Download citation
Download citation
link to html
The cis or trans conformation of the title compound (C14H30NO3P) is difficult to predict because of its dependancy on experimental conditions. X-ray analysis shows a trans stereochemistry of the methyl and iso­propyl groups in [alpha] positions with respect to the N atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016303/qa0197sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016303/qa0197Isup2.hkl
Contains datablock I

CCDC reference: 140868

Comment top

Nitroxide radicals are becoming an increasingly important aspect of chemical applications due to the enormous need of materials enjoying new or improved physical and chemical properties. After being used in ESR as spin probes (Zhdanov, 1992; Keana, 1984; Berliner, 1976), they have also been applied as contrast-enhancing agents for magnetic resonance imaging (Kuppusamy et al., 1995). Recently, stable nitroxide radicals found a successful application in the field of Living Free Radical Polymerization (Hawker, 1997; Grimaldi et al., 1997). The concept of using stable free radicals, such as pyrrolidine derived from β-phosphorylated nitroxides, has been extensively developed in our laboratory. These nitroxides are prepared by oxidation of the corresponding α-phosphorylated pyrrolidines (Roubaud et al., 1994, 1996). However, mixtures of cis and trans isomers were obtained by using this method. Recently, we have reported the cyclization of β-allenic aminophosphonates into α-phosphorylated pyrrolines (Amedjkouh et al., 1997). Its reduction with NaBH4 leads only to the cis isomer, thus a series of (2,3,5-alkylpyrrolidin-2-yl)diethylphosphonates was prepared. In the present paper, we report the structure of diethyl [(2RS,5RS)-5-isopropyl-2,3,3-trimethylpyrrolidin-2-yl]phosphonate, (I).

As a precursor for a new serie of pyrrolidinyl nitroxides, the title compound was obtained using our new procedure. The crystallographic conformation of the pyrrolidinyl ring is 3T4 [the puckering parameters (Cremer & Pople, 1975) are: q = 0.374 (3) Å and ϕ = 85.1 (5)°] as it is usually observed for this kind of molecules. The methyl and isopropyl moities borne by C5 and C6, respectively, are in trans positions. The diethoxyphosphoryl group occupies the axial position on C5 [the angle between the bond C—P and the normal of the ring mean plane is 14.3 (2)°]. The crystal packing is assumed by N1—H30···O3(3/2 − x, y − 1/2, 3/2 − z) hydrogen bond with H30···O3 2.30 (3) Å and N1—H30···O3(3/2 − x, y − 1/2, 3/2 − z) 152 (3)°, and usual van der Waals interactions of which the shortest distance is C14···H10(C8)(x − 1/2, 1/2 − y, z − 1/2) 3.09 (19) Å.

Experimental top

(5-Isopropyl-2,3,3-trimethylpyrrolidin-2-yl)diethylphosphonate was synthesized by reduction of the corresponding pyrroline (Amedjkouh et al., 1997, 2000) with sodium borohydride. Suitable colorless prisms for X-ray analysis were grown in pentane solution in the fridge or at room temperature by slow evaporation.

Refinement top

All the H atoms were theoretically located except for the H30 atom borne by the N atom, which was refined.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: BEGIN SDP (Frenz, 1985); program(s) used to solve structure: MULTAN80 (Main et al., 1980); program(s) used to refine structure: LSFM SDP (Frenz, 1985); software used to prepare material for publication: CIF VAX MolEN (Fair, 1990).

(I) top
Crystal data top
C14H30NO3PF(000) = 640
Mr = 291.37Dx = 1.10 Mg m3
Dm = 1.11 (2) Mg m3
Dm measured by flotation
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.552 (3) ÅCell parameters from 25 reflections
b = 11.853 (7) Åθ = 10–16°
c = 15.615 (4) ŵ = 0.16 mm1
β = 96.47 (2)°T = 294 K
V = 1757 (2) Å3Prism, colorless
Z = 40.50 × 0.40 × 0.30 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
θmax = 24.7°, θmin = 2.2°
θ/2θ scansh = 1010
3018 measured reflectionsk = 013
2744 independent reflectionsl = 017
1861 reflections with I > 3σ(I)2 standard reflections every 60 min
Rint = 0.030 intensity decay: 9.6%
Refinement top
Refinement on F0 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049w = 4Fo2/[σ2(Fo2) + 0.0025Fo4]
wR(F2) = 0.069(Δ/σ)max = 0.003
S = 1.17Δρmax = 0.37 e Å3
1861 reflectionsΔρmin = 0.20 e Å3
173 parameters
Crystal data top
C14H30NO3PV = 1757 (2) Å3
Mr = 291.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.552 (3) ŵ = 0.16 mm1
b = 11.853 (7) ÅT = 294 K
c = 15.615 (4) Å0.50 × 0.40 × 0.30 mm
β = 96.47 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.030
3018 measured reflections2 standard reflections every 60 min
2744 independent reflections intensity decay: 9.6%
1861 reflections with I > 3σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.37 e Å3
1861 reflectionsΔρmin = 0.20 e Å3
173 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.88259 (9)0.11005 (7)0.83161 (5)0.0500 (2)
O11.0475 (2)0.1212 (2)0.8532 (1)0.0657 (7)
O20.8394 (2)0.0554 (2)0.9170 (1)0.0685 (7)
O30.8077 (2)0.2156 (2)0.8097 (2)0.0648 (7)
N0.7149 (2)0.0366 (2)0.7492 (2)0.0496 (7)
C11.1089 (4)0.1940 (4)0.9214 (3)0.082 (1)
C20.8640 (3)0.0011 (2)0.7501 (2)0.0481 (8)
C30.8749 (3)0.0415 (3)0.6561 (2)0.0533 (9)
C40.7266 (3)0.0885 (3)0.6322 (2)0.0545 (9)
C50.6292 (3)0.0080 (3)0.6722 (2)0.0488 (8)
C61.2599 (4)0.2126 (4)0.9098 (3)0.104 (2)
C70.6958 (5)0.0674 (4)0.9410 (3)0.094 (1)
C80.6995 (6)0.1201 (5)1.0244 (3)0.120 (2)
C90.9628 (4)0.0979 (3)0.7811 (2)0.067 (1)
C100.9907 (4)0.1298 (4)0.6483 (2)0.073 (1)
C110.8983 (4)0.0583 (4)0.5970 (3)0.082 (1)
C120.4930 (3)0.0621 (3)0.6952 (2)0.060 (1)
C130.4058 (4)0.0214 (4)0.7407 (3)0.083 (1)
C140.4080 (4)0.1110 (4)0.6149 (3)0.100 (2)
H11.10220.15840.97650.1011*
H21.05750.26350.92080.1011*
H31.30280.26210.95310.1275*
H41.30880.14460.91010.1275*
H51.26410.24970.85440.1275*
H60.65350.00590.94430.1140*
H70.63940.11110.89950.1140*
H80.60690.12761.03930.1477*
H90.75490.07621.06550.1477*
H100.74080.19311.02070.1477*
H110.59660.04970.63220.0638*
H120.71870.16260.65410.0697*
H130.70460.09020.57080.0697*
H140.94880.11790.83830.0828*
H150.94470.16160.74440.0828*
H161.05840.07480.77980.0828*
H171.06840.09730.62670.0907*
H180.95310.18940.61070.0907*
H191.01860.16250.70390.0907*
H200.82890.11420.60100.0999*
H210.89440.03270.53870.0999*
H220.98960.09030.61320.0999*
H230.51860.12220.73410.0754*
H240.32090.01560.75470.1036*
H250.38000.08360.70480.1036*
H260.45700.04600.79300.1036*
H270.32340.14400.63040.1256*
H280.46170.16600.58970.1256*
H290.38380.05170.57440.1256*
H300.711 (3)0.108 (3)0.752 (2)0.0507*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0492 (4)0.0440 (4)0.0561 (4)0.0006 (4)0.0022 (4)0.0000 (4)
O10.050 (1)0.069 (1)0.076 (1)0.006 (1)0.004 (1)0.015 (1)
O20.067 (1)0.082 (2)0.056 (1)0.002 (1)0.005 (1)0.007 (1)
O30.072 (1)0.043 (1)0.078 (1)0.010 (1)0.005 (1)0.002 (1)
N0.046 (1)0.042 (1)0.061 (1)0.005 (1)0.006 (1)0.006 (1)
C10.070 (2)0.080 (3)0.091 (3)0.006 (2)0.011 (2)0.022 (2)
C20.040 (1)0.041 (2)0.063 (2)0.002 (1)0.006 (1)0.000 (2)
C30.048 (2)0.056 (2)0.058 (2)0.004 (2)0.014 (1)0.003 (2)
C40.050 (2)0.062 (2)0.051 (2)0.004 (2)0.001 (1)0.007 (2)
C50.044 (2)0.049 (2)0.053 (2)0.004 (1)0.003 (1)0.000 (2)
C60.070 (3)0.091 (3)0.144 (4)0.016 (2)0.021 (3)0.027 (3)
C70.087 (3)0.127 (4)0.069 (2)0.010 (3)0.012 (2)0.003 (3)
C80.144 (4)0.133 (4)0.086 (3)0.001 (4)0.023 (3)0.023 (3)
C90.059 (2)0.048 (2)0.092 (2)0.014 (2)0.002 (2)0.000 (2)
C100.056 (2)0.085 (2)0.081 (2)0.015 (2)0.018 (2)0.007 (2)
C110.079 (2)0.090 (3)0.079 (2)0.004 (2)0.024 (2)0.022 (2)
C120.045 (2)0.065 (2)0.069 (2)0.001 (2)0.003 (2)0.002 (2)
C130.055 (2)0.093 (3)0.107 (3)0.010 (2)0.028 (2)0.001 (2)
C140.056 (2)0.129 (4)0.112 (3)0.012 (3)0.008 (2)0.033 (3)
Geometric parameters (Å, º) top
P—O11.579 (2)C2—C91.529 (4)
P—O21.578 (3)C3—C41.528 (4)
P—O31.463 (2)C3—C101.537 (5)
P—C21.827 (3)C4—C51.515 (4)
O1—C11.442 (5)C5—C121.528 (4)
O2—C71.469 (5)C7—C81.441 (6)
N—C21.484 (4)C3—C111.533 (5)
N—C51.474 (4)C12—C131.521 (5)
C1—C61.490 (6)C12—C141.529 (5)
C2—C31.566 (5)
O1—P—O2101.7 (1)N—C2—C9110.3 (2)
O1—P—O3115.4 (1)C3—C2—C9115.8 (3)
O1—P—C2103.0 (1)N—C5—C4104.6 (2)
O2—P—O3112.4 (1)N—C5—C12111.6 (3)
O2—P—C2106.2 (1)C4—C5—C12114.3 (3)
O3—P—C2116.5 (1)C5—C4—C3105.4 (3)
P—O1—C1121.4 (2)C2—C3—C4100.9 (2)
P—O2—C7121.1 (2)C2—C3—C10114.7 (3)
C2—N—C5110.5 (2)C2—C3—C11110.2 (3)
O1—C1—C6108.5 (4)C4—C3—C10112.8 (3)
O2—C7—C8110.1 (4)C4—C3—C11109.2 (3)
P—C2—N103.3 (2)C10—C3—C11108.8 (3)
P—C2—C3114.1 (2)C5—C12—C13111.2 (3)
P—C2—C9108.2 (2)C5—C12—C14110.8 (3)
N—C2—C3104.4 (2)C13—C12—C14111.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H30···O3i0.85 (4)2.30 (3)3.078 (4)152 (3)
Symmetry code: (i) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H30NO3P
Mr291.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)9.552 (3), 11.853 (7), 15.615 (4)
β (°) 96.47 (2)
V3)1757 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
3018, 2744, 1861
Rint0.030
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.069, 1.17
No. of reflections1861
No. of parameters173
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.20

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, BEGIN SDP (Frenz, 1985), MULTAN80 (Main et al., 1980), LSFM SDP (Frenz, 1985), CIF VAX MolEN (Fair, 1990).

Selected geometric parameters (Å, º) top
P—O11.579 (2)C2—C91.529 (4)
P—O21.578 (3)C3—C41.528 (4)
P—O31.463 (2)C3—C101.537 (5)
P—C21.827 (3)C4—C51.515 (4)
O1—C11.442 (5)C5—C121.528 (4)
O2—C71.469 (5)C7—C81.441 (6)
N—C21.484 (4)C3—C111.533 (5)
N—C51.474 (4)C12—C131.521 (5)
C1—C61.490 (6)C12—C141.529 (5)
C2—C31.566 (5)
O1—P—O2101.7 (1)N—C2—C9110.3 (2)
O1—P—O3115.4 (1)C3—C2—C9115.8 (3)
O1—P—C2103.0 (1)N—C5—C4104.6 (2)
O2—P—O3112.4 (1)N—C5—C12111.6 (3)
O2—P—C2106.2 (1)C4—C5—C12114.3 (3)
O3—P—C2116.5 (1)C5—C4—C3105.4 (3)
P—O1—C1121.4 (2)C2—C3—C4100.9 (2)
P—O2—C7121.1 (2)C2—C3—C10114.7 (3)
C2—N—C5110.5 (2)C2—C3—C11110.2 (3)
O1—C1—C6108.5 (4)C4—C3—C10112.8 (3)
O2—C7—C8110.1 (4)C4—C3—C11109.2 (3)
P—C2—N103.3 (2)C10—C3—C11108.8 (3)
P—C2—C3114.1 (2)C5—C12—C13111.2 (3)
P—C2—C9108.2 (2)C5—C12—C14110.8 (3)
N—C2—C3104.4 (2)C13—C12—C14111.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H30···O3i0.85 (4)2.30 (3)3.078 (4)152 (3)
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds