Download citation
Download citation
link to html
The new imidazolium cyclo­phane 2,11,13,21,29,31-hexamethyl-5,16,24-tri­aza-8,19,27-triazoniahepta­cyclo[10.10.6.11,3.­15,8.110,14.116,19.124,27]­tritriaconta-1,3(29),6,8(30),10,­12,14(31),17,19(32),21,25,27(33)-dodecene tri­bromide dihydrate, C33H39N63+.3Br-.2H2O, belongs to a type of cyl­indrical macrobicyclic salt containing imidazolium groups. It has mirror symmetry, the symmetry surface is the plane of the three 2-C atoms of imidazoliums. Three bromine anions are associated with two water mol­ecules by hydrogen bonds. The O-H...Br bond lengths are 2.53 (3) and 2.46 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016406/qa0198sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016406/qa0198Isup2.hkl
Contains datablock I

CCDC reference: 140870

Comment top

The molecular recognition and catalysis properties of cyclophanes have received considerable attention in recent years (Lehn, 1995). It is worthwhile pursuing to design and prepare suitable macrocyclic ligands with fine features. Following our work on imidazole-containing macrocycles (Liu et al., 1999; Lou et al., 1995), for the first time, we synthesize the new type of cyclophane in which two benzene rings are triply bridged by imidazoliums, (I). The compound has Cs symmetry. The parallel capping benzene rings are 5.144 Å apart. The three imidazolium rings are not arranged symmetrically, the angles of them are 54.0, 99.1 and 153.2°, and the distances of the three 2-carbons of the imidazoliums are 4.703, 4.711 and 4.514 Å. The shape of the compound makes it suitable to form exclusive or inclusive complexes with small anions.

Different from the case of [14]metacyclo-bis-(1,3)imidazolophanium dichloride dihydrate (Alcalde et al., 1999), the halogen anions form hydrogen bonds with water rather than with imidazolophanium.

Experimental top

The title compound was prepared by the dropwise addition of 1,3,5-trimethyl-2,4,6-tris(bromomethyl)benzene to 1,3,5-trimethyl-2,4,6-tri(imidazolymethyl) benzene in highly diluted acetonitrile solutions at 348 K and recrystallized from water.

Refinement top

The absorption correction is given by the experimental fact, so it is appropriate. The difference between expected and reported Tmax/Tmin may be caused by the fact that the single-crystal is not quite perfect or the measurement of the crystal size is not very precise. The water H atoms H1A and H1B were refined.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXTL (Siemens, 1994).

2,11,13,21,29,31-hexamethyl-5,16,24-triaza-8,19,27-triazoniaheptacyclo- [10.10.6.11,3.15,8.110,14.116,19.124,27]tritriaconta- 1,3(29),6,8(30),10,12,14 (31),17,19 (32),21,25,27 (33)-dodecene tribromide dihydrate top
Crystal data top
C33H39N63+·3Br·2H2ODx = 1.602 Mg m3
Mr = 795.46Melting point > 573 K
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 9.855 (2) ÅCell parameters from 29 reflections
b = 17.306 (3) Åθ = 3.2–16.4°
c = 10.607 (2) ŵ = 3.71 mm1
β = 114.29 (1)°T = 296 K
V = 1648.9 (5) Å3Flake, colourless
Z = 20.56 × 0.40 × 0.28 mm
F(000) = 808
Data collection top
Siemens P4
diffractometer
2006 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25°, θmin = 2.1°
ω scansh = 011
Absorption correction: empirical (using intensity measurements)
(SHELXTL; Siemems, 1994)
k = 120
Tmin = 0.227, Tmax = 0.354l = 1211
3533 measured reflections3 standard reflections every 97 reflections
2989 independent reflections intensity decay: 5.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.001
2989 reflectionsΔρmax = 0.41 e Å3
217 parametersΔρmin = 0.45 e Å3
3 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (4)
Crystal data top
C33H39N63+·3Br·2H2OV = 1648.9 (5) Å3
Mr = 795.46Z = 2
Monoclinic, P21/mMo Kα radiation
a = 9.855 (2) ŵ = 3.71 mm1
b = 17.306 (3) ÅT = 296 K
c = 10.607 (2) Å0.56 × 0.40 × 0.28 mm
β = 114.29 (1)°
Data collection top
Siemens P4
diffractometer
2006 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(SHELXTL; Siemems, 1994)
Rint = 0.022
Tmin = 0.227, Tmax = 0.3543 standard reflections every 97 reflections
3533 measured reflections intensity decay: 5.4%
2989 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 0.88Δρmax = 0.41 e Å3
2989 reflectionsΔρmin = 0.45 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.60411 (4)0.04704 (2)0.27542 (4)0.03738 (14)
Br20.68478 (8)0.25000.34559 (7)0.0586 (2)
N10.3727 (3)0.18781 (15)0.0343 (3)0.0246 (6)
N20.0796 (3)0.18738 (16)0.4093 (3)0.0294 (7)
N30.2540 (3)0.18748 (15)0.2009 (3)0.0266 (7)
C10.4272 (3)0.21116 (18)0.0585 (3)0.0289 (8)
H10.45850.17930.11190.035*
C20.3421 (5)0.25000.0904 (5)0.0282 (12)
H20.30520.25000.15820.034*
C30.3499 (4)0.10763 (18)0.0691 (4)0.0285 (9)
H3A0.43010.09280.15610.034*
H3B0.35070.07280.00220.034*
C40.1563 (4)0.2112 (2)0.5422 (4)0.0477 (11)
H40.20070.17950.61920.057*
C50.0334 (6)0.25000.3306 (5)0.0332 (13)
H50.02240.25000.23540.040*
C60.0517 (4)0.10673 (18)0.3586 (4)0.0334 (9)
H6A0.04530.09020.35130.040*
H6B0.12620.07300.42380.040*
C70.3782 (4)0.2114 (2)0.3113 (3)0.0414 (10)
H70.45000.17970.37510.050*
C80.1814 (6)0.25000.1362 (5)0.0328 (13)
H80.09280.25000.05710.039*
C90.2092 (4)0.10568 (18)0.1630 (4)0.0295 (9)
H9A0.19260.08070.23730.035*
H9B0.28850.07830.15020.035*
C100.2014 (4)0.10158 (17)0.0810 (4)0.0231 (8)
C110.1973 (4)0.10027 (18)0.2113 (4)0.0249 (8)
C120.0575 (4)0.10082 (17)0.2187 (4)0.0252 (8)
C130.0758 (4)0.10057 (17)0.0980 (4)0.0258 (8)
C140.0678 (4)0.10195 (17)0.0305 (4)0.0258 (8)
C150.0699 (4)0.10317 (17)0.0407 (3)0.0246 (8)
C160.0764 (4)0.1110 (2)0.1794 (4)0.0380 (10)
H16A0.05990.16390.20880.046*
H16B0.00090.07910.24570.046*
H16C0.17250.09480.17220.046*
C170.3393 (4)0.1013 (2)0.3419 (4)0.0405 (10)
H17A0.39190.05360.34990.049*
H17B0.31570.10750.42060.049*
H17C0.40070.14360.33820.049*
C180.2246 (4)0.1027 (2)0.1085 (4)0.0411 (10)
H18A0.23360.05820.15850.049*
H18B0.30350.10260.01730.049*
H18C0.23080.14880.15630.049*
O0.7795 (5)0.0838 (3)0.5175 (4)0.0864 (12)
H1A0.727 (6)0.050 (2)0.456 (5)0.12 (2)*
H1B0.749 (6)0.1280 (15)0.490 (5)0.11 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0415 (2)0.0325 (2)0.0391 (2)0.0034 (2)0.01750 (18)0.0009 (2)
Br20.0587 (5)0.0560 (4)0.0591 (5)0.0000.0222 (4)0.000
N10.0242 (15)0.0233 (15)0.0270 (16)0.0021 (13)0.0112 (13)0.0005 (13)
N20.0365 (17)0.0279 (16)0.0287 (16)0.0022 (14)0.0183 (15)0.0015 (14)
N30.0247 (16)0.0249 (15)0.0254 (16)0.0004 (14)0.0054 (14)0.0010 (14)
C10.0297 (19)0.0325 (18)0.0298 (19)0.0001 (16)0.0175 (17)0.0006 (16)
C20.030 (3)0.030 (3)0.028 (3)0.0000.016 (3)0.000
C30.033 (2)0.0192 (17)0.032 (2)0.0037 (16)0.0124 (18)0.0017 (16)
C40.075 (3)0.044 (2)0.018 (2)0.002 (2)0.014 (2)0.0042 (18)
C50.046 (4)0.026 (3)0.026 (3)0.0000.013 (3)0.000
C60.041 (2)0.0252 (19)0.036 (2)0.0013 (17)0.017 (2)0.0021 (17)
C70.035 (2)0.037 (2)0.029 (2)0.0045 (18)0.0104 (18)0.0018 (17)
C80.029 (3)0.026 (3)0.032 (3)0.0000.002 (3)0.000
C90.031 (2)0.0199 (18)0.034 (2)0.0016 (16)0.0095 (18)0.0030 (16)
C100.0250 (19)0.0159 (16)0.031 (2)0.0018 (14)0.0143 (17)0.0039 (15)
C110.025 (2)0.0186 (18)0.029 (2)0.0029 (15)0.0101 (17)0.0042 (15)
C120.035 (2)0.0170 (17)0.027 (2)0.0011 (15)0.0156 (17)0.0025 (15)
C130.030 (2)0.0142 (17)0.035 (2)0.0018 (15)0.0145 (18)0.0039 (15)
C140.031 (2)0.0134 (16)0.029 (2)0.0004 (15)0.0082 (17)0.0004 (15)
C150.028 (2)0.0164 (17)0.027 (2)0.0001 (15)0.0102 (17)0.0009 (15)
C160.037 (2)0.042 (2)0.033 (2)0.0016 (19)0.0123 (19)0.0013 (19)
C170.036 (2)0.051 (2)0.033 (2)0.004 (2)0.0123 (19)0.0009 (19)
C180.032 (2)0.050 (2)0.043 (2)0.0026 (19)0.017 (2)0.001 (2)
O0.110 (3)0.064 (2)0.049 (2)0.007 (3)0.004 (2)0.004 (2)
Geometric parameters (Å, º) top
N1—C21.323 (4)C6—C121.511 (5)
N1—C11.362 (4)C7—C7i1.335 (7)
N1—C31.477 (4)C8—N3i1.323 (4)
N2—C51.329 (4)C9—C141.520 (5)
N2—C41.361 (4)C10—C111.400 (4)
N2—C61.480 (4)C10—C151.404 (4)
N3—C81.323 (4)C11—C121.412 (5)
N3—C71.365 (4)C11—C171.511 (5)
N3—C91.488 (4)C12—C131.408 (5)
C1—C1i1.344 (6)C13—C141.397 (5)
C2—N1i1.323 (4)C13—C181.516 (5)
C3—C101.524 (5)C14—C151.404 (5)
C4—C4i1.343 (7)C15—C161.505 (5)
C5—N2i1.329 (4)
C2—N1—C1108.3 (3)C11—C10—C15121.2 (3)
C2—N1—C3124.5 (3)C11—C10—C3120.1 (3)
C1—N1—C3127.2 (3)C15—C10—C3118.6 (3)
C5—N2—C4107.7 (3)C10—C11—C12118.7 (3)
C5—N2—C6125.2 (3)C10—C11—C17120.9 (3)
C4—N2—C6127.1 (3)C12—C11—C17120.4 (3)
C8—N3—C7107.4 (3)C13—C12—C11121.1 (3)
C8—N3—C9126.9 (3)C13—C12—C6119.7 (3)
C7—N3—C9125.6 (3)C11—C12—C6119.1 (3)
C1i—C1—N1107.25 (17)C14—C13—C12118.8 (3)
N1—C2—N1i108.9 (4)C14—C13—C18121.0 (3)
N1—C3—C10109.6 (3)C12—C13—C18120.1 (3)
C4i—C4—N2107.6 (2)C13—C14—C15121.3 (3)
N2i—C5—N2109.3 (4)C13—C14—C9120.3 (3)
N2—C6—C12110.1 (3)C15—C14—C9118.4 (3)
C7i—C7—N3107.69 (19)C10—C15—C14119.0 (3)
N3—C8—N3i109.8 (4)C10—C15—C16120.4 (3)
N3—C9—C14110.3 (3)C14—C15—C16120.5 (3)
C2—N1—C1—C1i0.7 (3)C10—C11—C12—C131.7 (5)
C3—N1—C1—C1i179.2 (3)C17—C11—C12—C13179.4 (3)
C1—N1—C2—N1i1.2 (5)C10—C11—C12—C6174.5 (3)
C3—N1—C2—N1i178.8 (2)C17—C11—C12—C63.2 (5)
C2—N1—C3—C1042.2 (5)N2—C6—C12—C1399.0 (4)
C1—N1—C3—C10137.7 (3)N2—C6—C12—C1177.3 (4)
C5—N2—C4—C4i0.4 (3)C11—C12—C13—C141.8 (5)
C6—N2—C4—C4i179.4 (3)C6—C12—C13—C14174.4 (3)
C4—N2—C5—N2i0.6 (6)C11—C12—C13—C18178.8 (3)
C6—N2—C5—N2i179.2 (3)C6—C12—C13—C182.6 (5)
C5—N2—C6—C1236.3 (5)C12—C13—C14—C150.3 (5)
C4—N2—C6—C12143.3 (4)C18—C13—C14—C15177.3 (3)
C8—N3—C7—C7i0.1 (3)C12—C13—C14—C9177.0 (3)
C9—N3—C7—C7i179.2 (3)C18—C13—C14—C90.0 (5)
C7—N3—C8—N3i0.2 (5)N3—C9—C14—C1388.2 (4)
C9—N3—C8—N3i179.1 (2)N3—C9—C14—C1589.2 (4)
C8—N3—C9—C143.1 (5)C11—C10—C15—C141.2 (5)
C7—N3—C9—C14177.7 (3)C3—C10—C15—C14176.5 (3)
N1—C3—C10—C11101.5 (3)C11—C10—C15—C16175.1 (3)
N1—C3—C10—C1573.8 (4)C3—C10—C15—C160.2 (4)
C15—C10—C11—C120.2 (5)C13—C14—C15—C101.2 (5)
C3—C10—C11—C12175.0 (3)C9—C14—C15—C10178.5 (3)
C15—C10—C11—C17177.9 (3)C13—C14—C15—C16175.2 (3)
C3—C10—C11—C172.6 (5)C9—C14—C15—C162.2 (5)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H1A···Br10.87 (3)2.46 (3)3.326 (4)173 (5)
O—H1B···Br20.83 (2)2.53 (3)3.326 (4)161 (5)

Experimental details

Crystal data
Chemical formulaC33H39N63+·3Br·2H2O
Mr795.46
Crystal system, space groupMonoclinic, P21/m
Temperature (K)296
a, b, c (Å)9.855 (2), 17.306 (3), 10.607 (2)
β (°) 114.29 (1)
V3)1648.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.71
Crystal size (mm)0.56 × 0.40 × 0.28
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SHELXTL; Siemems, 1994)
Tmin, Tmax0.227, 0.354
No. of measured, independent and
observed [I > 2σ(I)] reflections
3533, 2989, 2006
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.073, 0.88
No. of reflections2989
No. of parameters217
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.45

Computer programs: XSCANS (Siemens, 1996), SHELXTL (Siemens, 1994), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H1A···Br10.87 (3)2.46 (3)3.326 (4)173 (5)
O—H1B···Br20.83 (2)2.53 (3)3.326 (4)161 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds