Download citation
Download citation
link to html
The title compound, C34H52O4, consists of five six-membered rings. Barring the two rings, with double bonds, all other rings are in chair conformations. Mean-plane and ring-puckering calculations indicate these two rings to be in distorted-chair conformations, with distortion towards the boat conformation. There are no strong hydrogen bonds and the structure is stabilized by van der Waals interactions only. The structure is compared with those reported for other triterpenes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100000445/qa0202sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100000445/qa0202Isup2.hkl
Contains datablock I

CCDC reference: 142940

Comment top

The title compound, (I), has been isolated from the leaves of the plant Jacquinia Ruscifolia which is found in Mexico. Air-dried crushed leaves of the plant was extracted with petroleum ether (333–353 K), chloroform and methanol successively. The methanol extract in turn was refluxed with 6% methanolic hydrochloric acid (250 ml) for 6 h. The solvent was removed under reduced pressure, water being added during distillation to keep the acid concentration constant. The resulting mixture was extracted with a large volume of ether. The ethereal solution in turn was extracted with a saturated solution of sodium bicarbonate. The neutral fraction was washed thoroughly with water, dried and chromatographed over silica gel repeatedly. Benzene–ether (1:1) eluate afforded a white solid, crystallized from methanol. The diol was then acetylated by heating it with pyridine and acetic anhydride over water bath for 2 h. Usual work up, followed by crystallization from methanol resulted in oleana-12 (13),15 (16)-diene-3α,28 diol diacetate (Dutta, 1972; Rao & Bose, 1962).

Several studies have been made on this class of triterpenes. The structure elucidation by X-ray method of several triterpenes such as Acide acetoxy-3β e oleanane-12 (13)oique-28α (Roques et al., 1978), triterpene gymnemagenin (Hoge & Nordman, 1974), 18-α(H)-oleanane (Fowell et al., 1978) and (+)oleanolic acid (van Schalkwyk & Kruger, 1974) has also been done. By convention the stereochemistry of this class of compounds is 3β-OAc,8β-Me,10β-Me,14α-Me,17β-COOMe. In the case of the present compound, we have obtained opposite chirality. However the crystallographic study does not provide an unambiguous determination of the absolute configuration. In our previous work on Oleana-13 (18),15 (16)-diene-3beta, 28 diol diacetate (Bhattacharyya et al., 1999), we reported the conventional structure.

In the case of the present compound, except for the two rings with double bonds, all other rings are in chair conformation. The acetate group at C3 is almost planar with a tortion angle C32—C31—O1—C3 = 175°. The atom O1, attached to the atom C3 is lying below the least-squares plane defined by the atoms C2, C3, C5 and C10 of the ring A. The torsion angle is C2—C3—O1—C31 = −113.9 (3)°. The acetate group at C17, is almost planar, with mean deviation from the least-squares plane defined by the constituent atoms is 0.0274 Å, and C34 atom has the maximum out of plane deviation of 0.0337 Å This acetate group is equatorial to ring E (torsion angle, O3—C28—C17—C16 = −180°) and twisted from the plane of the ring D [torsion angle O3—C28—C17—C22 = −60.4 (3)°]. The mean Csp3—Csp3 bond length is 1.533 (3) Å with C8—C14 different with a value of 1.600 Å. As in the previous compound (Bhattacharyya et al., 1999), this is attributed to the steric effects as these two bonded Csp3 atoms have no attached H atoms.

Mean-plane calculations show similar behavior for the rings C and D containing double bonds. C9, C11, C13, C14 atoms of ring C define a least-squares plane, whose mean deviation from planarity is only 0.006 Å. The atom C8 is 0.7604 Å below this plane and C12 is 0.0262 Å above the plane. However the puckering parameter, ϕ = 178.2 (3)° which indicates distortion is towards boat. Similarly for the ring D, atoms C13, C14, C16, C17 define a least squares plane with mean deviation of 0.0006°. The atom C15 is 0.0205 Å below this plane, where as atom C18 is 0.6199° above the plane. Hence this ring is also a distorted chair and the distortion is towards boat as its puckering parameter ϕ is 59.6 (4)°. The puckering parameters of all the six-membered rings A, B, C, D and E have been calculated using the method of Cremer & Pople (1975), using the program PARST (Nardelli, 1983). The puckering parameters are given in Table 4. There are no hydrogen bonds and the structure is stabilized by van der Waals interaction.

Experimental top

The crystals of the title compound were obtained from a solution of the compound in methanol by slow evaporation at room temperature.

Refinement top

All the H atoms were included at geometrically calculated positions. For the methyl groups attached to sp3 centres (i.e. for C23, C24, C25, C26, C27, C29 and C30), H atoms are placed in a unique staggered conformation For methyl groups on sp2 centres, i.e. for C32 and C34 atoms, H atoms were located from a circular Fourier synthesis. They were then allowed to ride on their parent atom with Uiso = xUeq (parent), where x = 1.5 for methyl H atoms and x = 1.2 for all other atoms.

Computing details top

Data collection: Local Program (Belletti, 1993); cell refinement: Local Program (Belletti, 1993); data reduction: Local Program (Belletti, 1993); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); software used to prepare material for publication: SHELXL93 (Sheldrick, 1993).

Oleana-12 (13), 15 (16)-diene-3α, 28 diol diacetate top
Crystal data top
C34H52O4Dx = 1.150 Mg m3
Mr = 524.76Melting point: 210° K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
a = 16.645 (2) ÅCell parameters from 49 reflections
b = 25.768 (2) Åθ = 12.3–40.8°
c = 7.066 (3) ŵ = 0.57 mm1
V = 3030.7 (14) Å3T = 293 K
Z = 4Needle, colourless
F(000) = 11520.4 × 0.3 × 0.1 mm
Data collection top
Siemens AED
diffractometer
2929 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeθmax = 70.0°, θmin = 3.2°
Graphite monochromatorh = 1920
ωθ scansk = 3031
Absorption correction: ψ scan
(North et al., 1968)
l = 81
Tmin = 0.94, Tmax = 0.972 standard reflections every 100 reflections
3292 measured reflections intensity decay: none
3292 independent reflections
Refinement top
Refinement on F2Hydrogen site location: geom & circular Difference Map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046Calculated w = 1/[σ2(Fo2) + (0.1016P)2 + 0.1981P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.137(Δ/σ)max = 0.014
S = 1.12Δρmax = 0.19 e Å3
3292 reflectionsΔρmin = 0.21 e Å3
347 parametersExtinction correction: SHELXL93, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0057 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.39 (36)
Crystal data top
C34H52O4V = 3030.7 (14) Å3
Mr = 524.76Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 16.645 (2) ŵ = 0.57 mm1
b = 25.768 (2) ÅT = 293 K
c = 7.066 (3) Å0.4 × 0.3 × 0.1 mm
Data collection top
Siemens AED
diffractometer
3292 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
2929 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.972 standard reflections every 100 reflections
3292 measured reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137Δρmax = 0.19 e Å3
S = 1.12Δρmin = 0.21 e Å3
3292 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
347 parametersAbsolute structure parameter: 0.39 (36)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16372 (14)0.07638 (10)0.0721 (3)0.0446 (5)
H110.185680.104200.14880.053*
H120.192150.044760.10460.053*
C20.07486 (14)0.06966 (10)0.1204 (4)0.0504 (6)
H210.068780.063530.25510.060*
H220.053290.039930.05320.060*
C30.02932 (14)0.11820 (10)0.0643 (4)0.0486 (6)
H30.050980.147570.13620.058*
C40.03352 (14)0.13127 (9)0.1469 (4)0.0454 (5)
C50.12459 (13)0.13529 (8)0.1948 (3)0.0396 (5)
H50.144090.164330.11790.048*
C60.14221 (14)0.15139 (10)0.3992 (4)0.0472 (5)
H610.105150.178470.43760.057*
H620.134700.121890.48270.057*
C70.22851 (14)0.17117 (9)0.4155 (4)0.0477 (6)
H710.239150.179780.54680.057*
H720.233420.202850.34230.057*
C80.29297 (13)0.13240 (8)0.3473 (3)0.0374 (4)
C90.26807 (12)0.10835 (8)0.1552 (3)0.0356 (4)
H90.272230.136930.06430.043*
C100.17872 (12)0.08877 (8)0.1376 (3)0.0362 (4)
C110.33042 (13)0.06834 (9)0.0886 (4)0.0439 (5)
H1110.316650.034800.14180.053*
H1120.327140.065390.04800.053*
C120.41553 (13)0.08103 (8)0.1419 (3)0.0409 (5)
H1210.455510.058750.09880.049*
C130.43847 (12)0.12148 (8)0.2455 (3)0.0378 (4)
C140.37722 (13)0.16097 (8)0.3153 (3)0.0407 (5)
C150.40621 (15)0.18537 (9)0.4970 (4)0.0496 (6)
H150.372490.209400.55480.059*
C160.47562 (15)0.17545 (9)0.5811 (4)0.0498 (6)
H160.487670.193940.69050.060*
C170.53690 (14)0.13625 (9)0.5125 (3)0.0436 (5)
C180.52674 (13)0.12937 (9)0.2951 (3)0.0409 (5)
H180.555650.097800.25850.049*
C190.56375 (14)0.17482 (9)0.1847 (4)0.0481 (5)
H1910.560140.167260.05050.058*
H1920.532000.205700.20870.058*
C200.6517 (2)0.18660 (10)0.2335 (4)0.0514 (6)
C210.6547 (2)0.19803 (10)0.4456 (4)0.0545 (6)
H2110.70980.205090.48200.065*
H2120.62320.228890.47170.065*
C220.62281 (15)0.15345 (10)0.5638 (4)0.0505 (6)
H2210.623800.163610.69590.061*
H2220.658580.123990.54930.061*
C230.0054 (2)0.18526 (11)0.1746 (5)0.0614 (7)
H2310.02300.210480.10020.092*
H2320.00290.194790.30580.092*
H2330.06060.184000.13480.092*
C240.01325 (14)0.09234 (11)0.2672 (4)0.0548 (6)
H2410.009180.101820.39820.082*
H2420.008730.058250.24930.082*
H2430.068670.092490.22960.082*
C250.16186 (14)0.03893 (8)0.2519 (4)0.0447 (5)
H2510.170770.045520.38400.067*
H2520.197200.011810.21010.067*
H2530.107120.028440.23280.067*
C260.30340 (14)0.09098 (10)0.5022 (3)0.0465 (5)
H2610.343300.066300.46320.070*
H2620.253210.073470.52240.070*
H2630.320190.107320.61770.070*
C270.36958 (15)0.20543 (9)0.1656 (4)0.0536 (6)
H2710.351190.191220.04770.080*
H2720.421050.221490.14750.080*
H2730.331820.230850.20970.080*
C280.51880 (15)0.08502 (10)0.6170 (4)0.0533 (6)
H2810.522750.090500.75250.064*
H2820.464430.073960.58850.064*
C290.7068 (2)0.14118 (13)0.1812 (6)0.0678 (8)
H2910.70370.134930.04750.102*
H2920.69010.110650.24830.102*
H2930.76120.149510.21500.102*
C300.6779 (2)0.23517 (14)0.1248 (6)0.0810 (10)
H3010.67610.228280.00870.121*
H3020.73160.244350.16070.121*
H3030.64220.263320.15410.121*
C310.0834 (2)0.1411 (2)0.2569 (4)0.0677 (8)
C320.1671 (2)0.1253 (3)0.3093 (7)0.115 (2)
H3210.1980 (8)0.1198 (16)0.1964 (7)0.173*
H3220.1653 (3)0.0937 (10)0.382 (5)0.173*
H3230.1916 (9)0.1522 (8)0.384 (5)0.173*
C330.6281 (2)0.02702 (12)0.6849 (6)0.0684 (8)
C340.6841 (2)0.00991 (14)0.5992 (8)0.0949 (13)
H3410.7266 (11)0.00869 (14)0.537 (4)0.142*
H3420.6561 (5)0.0308 (9)0.508 (4)0.142*
H3430.7063 (15)0.0318 (9)0.6958 (10)0.142*
O10.05451 (11)0.11039 (9)0.1199 (3)0.0639 (5)
O20.0470 (2)0.17556 (11)0.3291 (4)0.0874 (8)
O30.57489 (11)0.04500 (7)0.5600 (3)0.0588 (5)
O40.6297 (2)0.04027 (14)0.8470 (5)0.1138 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0374 (10)0.0525 (12)0.0438 (11)0.0002 (9)0.0012 (9)0.0056 (10)
C20.0403 (11)0.0622 (14)0.0487 (12)0.0029 (10)0.0058 (10)0.0025 (12)
C30.0346 (10)0.0580 (13)0.0532 (13)0.0029 (10)0.0054 (10)0.0103 (11)
C40.0356 (10)0.0441 (11)0.0565 (13)0.0041 (9)0.0003 (10)0.0048 (10)
C50.0373 (10)0.0360 (10)0.0455 (11)0.0017 (8)0.0024 (9)0.0028 (9)
C60.0397 (11)0.0471 (12)0.0549 (13)0.0061 (9)0.0043 (10)0.0097 (11)
C70.0412 (11)0.0448 (11)0.0571 (13)0.0048 (9)0.0001 (10)0.0171 (11)
C80.0368 (10)0.0337 (9)0.0415 (10)0.0032 (8)0.0027 (9)0.0043 (9)
C90.0352 (10)0.0321 (9)0.0394 (10)0.0006 (8)0.0019 (8)0.0007 (8)
C100.0348 (9)0.0336 (9)0.0401 (10)0.0005 (8)0.0010 (8)0.0007 (9)
C110.0375 (10)0.0444 (11)0.0500 (12)0.0025 (9)0.0015 (10)0.0135 (10)
C120.0360 (10)0.0420 (10)0.0448 (11)0.0037 (8)0.0013 (9)0.0050 (9)
C130.0371 (10)0.0370 (10)0.0392 (10)0.0001 (8)0.0023 (9)0.0023 (9)
C140.0384 (10)0.0359 (10)0.0479 (12)0.0003 (8)0.0038 (9)0.0019 (9)
C150.0459 (12)0.0419 (11)0.0608 (15)0.0060 (9)0.0066 (11)0.0139 (11)
C160.0483 (12)0.0494 (12)0.0519 (13)0.0033 (10)0.0078 (11)0.0097 (11)
C170.0395 (10)0.0437 (11)0.0475 (11)0.0012 (9)0.0074 (10)0.0001 (10)
C180.0362 (10)0.0403 (10)0.0463 (11)0.0006 (9)0.0042 (9)0.0011 (9)
C190.0425 (12)0.0527 (12)0.0491 (12)0.0051 (10)0.0047 (10)0.0074 (11)
C200.0418 (12)0.0497 (12)0.0627 (15)0.0071 (10)0.0054 (11)0.0067 (12)
C210.0488 (12)0.0465 (12)0.068 (2)0.0070 (10)0.0156 (13)0.0037 (12)
C220.0451 (12)0.0561 (13)0.0504 (13)0.0018 (11)0.0130 (11)0.0001 (11)
C230.0458 (13)0.0549 (14)0.084 (2)0.0145 (11)0.0010 (14)0.0017 (15)
C240.0385 (12)0.066 (2)0.0599 (15)0.0055 (11)0.0027 (11)0.0058 (13)
C250.0444 (11)0.0359 (10)0.0538 (12)0.0021 (9)0.0018 (10)0.0041 (10)
C260.0451 (12)0.0520 (12)0.0424 (11)0.0002 (10)0.0001 (10)0.0029 (11)
C270.0446 (11)0.0382 (11)0.078 (2)0.0014 (9)0.0097 (12)0.0121 (12)
C280.0476 (13)0.0549 (13)0.0574 (14)0.0059 (11)0.0004 (12)0.0126 (12)
C290.0445 (13)0.079 (2)0.079 (2)0.0013 (13)0.0013 (14)0.010 (2)
C300.066 (2)0.081 (2)0.096 (2)0.028 (2)0.011 (2)0.032 (2)
C310.0509 (14)0.100 (2)0.0524 (14)0.026 (2)0.0039 (13)0.001 (2)
C320.050 (2)0.205 (5)0.091 (3)0.020 (3)0.021 (2)0.018 (3)
C330.059 (2)0.0553 (15)0.091 (2)0.0022 (12)0.018 (2)0.012 (2)
C340.067 (2)0.068 (2)0.150 (4)0.011 (2)0.003 (3)0.013 (2)
O10.0374 (8)0.0877 (13)0.0666 (11)0.0035 (9)0.0113 (9)0.0181 (11)
O20.089 (2)0.094 (2)0.079 (2)0.0228 (15)0.0081 (14)0.0277 (14)
O30.0589 (10)0.0490 (9)0.0685 (12)0.0062 (8)0.0060 (9)0.0057 (9)
O40.124 (2)0.125 (2)0.093 (2)0.049 (2)0.046 (2)0.004 (2)
Geometric parameters (Å, º) top
C1—C21.528 (3)C19—C201.535 (3)
C1—C101.536 (3)C19—H1910.97
C1—H110.97C19—H1920.97
C1—H120.97C20—C211.528 (4)
C2—C31.515 (4)C20—C301.532 (4)
C2—H210.97C20—C291.532 (4)
C2—H220.97C21—C221.516 (4)
C3—O11.463 (3)C21—H2110.97
C3—C41.532 (4)C21—H2120.97
C3—H30.98C22—H2210.97
C4—C241.528 (4)C22—H2220.97
C4—C231.547 (3)C23—H2310.96
C4—C51.557 (3)C23—H2320.96
C5—C61.531 (4)C23—H2330.96
C5—C101.553 (3)C24—H2410.96
C5—H50.98C24—H2420.96
C6—C71.529 (3)C24—H2430.96
C6—H610.97C25—H2510.96
C6—H620.97C25—H2520.96
C7—C81.543 (3)C25—H2530.96
C7—H710.97C26—H2610.96
C7—H720.97C26—H2620.96
C8—C261.539 (3)C26—H2630.96
C8—C91.548 (3)C27—H2710.96
C8—C141.600 (3)C27—H2720.96
C9—C111.537 (3)C27—H2730.96
C9—C101.576 (3)C28—O31.448 (3)
C9—H90.98C28—H2810.97
C10—C251.543 (3)C28—H2820.97
C11—C121.502 (3)C29—H2910.96
C11—H1110.97C29—H2920.96
C11—H1120.97C29—H2930.96
C12—C131.330 (3)C30—H3010.96
C12—H1210.93C30—H3020.96
C13—C141.522 (3)C30—H3030.96
C13—C181.524 (3)C31—O21.189 (4)
C14—C151.509 (3)C31—O11.340 (4)
C14—C271.564 (3)C31—C321.499 (5)
C15—C161.324 (4)C32—H3210.96
C15—H150.93C32—H3220.96
C16—C171.515 (3)C32—H3230.96
C16—H160.93C33—O41.195 (5)
C17—C221.540 (3)C33—O31.333 (4)
C17—C281.542 (3)C33—C341.463 (5)
C17—C181.556 (3)C34—H3410.96
C18—C191.536 (3)C34—H3420.96
C18—H180.98C34—H3430.96
C2—C1—C10113.4 (2)C19—C18—H18107.57 (13)
C2—C1—H11108.90 (14)C17—C18—H18107.57 (13)
C10—C1—H11108.90 (12)C20—C19—C18114.8 (2)
C2—C1—H12108.90 (14)C20—C19—H191108.57 (14)
C10—C1—H12108.90 (12)C18—C19—H191108.57 (13)
H11—C1—H12107.7C20—C19—H192108.57 (14)
C3—C2—C1109.4 (2)C18—C19—H192108.57 (13)
C3—C2—H21109.80 (14)H191—C19—H192107.5
C1—C2—H21109.80 (13)C21—C20—C30109.0 (3)
C3—C2—H22109.80 (14)C21—C20—C29111.4 (3)
C1—C2—H22109.80 (14)C30—C20—C29109.5 (3)
H21—C2—H22108.2C21—C20—C19106.8 (2)
O1—C3—C2107.0 (2)C30—C20—C19108.7 (2)
O1—C3—C4109.6 (2)C29—C20—C19111.5 (2)
C2—C3—C4114.4 (2)C22—C21—C20112.5 (2)
O1—C3—H3108.55 (13)C22—C21—H211109.09 (13)
C2—C3—H3108.55 (14)C20—C21—H211109.09 (15)
C4—C3—H3108.55 (13)C22—C21—H212109.09 (15)
C24—C4—C3112.0 (2)C20—C21—H212109.1 (2)
C24—C4—C23107.9 (2)H211—C21—H212107.8
C3—C4—C23107.6 (2)C21—C22—C17114.4 (2)
C24—C4—C5114.8 (2)C21—C22—H221108.65 (14)
C3—C4—C5105.7 (2)C17—C22—H221108.65 (13)
C23—C4—C5108.7 (2)C21—C22—H222108.65 (15)
C6—C5—C10110.1 (2)C17—C22—H222108.65 (13)
C6—C5—C4114.2 (2)H221—C22—H222107.6
C10—C5—C4117.2 (2)C4—C23—H231109.47 (15)
C6—C5—H5104.65 (12)C4—C23—H232109.5 (2)
C10—C5—H5104.65 (11)H231—C23—H232109.5
C4—C5—H5104.65 (12)C4—C23—H233109.47 (14)
C7—C6—C5110.0 (2)H231—C23—H233109.5
C7—C6—H61109.67 (12)H232—C23—H233109.5
C5—C6—H61109.67 (12)C4—C24—H241109.5 (2)
C7—C6—H62109.67 (14)C4—C24—H242109.47 (14)
C5—C6—H62109.67 (12)H241—C24—H242109.5
H61—C6—H62108.2C4—C24—H243109.47 (13)
C6—C7—C8114.4 (2)H241—C24—H243109.5
C6—C7—H71108.65 (14)H242—C24—H243109.5
C8—C7—H71108.65 (13)C10—C25—H251109.47 (12)
C6—C7—H72108.65 (14)C10—C25—H252109.47 (12)
C8—C7—H72108.65 (13)H251—C25—H252109.5
H71—C7—H72107.6C10—C25—H253109.47 (12)
C26—C8—C7107.8 (2)H251—C25—H253109.5
C26—C8—C9112.1 (2)H252—C25—H253109.5
C7—C8—C9110.3 (2)C8—C26—H261109.47 (12)
C26—C8—C14108.7 (2)C8—C26—H262109.47 (12)
C7—C8—C14110.8 (2)H261—C26—H262109.5
C9—C8—C14107.1 (2)C8—C26—H263109.47 (12)
C11—C9—C8110.9 (2)H261—C26—H263109.5
C11—C9—C10113.5 (2)H262—C26—H263109.5
C8—C9—C10116.7 (2)C14—C27—H271109.47 (13)
C11—C9—H9104.80 (12)C14—C27—H272109.47 (12)
C8—C9—H9104.80 (11)H271—C27—H272109.5
C10—C9—H9104.80 (11)C14—C27—H273109.47 (14)
C1—C10—C25107.6 (2)H271—C27—H273109.5
C1—C10—C5108.5 (2)H272—C27—H273109.5
C25—C10—C5113.6 (2)O3—C28—C17110.5 (2)
C1—C10—C9107.2 (2)O3—C28—H281109.55 (14)
C25—C10—C9113.4 (2)C17—C28—H281109.55 (14)
C5—C10—C9106.3 (2)O3—C28—H282109.55 (13)
C12—C11—C9114.5 (2)C17—C28—H282109.55 (13)
C12—C11—H111108.65 (13)H281—C28—H282108.1
C9—C11—H111108.64 (12)C20—C29—H291109.5 (2)
C12—C11—H112108.64 (13)C20—C29—H292109.5 (2)
C9—C11—H112108.64 (12)H291—C29—H292109.5
H111—C11—H112107.6C20—C29—H293109.47 (15)
C13—C12—C11125.4 (2)H291—C29—H293109.5
C13—C12—H121117.29 (13)H292—C29—H293109.5
C11—C12—H121117.29 (11)C20—C30—H301109.5 (2)
C12—C13—C14120.6 (2)C20—C30—H302109.5 (2)
C12—C13—C18120.5 (2)H301—C30—H302109.5
C14—C13—C18118.8 (2)C20—C30—H303109.5 (2)
C15—C14—C13109.9 (2)H301—C30—H303109.5
C15—C14—C27107.2 (2)H302—C30—H303109.5
C13—C14—C27109.0 (2)O2—C31—O1124.7 (3)
C15—C14—C8110.6 (2)O2—C31—C32124.8 (4)
C13—C14—C8109.0 (2)O1—C31—C32110.5 (4)
C27—C14—C8111.2 (2)C31—C32—H321109.5 (2)
C16—C15—C14125.5 (2)C31—C32—H322109.5 (3)
C16—C15—H15117.3 (2)H321—C32—H322109.5
C14—C15—H15117.26 (12)C31—C32—H323109.5 (3)
C15—C16—C17124.9 (2)H321—C32—H323109.5
C15—C16—H16117.5 (2)H322—C32—H323109.5
C17—C16—H16117.53 (13)O4—C33—O3123.4 (3)
C16—C17—C22111.0 (2)O4—C33—C34124.6 (4)
C16—C17—C28106.6 (2)O3—C33—C34112.0 (4)
C22—C17—C28108.4 (2)C33—C34—H341109.5 (2)
C16—C17—C18108.6 (2)C33—C34—H342109.5 (2)
C22—C17—C18111.5 (2)H341—C34—H342109.5
C28—C17—C18110.7 (2)C33—C34—H343109.5 (3)
C13—C18—C19111.8 (2)H341—C34—H343109.5
C13—C18—C17110.3 (2)H342—C34—H343109.5
C19—C18—C17111.8 (2)C31—O1—C3117.0 (2)
C13—C18—H18107.57 (12)C33—O3—C28119.4 (3)
C10—C1—C2—C356.8 (3)C12—C13—C14—C830.6 (3)
C1—C2—C3—O1178.0 (2)C18—C13—C14—C8149.9 (2)
C1—C2—C3—C460.4 (3)C26—C8—C14—C1558.3 (2)
O1—C3—C4—C2450.8 (3)C7—C8—C14—C1559.9 (2)
C2—C3—C4—C2469.4 (3)C9—C8—C14—C15179.7 (2)
O1—C3—C4—C2367.5 (3)C26—C8—C14—C1362.5 (2)
C2—C3—C4—C23172.2 (2)C7—C8—C14—C13179.2 (2)
O1—C3—C4—C5176.4 (2)C9—C8—C14—C1358.8 (2)
C2—C3—C4—C556.2 (3)C26—C8—C14—C27177.4 (2)
C24—C4—C5—C659.5 (3)C7—C8—C14—C2759.1 (3)
C3—C4—C5—C6176.6 (2)C9—C8—C14—C2761.3 (2)
C23—C4—C5—C661.4 (3)C13—C14—C15—C162.1 (4)
C24—C4—C5—C1071.4 (3)C27—C14—C15—C16116.2 (3)
C3—C4—C5—C1052.6 (3)C8—C14—C15—C16122.4 (3)
C23—C4—C5—C10167.8 (2)C14—C15—C16—C172.3 (4)
C10—C5—C6—C764.1 (2)C15—C16—C17—C22148.8 (3)
C4—C5—C6—C7161.6 (2)C15—C16—C17—C2893.3 (3)
C5—C6—C7—C856.0 (3)C15—C16—C17—C1826.0 (3)
C6—C7—C8—C2676.8 (3)C12—C13—C18—C19107.8 (3)
C6—C7—C8—C945.9 (3)C14—C13—C18—C1971.7 (3)
C6—C7—C8—C14164.4 (2)C12—C13—C18—C17127.2 (2)
C26—C8—C9—C1158.1 (2)C14—C13—C18—C1753.4 (3)
C7—C8—C9—C11178.2 (2)C16—C17—C18—C1347.8 (3)
C14—C8—C9—C1161.1 (2)C22—C17—C18—C13170.3 (2)
C26—C8—C9—C1074.0 (2)C28—C17—C18—C1368.9 (2)
C7—C8—C9—C1046.1 (2)C16—C17—C18—C1977.3 (2)
C14—C8—C9—C10166.9 (2)C22—C17—C18—C1945.3 (3)
C2—C1—C10—C2571.8 (3)C28—C17—C18—C19166.0 (2)
C2—C1—C10—C551.5 (2)C13—C18—C19—C20177.5 (2)
C2—C1—C10—C9165.9 (2)C17—C18—C19—C2053.3 (3)
C6—C5—C10—C1175.9 (2)C18—C19—C20—C2158.1 (3)
C4—C5—C10—C151.4 (2)C18—C19—C20—C30175.5 (3)
C6—C5—C10—C2564.5 (2)C18—C19—C20—C2963.8 (3)
C4—C5—C10—C2568.2 (3)C30—C20—C21—C22175.0 (2)
C6—C5—C10—C960.9 (2)C29—C20—C21—C2264.1 (3)
C4—C5—C10—C9166.4 (2)C19—C20—C21—C2257.8 (3)
C11—C9—C10—C159.6 (2)C20—C21—C22—C1755.6 (3)
C8—C9—C10—C1169.6 (2)C16—C17—C22—C2173.5 (3)
C11—C9—C10—C2559.0 (2)C28—C17—C22—C21169.7 (2)
C8—C9—C10—C2571.8 (2)C18—C17—C22—C2147.6 (3)
C11—C9—C10—C5175.5 (2)C16—C17—C28—O3180.0 (2)
C8—C9—C10—C553.7 (2)C22—C17—C28—O360.4 (3)
C8—C9—C11—C1233.8 (3)C18—C17—C28—O362.1 (3)
C10—C9—C11—C12167.5 (2)O2—C31—O1—C33.7 (5)
C9—C11—C12—C133.2 (4)C32—C31—O1—C3175.0 (3)
C11—C12—C13—C142.3 (4)C2—C3—O1—C31113.9 (3)
C11—C12—C13—C18178.2 (2)C4—C3—O1—C31121.4 (3)
C12—C13—C14—C15151.9 (2)O4—C33—O3—C284.0 (5)
C18—C13—C14—C1528.6 (3)C34—C33—O3—C28175.2 (2)
C12—C13—C14—C2790.9 (2)C17—C28—O3—C33112.5 (3)
C18—C13—C14—C2788.6 (2)

Experimental details

Crystal data
Chemical formulaC34H52O4
Mr524.76
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)16.645 (2), 25.768 (2), 7.066 (3)
V3)3030.7 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.57
Crystal size (mm)0.4 × 0.3 × 0.1
Data collection
DiffractometerSiemens AED
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.94, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
3292, 3292, 2929
Rint?
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 1.12
No. of reflections3292
No. of parameters347
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.21
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.39 (36)

Computer programs: Local Program (Belletti, 1993), SIR92 (Altomare et al., 1994), SHELXL93 (Sheldrick, 1993).

Selected geometric parameters (Å, º) top
C3—O11.463 (3)C14—C271.564 (3)
C4—C241.528 (4)C15—C161.324 (4)
C4—C231.547 (3)C20—C301.532 (4)
C8—C261.539 (3)C20—C291.532 (4)
C8—C141.600 (3)C31—O21.189 (4)
C10—C251.543 (3)C33—O41.195 (5)
C12—C131.330 (3)
C2—C3—C4114.4 (2)C27—C14—C8111.2 (2)
C26—C8—C14108.7 (2)C16—C15—C14125.5 (2)
C13—C12—C11125.4 (2)C15—C16—C17124.9 (2)
C12—C13—C14120.6 (2)
C1—C2—C3—O1178.0 (2)C12—C13—C18—C19107.8 (3)
O1—C3—C4—C5176.4 (2)C16—C17—C28—O3180.0 (2)
C26—C8—C14—C27177.4 (2)C22—C17—C28—O360.4 (3)
C14—C15—C16—C172.3 (4)C32—C31—O1—C3175.0 (3)
Ring-puckring parameters (Å, °) for four rings top
Ringq2q3QTθ
A0.047 (2)-0.560 (3)0.562 (3)175.2 (3)
B0.128 (2)-0.563 (3)0.577 (3)167.2 (2)
C0.427 (3)-0.342 (2)0.547 (3)128.7 (3)
D0.344 (3)0.273 (3)0.439 (3)51.6 (4)
E0.083 (2)0.539 (2)0.546 (2)8.7 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds