Download citation
Download citation
link to html
The condensation reaction of 2-amino-5-tert-butyl­oxy­methyl-2-oxazoline with ethyl cyano­(ethoxy­methyl­ene)­acetate led to the title cycloadduct. The structure indicates a delocalization in the pyrimidine ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016285/qa0195sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016285/qa0195Isup2.hkl
Contains datablock I

CCDC reference: 140867

Comment top

2-Amino-2-oxazolines are found useful synthons for the preparation of various pyrimidine derivatives (Kampe, 1974; Forfar et al., 1990; Chaimbault et al., 1999). As an example, 5-tert-butyloxymethyl-2-amino-2-oxazoline reacted with ethyl cyano(ethoxymethylene)acetate (EMCA) to yield 2-tert-butyloxymethyl-6-cyano-2,3-dihydro-5H-oxazolo[3,2-a]pyrimidin-5-one, (I). Its structure was established by X-ray crystallography. The analysis of bond lengths and angles indicated a π delocalization on the pyrimidine cycle. The fused rings are found almost coplanar. The orientation of the tert-butyloxymethyl chain is defined by the torsion angle C6—O7—C8—C9 = −140.8 (3)°. The crystalline cohesion is ensured by intermolecular van der Waals contacts.

Experimental top

Ethyl cyano(ethoxymethylene)acetate (50 mmol) is added dropwise to a solution of 2-amino-5-tert-butyloxymethyl-1,3-oxazoline (50 mmol) in ethanol (150 ml). The solution is stirred magnetically at room temperature overnight. The solvent is evaporated under reduced pressure and the product is recrystallized from tetrachloroethylene (77%). Colourless crystals were grown in ethanol and had m.p. = 375 K.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: Nonius (unpublished); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993).

6-Cyano-2,3-dihydro-2-(tertiobutyloxy)methyl-5H-oxazolo[3,2-a]pyrimidin-5-one, top
Crystal data top
C12H15N3O3Dx = 1.312 Mg m3
Mr = 249.27Melting point: 375 K
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 11.903 (1) ÅCell parameters from 25 reflections
b = 10.895 (2) Åθ = 4.0–64.9°
c = 10.343 (1) ŵ = 0.80 mm1
β = 109.76 (1)°T = 296 K
V = 1262.3 (3) Å3Plate, colourless
Z = 40.25 × 0.25 × 0.02 mm
F(000) = 528
Data collection top
Enraf Nonius CAD-4
diffractometer
1243 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeθmax = 64.9°, θmin = 4.0°
Graphite monochromatorh = 013
ω–2θ scansk = 012
Absorption correction: ψ scan (north et al., 1968)
?
l = 1211
Tmin = 0.854, Tmax = 0.9992 standard reflections every 90 reflections
2060 measured reflections intensity decay: none
2060 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters not refined
wR(F2) = 0.131Calculated w = 1/[σ2(Fo2) + (0.0738P)2 + 0.5706P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2059 reflectionsΔρmax = 0.24 e Å3
164 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL93, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (5)
Crystal data top
C12H15N3O3V = 1262.3 (3) Å3
Mr = 249.27Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.903 (1) ŵ = 0.80 mm1
b = 10.895 (2) ÅT = 296 K
c = 10.343 (1) Å0.25 × 0.25 × 0.02 mm
β = 109.76 (1)°
Data collection top
Enraf Nonius CAD-4
diffractometer
2060 independent reflections
Absorption correction: ψ scan (north et al., 1968)
?
1243 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.9992 standard reflections every 90 reflections
2060 measured reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.131H-atom parameters not refined
S = 1.03Δρmax = 0.24 e Å3
2059 reflectionsΔρmin = 0.17 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 1 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.0128 (5)0.6303 (5)0.0997 (5)0.123 (2)
H3A0.0431 (5)0.6520 (5)0.0548 (5)0.184*
H3B0.0705 (5)0.6948 (5)0.0869 (5)0.184*
H3C0.0527 (5)0.5556 (5)0.0610 (5)0.184*
C40.1207 (4)0.7259 (4)0.3126 (5)0.110 (2)
H4A0.1744 (4)0.7470 (4)0.2647 (5)0.166*
H4B0.1654 (4)0.7110 (4)0.4076 (5)0.166*
H4C0.0659 (4)0.7923 (4)0.3055 (5)0.166*
C50.0316 (4)0.5784 (5)0.3237 (6)0.115 (2)
H5A0.0122 (4)0.5676 (5)0.4197 (6)0.173*
H5B0.0715 (4)0.5033 (5)0.2864 (6)0.173*
H5C0.0895 (4)0.6425 (5)0.3123 (6)0.173*
C60.0526 (3)0.6125 (3)0.2503 (4)0.0611 (9)
O70.1342 (2)0.5127 (2)0.2540 (2)0.0643 (7)
C80.2074 (3)0.4702 (3)0.3847 (4)0.0650 (9)
H8A0.1730 (3)0.3968 (3)0.4093 (4)0.078*
H8B0.2133 (3)0.5324 (3)0.4537 (4)0.078*
C90.3293 (3)0.4421 (3)0.3783 (3)0.0598 (9)
H90.3797 (3)0.4058 (3)0.4652 (3)0.072*
O100.3809 (2)0.5589 (2)0.3545 (2)0.0624 (6)
C110.3744 (2)0.5623 (3)0.2240 (3)0.0513 (8)
N120.3453 (2)0.4529 (2)0.1627 (3)0.0466 (6)
C130.3304 (3)0.3615 (3)0.2582 (4)0.0620 (9)
H13A0.3963 (3)0.3039 (3)0.2853 (4)0.074*
H13B0.2560 (3)0.3169 (3)0.2195 (4)0.074*
N140.3970 (2)0.6628 (2)0.1692 (3)0.0623 (8)
C150.3884 (3)0.6487 (3)0.0359 (4)0.0602 (9)
H150.4023 (3)0.7173 (3)0.0100 (4)0.072*
C160.3610 (2)0.5415 (3)0.0355 (3)0.0523 (8)
C170.3407 (2)0.4319 (3)0.0295 (3)0.0508 (8)
C180.3575 (3)0.5337 (3)0.1747 (4)0.0645 (10)
N190.3562 (3)0.5258 (3)0.2858 (4)0.0903 (11)
O200.3220 (2)0.3287 (2)0.0200 (2)0.0678 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.107 (4)0.144 (5)0.097 (4)0.066 (4)0.006 (3)0.005 (3)
C40.099 (3)0.068 (3)0.152 (4)0.014 (2)0.027 (3)0.017 (3)
C50.086 (3)0.097 (3)0.189 (5)0.009 (3)0.080 (3)0.010 (3)
C60.051 (2)0.055 (2)0.077 (2)0.001 (2)0.021 (2)0.006 (2)
O70.0537 (12)0.076 (2)0.0570 (14)0.0135 (11)0.0109 (10)0.0027 (12)
C80.065 (2)0.072 (2)0.058 (2)0.002 (2)0.022 (2)0.009 (2)
C90.055 (2)0.062 (2)0.055 (2)0.005 (2)0.010 (2)0.005 (2)
O100.0569 (13)0.062 (2)0.063 (2)0.0054 (11)0.0119 (11)0.0092 (12)
C110.038 (2)0.047 (2)0.062 (2)0.0006 (14)0.0079 (14)0.005 (2)
N120.0414 (13)0.040 (2)0.055 (2)0.0001 (11)0.0116 (11)0.0004 (12)
C130.059 (2)0.054 (2)0.072 (2)0.003 (2)0.021 (2)0.008 (2)
N140.057 (2)0.045 (2)0.081 (2)0.0073 (13)0.0188 (15)0.0053 (15)
C150.044 (2)0.051 (2)0.079 (3)0.0006 (14)0.013 (2)0.011 (2)
C160.037 (2)0.053 (2)0.063 (2)0.0037 (14)0.0112 (14)0.006 (2)
C170.0349 (14)0.049 (2)0.064 (2)0.0010 (13)0.0105 (13)0.003 (2)
C180.047 (2)0.072 (3)0.069 (3)0.006 (2)0.013 (2)0.010 (2)
N190.085 (2)0.111 (3)0.071 (2)0.008 (2)0.021 (2)0.009 (2)
O200.0700 (15)0.055 (2)0.075 (2)0.0024 (12)0.0202 (12)0.0120 (13)
Geometric parameters (Å, º) top
C3—C61.500 (5)C11—N121.340 (4)
C4—C61.498 (5)N12—C171.379 (4)
C5—C61.494 (5)N12—C131.456 (4)
C6—O71.450 (4)N14—C151.356 (4)
O7—C81.416 (4)C15—C161.362 (4)
C8—C91.506 (5)C16—C181.429 (5)
C9—O101.469 (4)C16—C171.431 (4)
C9—C131.525 (5)C17—O201.224 (4)
O10—C111.326 (4)C18—N191.147 (4)
C11—N141.302 (4)
O7—C6—C5111.0 (3)O10—C11—N12112.0 (3)
O7—C6—C3103.4 (3)C11—N12—C17122.6 (3)
C5—C6—C3111.0 (4)C11—N12—C13111.0 (3)
O7—C6—C4110.3 (3)C17—N12—C13126.3 (3)
C5—C6—C4110.2 (4)N12—C13—C9101.3 (3)
C3—C6—C4110.8 (4)C11—N14—C15113.1 (3)
C8—O7—C6117.4 (3)N14—C15—C16124.8 (3)
O7—C8—C9108.4 (3)C15—C16—C18121.2 (3)
O10—C9—C8107.2 (3)C15—C16—C17120.6 (3)
O10—C9—C13104.1 (3)C18—C16—C17118.2 (3)
C8—C9—C13115.2 (3)O20—C17—N12120.7 (3)
C11—O10—C9108.1 (2)O20—C17—C16127.3 (3)
N14—C11—O10121.1 (3)N12—C17—C16112.0 (3)
N14—C11—N12126.9 (3)N19—C18—C16178.8 (4)
C5—C6—O7—C858.7 (4)O10—C9—C13—N1217.5 (3)
C3—C6—O7—C8177.8 (3)C8—C9—C13—N1299.6 (3)
C4—C6—O7—C863.7 (4)O10—C11—N14—C15178.7 (3)
C6—O7—C8—C9140.8 (3)N12—C11—N14—C150.1 (4)
O7—C8—C9—O1065.3 (3)C11—N14—C15—C160.9 (4)
O7—C8—C9—C1350.0 (4)N14—C15—C16—C18178.0 (3)
C8—C9—O10—C11104.1 (3)N14—C15—C16—C171.1 (5)
C13—C9—O10—C1118.4 (3)C11—N12—C17—O20174.8 (3)
C9—O10—C11—N14169.5 (3)C13—N12—C17—O200.4 (4)
C9—O10—C11—N1211.8 (3)C11—N12—C17—C164.6 (4)
N14—C11—N12—C173.0 (4)C13—N12—C17—C16179.0 (2)
O10—C11—N12—C17175.7 (2)C15—C16—C17—O20175.6 (3)
N14—C11—N12—C13178.2 (3)C18—C16—C17—O201.4 (4)
O10—C11—N12—C130.5 (3)C15—C16—C17—N123.7 (4)
C11—N12—C13—C911.7 (3)C18—C16—C17—N12179.3 (3)
C17—N12—C13—C9173.3 (3)

Experimental details

Crystal data
Chemical formulaC12H15N3O3
Mr249.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.903 (1), 10.895 (2), 10.343 (1)
β (°) 109.76 (1)
V3)1262.3 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.25 × 0.25 × 0.02
Data collection
DiffractometerEnraf Nonius CAD-4
diffractometer
Absorption correctionψ scan (North et al., 1968)
Tmin, Tmax0.854, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
2060, 2060, 1243
Rint?
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.131, 1.03
No. of reflections2059
No. of parameters164
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, Nonius (unpublished), SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993).

Selected geometric parameters (Å, º) top
C3—C61.500 (5)C11—N121.340 (4)
C4—C61.498 (5)N12—C171.379 (4)
C5—C61.494 (5)N12—C131.456 (4)
C6—O71.450 (4)N14—C151.356 (4)
O7—C81.416 (4)C15—C161.362 (4)
C8—C91.506 (5)C16—C181.429 (5)
C9—O101.469 (4)C16—C171.431 (4)
C9—C131.525 (5)C17—O201.224 (4)
O10—C111.326 (4)C18—N191.147 (4)
C11—N141.302 (4)
O7—C6—C5111.0 (3)O10—C11—N12112.0 (3)
O7—C6—C3103.4 (3)C11—N12—C17122.6 (3)
C5—C6—C3111.0 (4)C11—N12—C13111.0 (3)
O7—C6—C4110.3 (3)C17—N12—C13126.3 (3)
C5—C6—C4110.2 (4)N12—C13—C9101.3 (3)
C3—C6—C4110.8 (4)C11—N14—C15113.1 (3)
C8—O7—C6117.4 (3)N14—C15—C16124.8 (3)
O7—C8—C9108.4 (3)C15—C16—C18121.2 (3)
O10—C9—C8107.2 (3)C15—C16—C17120.6 (3)
O10—C9—C13104.1 (3)C18—C16—C17118.2 (3)
C8—C9—C13115.2 (3)O20—C17—N12120.7 (3)
C11—O10—C9108.1 (2)O20—C17—C16127.3 (3)
N14—C11—O10121.1 (3)N12—C17—C16112.0 (3)
N14—C11—N12126.9 (3)N19—C18—C16178.8 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds