/qa0208sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100000639/qa0208Isup2.hkl
Contains datablock I

CCDC reference: 142930

Comment top

Solvated dicationic palladium(II) complexes bearing bidentate phosphine ligands have been successfully used as catalysts for alternating co-polymerization of alkenes with carbon monoxide (Abu-Surrah et al., 1996) and for polymerization of norbornene to poly(2,3-bicyclo[2.2.1]hept-2-ene) (Abu-Surrah et al., 1998). For both polymerization processes, halogenated solvents such as chloroform and dichloromethane have been used as polymerization media.

In the course of our work on homo- and copolymerization reactions of alkenes with palladium(II) catalysts (Abu-Surrah & Rieger, 1999), we found that the title compound, (I), results from the catalyst precursor bis(acetonitrile)bis[1,2-bis(diphenylphosphino)ethane]palladium(II) bis(tetrafluoroborate), [Pd(dppe)(NCCH3)2]2(BF4) (Xu et al., 1993), via recombination of the palladium cation with the chloride groups of the solvent (CDCl3). The resulting compound is inactive towards polymerization. Such deactivation through dimer formation was also reported in metallocene catalysis (Hackmann & Rieger, 1997).

The dinuclear palladium complex, [Pd2(dppe)2Cl2)]2(BF4)·2CDCl3 forms triclinic crystals with space group P1 and there is an inversion center between the Pd atoms. The Pd—Cl bonds in the title compound [2.4077 (11) and 2.4100 (11) Å] are longer than in the monomeric compound [Pd(dppe)Cl2]2CH2Cl2 (Steffen & Palenik, 1976; 2.361 (2) and 2.357 (2) Å]. In addition, the Cl—Pd—Cl angles decrease upon bridging from 94.19 (7) to 86.96 (4)°.

Experimental top

The compound [Pd2(dppe)2Cl2)]2(BF4)·2CDCl3 was isolated by slow evaporation of a solution of bis(acetonitrile)bis[1,2-bis(diphenylphosphino)ethane]palladium(II) bis(tetrafluoroborate) in CDCl3. Yellow crystals suitable for X-ray analysis were formed.

Refinement top

The structure was solved by direct methods using XMY (Debaerdemaeker, 1993). The positions of the H atoms were calculated geometrically and their displacement factors (Uiso) were set to 1.2Ueq of the parent atom. The CDCl3 molecule contains deuterium which was refined as hydrogen but the formula weight is calculated using the molar mass of deuterium. In the final refinement, the atoms of the anion and the solvent molecule were fixed with DFIX and ISOR parameters.

Computing details top

Data collection: IPDS (Stoe & Cie, 1997); cell refinement: IPDS (Stoe & Cie, 1997); data reduction: IPDS (Stoe & Cie, 1997); program(s) used to solve structure: XMY93 (Debaerdemaeker, 1993); program(s) used to refine structure: SHELX97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick,1990); software used to prepare material for publication: SHELX97 (Sheldrick, 1997).

Di-µ-chloro-bis{1,2-bis(diphenylphosphino)ethane}dipalladium(II) bis(tetrafluoroborate)·2CDCl3 top
Crystal data top
[Pd2Cl2(C26H24P2)2](BF4)2·2CDCl3Z = 1
Mr = 1494.85F(000) = 744
Triclinic, P1Dx = 1.597 Mg m3
a = 10.8680 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5889 (16) ÅCell parameters from all reflections
c = 13.835 (2) Åθ = 1.9–26.0°
α = 114.432 (13)°µ = 1.09 mm1
β = 109.881 (13)°T = 293 K
γ = 95.870 (14)°Prism, light yellow
V = 1554.0 (4) Å30.18 × 0.16 × 0.12 mm
Data collection top
Stoe-IPDS image-plate
diffractometer
4418 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
Detector resolution: 0.15 pixels mm-1h = 1313
oscillation scansk = 1515
18439 measured reflectionsl = 1617
5632 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.00Calculated w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
5632 reflections(Δ/σ)max = 0.002
352 parametersΔρmax = 0.93 e Å3
91 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Pd2Cl2(C26H24P2)2](BF4)2·2CDCl3γ = 95.870 (14)°
Mr = 1494.85V = 1554.0 (4) Å3
Triclinic, P1Z = 1
a = 10.8680 (14) ÅMo Kα radiation
b = 12.5889 (16) ŵ = 1.09 mm1
c = 13.835 (2) ÅT = 293 K
α = 114.432 (13)°0.18 × 0.16 × 0.12 mm
β = 109.881 (13)°
Data collection top
Stoe-IPDS image-plate
diffractometer
4418 reflections with I > 2σ(I)
18439 measured reflectionsRint = 0.039
5632 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04291 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.00Δρmax = 0.93 e Å3
5632 reflectionsΔρmin = 0.65 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00135 (3)0.04371 (3)0.10430 (3)0.03194 (12)
Cl10.15194 (12)0.02277 (11)0.01795 (11)0.0487 (3)
Cl20.3921 (4)0.5056 (3)0.3752 (3)0.1719 (14)
Cl30.1256 (5)0.4964 (4)0.3536 (3)0.1820 (14)
Cl40.1881 (5)0.2733 (3)0.2572 (3)0.2007 (18)
P10.12463 (12)0.11942 (10)0.21108 (9)0.0344 (2)
P20.13868 (12)0.05189 (10)0.19148 (10)0.0355 (3)
F10.8205 (7)0.6189 (5)0.2772 (5)0.144 (2)
F20.6510 (7)0.6248 (7)0.3209 (6)0.181 (3)
F30.8264 (9)0.6141 (6)0.4394 (6)0.182 (3)
F40.8378 (6)0.7847 (3)0.4287 (4)0.1123 (16)
C10.0431 (5)0.1442 (4)0.2999 (4)0.0441 (11)
H1A0.01520.22820.25750.053*
H1B0.11340.13170.37360.053*
C20.0428 (5)0.0559 (4)0.3260 (4)0.0435 (11)
H2A0.01650.02560.38730.052*
H2B0.10560.08330.35320.052*
C30.2823 (5)0.1851 (4)0.1017 (4)0.0388 (10)
C40.3162 (5)0.2565 (4)0.0169 (4)0.0435 (11)
H40.25930.23740.05080.052*
C50.4321 (6)0.3552 (4)0.0860 (5)0.0552 (13)
H50.45560.40390.16790.066*
C60.5123 (6)0.3834 (5)0.0387 (6)0.0719 (17)
H60.59340.45090.08730.086*
C70.4777 (7)0.3150 (7)0.0794 (7)0.085 (2)
H70.53340.33680.11310.102*
C80.3657 (6)0.2173 (6)0.1482 (6)0.0686 (16)
H80.34360.16970.23000.082*
C90.2054 (5)0.0779 (4)0.2269 (4)0.0466 (11)
C100.3335 (7)0.0703 (6)0.1565 (6)0.082 (2)
H100.39230.00650.09070.098*
C110.3787 (9)0.1733 (7)0.1800 (7)0.111 (3)
H110.46770.16800.12900.133*
C120.2984 (10)0.2812 (7)0.2743 (7)0.105 (3)
H120.33220.35130.29130.126*
C130.1710 (9)0.2914 (6)0.3447 (7)0.094 (2)
H130.11360.36880.41030.113*
C140.1236 (7)0.1889 (5)0.3215 (6)0.0716 (17)
H140.03340.19570.37170.086*
C150.2942 (5)0.0172 (4)0.3094 (4)0.0406 (10)
C160.3188 (7)0.0785 (6)0.4172 (6)0.083 (2)
H160.24530.09010.44040.100*
C170.4479 (8)0.1571 (7)0.4913 (6)0.092 (2)
H170.46410.22160.56660.110*
C180.5532 (7)0.1440 (6)0.4587 (6)0.0776 (18)
H180.64260.20030.50960.093*
C190.5301 (8)0.0518 (8)0.3548 (7)0.103 (3)
H190.60380.04210.33160.124*
C200.4021 (7)0.0295 (6)0.2804 (6)0.085 (2)
H200.38870.09570.20700.102*
C210.1448 (4)0.2647 (4)0.1247 (4)0.0366 (9)
C220.1922 (6)0.3337 (5)0.1783 (5)0.0586 (14)
H220.21310.30500.25970.070*
C230.2088 (7)0.4453 (5)0.1120 (6)0.0675 (16)
H230.24070.49380.14820.081*
C240.1808 (5)0.4864 (4)0.0022 (5)0.0527 (12)
H240.19490.56260.04590.063*
C250.1331 (6)0.4205 (5)0.0552 (5)0.0635 (15)
H250.11180.45100.13680.076*
C260.1145 (6)0.3085 (5)0.0079 (4)0.0544 (13)
H260.08060.26220.03030.065*
C270.2528 (8)0.4204 (7)0.3752 (6)0.127 (3)
D270.27770.41900.44960.152*
B10.7886 (8)0.6625 (5)0.3674 (5)0.072 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0364 (2)0.03210 (17)0.03539 (18)0.01186 (14)0.01681 (15)0.02139 (14)
Cl10.0461 (7)0.0700 (7)0.0639 (7)0.0298 (6)0.0317 (6)0.0518 (7)
Cl20.164 (3)0.175 (3)0.131 (2)0.016 (3)0.011 (2)0.088 (2)
Cl30.220 (4)0.220 (4)0.148 (3)0.081 (3)0.091 (3)0.110 (3)
Cl40.335 (5)0.1004 (18)0.138 (2)0.004 (2)0.125 (3)0.0258 (17)
P10.0378 (7)0.0334 (5)0.0348 (5)0.0111 (5)0.0134 (5)0.0202 (5)
P20.0405 (7)0.0333 (5)0.0373 (6)0.0118 (5)0.0202 (5)0.0176 (5)
F10.194 (6)0.109 (3)0.112 (4)0.027 (4)0.100 (4)0.014 (3)
F20.139 (6)0.161 (6)0.159 (5)0.009 (5)0.069 (5)0.011 (4)
F30.227 (5)0.166 (4)0.165 (4)0.021 (3)0.057 (4)0.119 (4)
F40.171 (5)0.057 (2)0.094 (3)0.009 (3)0.071 (3)0.018 (2)
C10.047 (3)0.052 (3)0.046 (3)0.016 (2)0.020 (2)0.034 (2)
C20.050 (3)0.048 (2)0.035 (2)0.010 (2)0.020 (2)0.022 (2)
C30.039 (3)0.036 (2)0.051 (3)0.017 (2)0.024 (2)0.024 (2)
C40.044 (3)0.036 (2)0.052 (3)0.013 (2)0.022 (2)0.021 (2)
C50.051 (3)0.042 (3)0.056 (3)0.015 (3)0.013 (3)0.016 (2)
C60.046 (4)0.051 (3)0.096 (5)0.002 (3)0.016 (4)0.031 (3)
C70.067 (5)0.093 (5)0.083 (5)0.013 (4)0.032 (4)0.040 (4)
C80.057 (4)0.074 (4)0.063 (3)0.005 (3)0.030 (3)0.024 (3)
C90.061 (3)0.040 (2)0.050 (3)0.022 (2)0.034 (3)0.021 (2)
C100.088 (5)0.060 (3)0.071 (4)0.044 (4)0.013 (4)0.021 (3)
C110.116 (6)0.083 (4)0.107 (5)0.066 (5)0.020 (4)0.035 (4)
C120.129 (6)0.068 (4)0.103 (5)0.061 (4)0.040 (5)0.029 (4)
C130.115 (6)0.047 (3)0.097 (5)0.027 (4)0.041 (4)0.015 (3)
C140.073 (4)0.042 (3)0.077 (4)0.020 (3)0.029 (3)0.010 (3)
C150.042 (3)0.035 (2)0.038 (2)0.009 (2)0.011 (2)0.0174 (19)
C160.053 (4)0.065 (4)0.077 (4)0.007 (3)0.022 (3)0.006 (3)
C170.078 (5)0.071 (4)0.075 (4)0.003 (4)0.029 (4)0.004 (3)
C180.053 (4)0.072 (4)0.071 (4)0.002 (3)0.012 (3)0.018 (3)
C190.066 (5)0.111 (5)0.098 (5)0.007 (4)0.046 (4)0.014 (4)
C200.054 (4)0.080 (4)0.071 (4)0.007 (4)0.032 (3)0.006 (3)
C210.037 (3)0.0283 (19)0.043 (2)0.0095 (19)0.013 (2)0.0183 (18)
C220.081 (4)0.058 (3)0.060 (3)0.041 (3)0.034 (3)0.039 (3)
C230.082 (4)0.052 (3)0.095 (4)0.039 (3)0.045 (4)0.047 (3)
C240.050 (3)0.035 (2)0.068 (3)0.014 (2)0.026 (3)0.018 (2)
C250.074 (4)0.054 (3)0.049 (3)0.025 (3)0.022 (3)0.013 (2)
C260.068 (4)0.046 (3)0.044 (3)0.021 (3)0.018 (3)0.020 (2)
C270.156 (10)0.152 (9)0.070 (5)0.032 (8)0.039 (6)0.060 (6)
B10.091 (6)0.056 (4)0.047 (4)0.003 (4)0.021 (4)0.016 (3)
Geometric parameters (Å, º) top
Pd1—P22.2335 (11)C5—C61.352 (9)
Pd1—P12.2407 (11)C6—C71.380 (10)
Pd1—Cl1i2.4077 (11)C7—C81.356 (9)
Pd1—Cl12.4100 (11)C9—C101.368 (8)
Cl1—Pd1i2.4077 (11)C9—C141.378 (8)
Cl2—C271.764 (8)C10—C111.384 (8)
Cl3—C271.772 (8)C11—C121.351 (11)
Cl4—C271.744 (7)C12—C131.351 (11)
P1—C151.806 (5)C13—C141.393 (8)
P1—C211.810 (4)C15—C201.366 (8)
P1—C11.842 (4)C15—C161.388 (7)
P2—C31.793 (5)C16—C171.377 (10)
P2—C91.804 (4)C17—C181.367 (10)
P2—C21.822 (5)C18—C191.338 (10)
F1—B11.322 (7)C19—C201.380 (10)
F2—B11.350 (8)C21—C261.373 (6)
F3—B11.344 (7)C21—C221.391 (6)
F4—B11.348 (6)C22—C231.395 (7)
C1—C21.533 (6)C23—C241.349 (8)
C3—C41.391 (6)C24—C251.351 (8)
C3—C81.391 (7)C25—C261.397 (7)
C4—C51.387 (7)
P2—Pd1—P185.05 (4)C14—C9—P2120.0 (4)
P2—Pd1—Cl1i176.76 (4)C9—C10—C11120.1 (6)
P1—Pd1—Cl1i95.55 (4)C12—C11—C10120.5 (7)
P2—Pd1—Cl192.66 (4)C13—C12—C11120.6 (6)
P1—Pd1—Cl1175.30 (5)C12—C13—C14119.6 (7)
Cl1i—Pd1—Cl186.96 (4)C9—C14—C13120.4 (6)
Pd1i—Cl1—Pd193.04 (4)C20—C15—C16117.4 (5)
C15—P1—C21106.8 (2)C20—C15—P1121.8 (4)
C15—P1—C1108.0 (2)C16—C15—P1120.7 (4)
C21—P1—C1106.1 (2)C17—C16—C15120.5 (6)
C15—P1—Pd1111.70 (14)C18—C17—C16120.6 (6)
C21—P1—Pd1114.00 (14)C19—C18—C17119.1 (7)
C1—P1—Pd1109.91 (15)C18—C19—C20121.2 (7)
C3—P2—C9107.0 (2)C15—C20—C19121.1 (6)
C3—P2—C2107.6 (2)C26—C21—C22119.3 (4)
C9—P2—C2108.9 (2)C26—C21—P1121.8 (3)
C3—P2—Pd1112.39 (14)C22—C21—P1118.9 (3)
C9—P2—Pd1111.83 (16)C21—C22—C23118.9 (5)
C2—P2—Pd1108.92 (16)C24—C23—C22121.2 (5)
C2—C1—P1110.2 (3)C23—C24—C25120.2 (4)
C1—C2—P2108.1 (3)C24—C25—C26120.5 (5)
C4—C3—C8118.3 (5)C21—C26—C25119.9 (5)
C4—C3—P2121.0 (3)Cl4—C27—Cl2111.4 (5)
C8—C3—P2120.6 (4)Cl4—C27—Cl3107.4 (5)
C5—C4—C3120.0 (5)Cl2—C27—Cl3104.4 (5)
C6—C5—C4120.4 (5)F1—B1—F3115.0 (7)
C5—C6—C7120.0 (6)F1—B1—F4110.6 (5)
C8—C7—C6120.5 (6)F3—B1—F4110.2 (6)
C7—C8—C3120.8 (6)F1—B1—F2105.4 (6)
C10—C9—C14118.8 (5)F3—B1—F2103.1 (7)
C10—C9—P2121.0 (4)F4—B1—F2112.3 (7)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Pd2Cl2(C26H24P2)2](BF4)2·2CDCl3
Mr1494.85
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8680 (14), 12.5889 (16), 13.835 (2)
α, β, γ (°)114.432 (13), 109.881 (13), 95.870 (14)
V3)1554.0 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerStoe-IPDS image-plate
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18439, 5632, 4418
Rint0.039
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.00
No. of reflections5632
No. of parameters352
No. of restraints91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.65

Computer programs: IPDS (Stoe & Cie, 1997), XMY93 (Debaerdemaeker, 1993), SHELX97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick,1990).

Selected geometric parameters (Å, º) top
Pd1—P22.2335 (11)Pd1—Cl1i2.4077 (11)
Pd1—P12.2407 (11)Pd1—Cl12.4100 (11)
P2—Pd1—P185.05 (4)P2—Pd1—Cl192.66 (4)
P2—Pd1—Cl1i176.76 (4)P1—Pd1—Cl1175.30 (5)
P1—Pd1—Cl1i95.55 (4)Cl1i—Pd1—Cl186.96 (4)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds