Download citation
Download citation
link to html
Dichloro­(4,4'-dipentyl-2,2'-bipyridine-[kappa]2N,N')platinum(II), [PtCl2(C20H28N2)], adopts a discrete [pi]-[pi] stacking structure, where the alkyl chains are located in a random manner. In contrast, dichloro­(4,4'-diheptyl-2,2'-bipyridine-[kappa]2N,N')platinum(II), [PtCl2(C24H36N2)], forms a layer structure comprised of alkyl chain layers and paired coordination sites, as observed for analogous complexes with longer alkyl chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010600758X/ob1249sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010600758X/ob1249Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010600758X/ob1249IIsup3.hkl
Contains datablock II

CCDC references: 609547; 609548

Comment top

It is well known that long alkyl chains play an important role in controlling molecular arrangement. Such properties of long alkyl chains have been exploited in metal complexes in order to arrange them on the surface of matrices as monolayers or thin-layer films (Valenty et al., 1979; Borgarello et al., 1981). It is also known that square-planar PtII complexes are often stacked in the solid state so that they exhibit characteristic colours and intense luminescence (Houlding & Miskowski, 1991). Thus, the introduction of alkyl chains into PtII complexes would be expected to enhance and/or control their self-assembled properties. Such complexes are also expected to exhibit amphiphilic properties, which are induced by the combination of a hydrophilic coordination site and the hydrophobic alkyl chains. In fact, we recently reported the Langmuir–Blodgett film of dicyano(5,5'-diundecyl-2,2'-bipyridine)platinum(II), which exhibits characteristic luminescence based on Pt···Pt interactions with increasing surface pressure (Kobayashi et al., 2004). We have also determined the crystal structure of compound (III), the dichloro-PtII complex with 4,4'-dinonyl-2,2'-bipyridine (dC9bpy) (Kato & Ikemori, 2003). In compound (III), the molecules are arranged in an orderly fashion to form an alternating layer structure of the alkyl-chain layers and paired coordination sites. Such layer arrangement indicates that the discrimination between the hydrophobic and hydrophilic sites is clear. In order to investigate the effect of the alkyl chains on the arrangement of such PtII complexes, we have now synthesized a series of PtII complexes bearing alkyl chains of different lengths. In this paper, we report the crystal structures of two dichloro-PtII complexes, (I) and (II), containing 4,4'-dipentyl-2,2'-bipyridine (dC5bpy) and 4,4'-diheptyl-2,2'-bipyridine (dC7bpy) ligands, respectively.

Fig. 1 shows the molecular structure of (I). The coordination geometry is planar, including the bipyridine moiety, with a deviation of 0.17 (1) Å For which atom?, but the two alkyl chains are located randomly out of the coordination plane. The complexes are stacked at the bipyridine moieties along the a axis, with an interplanar spacing of 3.27 (2) Å (Fig. 2). In this stack, the Pt···Pt distance is 5.1936 (5) Å. There is no particular orientation of the pentyl groups in the packing structure. For this complex, ππ stacking would be a main factor in controlling the packing structure. A similar stacking structure was reported for the analogous complex bearing tert-butyl groups, [PtCl2(bu2bpy)] (bu2bpy = 4,4'-di-tert-butyl-2,2'-bipyridine; Achar & Catalano, 1997). The arrangement of the pentyl groups in compound (I) could be one of several conformations. In fact, a different crystal form, a solvate, was deposited from the same solution as used for the crystallization of complex (I).

In contrast to the above, complex (II) exhibits a well ordered arrangement of the alkyl chains. As shown in Fig. 3, the heptyl groups are extended in the same direction and the complex molecules are arranged to form a layer structure (Fig. 4). There is an alternating arrangement of the alkyl layers and the metal-coordination parts. No particular interactions are observed between the alkyl chains and the Cl ligands. There is no C—H···Cl distance shorter than 2.95 Å, the sum of the van der Waals radii of H and Cl (Reference?). The molecular arrangement of (II) is essentially the same as that of (III). In proportion to the length of the alkyl chain, the width of the alkyl layers for the dC7bpy complex is narrower than that for the dC9bpy complex. This is reflected in the smaller value of the lattice parameter of the a axis [15.102 (8) Å, space group P21/c] for (II) compared with that of the corresponding c axis for (III) [17.652 (2) Å, P21/a] while the other lattice parameters are similar. The coordination sites are arranged in a face-to-face fashion with an interplanar spacing of 3.40 (1) Å. The Pt···Pt distance is long enough to indicate no interaction between them [5.3416 (2) Å]. Thus, seven or more C atoms in the alkyl chains are necessary for the adoption of a layer arrangement.

Cocker & Bachman (2004) reported the crystal structures of Pt complexes containing a series of 4,4'-dialkyl-2,2'-bipyridines and a benzene-1,2-dithiolate ion. These complexes are roughly planar, including the extension of the alkyl chains, and are packed in an overlapping arrangement of the ππ stack of the coordination sites and the alkyl chains. These packing structures are different from the segregated and alternating layer structures of (II) and (III). Thus, the alternating layer structures of (II) and (III) would reflect good amphiphilic properties for dichloro PtII complexes. Further studies are in progress regarding related complexes bearing alkyl chains with even numbers of C atoms, in addition to those with odd numbers of C atoms.

Experimental top

4,4'-Dipentyl-2,2'-bipyridine (dC5bpy) and 4,4'-diheptyl-2,2'-bipyridine (dC7bpy) were prepared by a similar method to that reported previously by Ellison & Iwamoto (1983), using 1-bromobutane for dC5bpy and 1-bromohexane for dC7bpy. The products were purified by silica-gel column chromatography (eluent: toluene–diethyl ether 1:1). For dC5bpy, 1H NMR (CDCl3, δ, p.p.m.): 0.90 (t, 6H, CH3), 1.36 (br, 8H, CH2), 1.70 (m, 4H, CH2), 2.69 (t, 4H, CH2), 7.14 (d, 2H, bpy), 8.24 (s, 2H, bpy), 8.57 (d, 2H, bpy); ESI-MS: m/z 296 ([M+H]+). For dC7bpy, 1H NMR (CDCl3, δ, p.p.m.): 0.88 (br, 6H, CH3), 1.31 (br, 16H, CH2), 1.69 (br, 4H, CH2), 2.69 (t, 4H, CH2), 7.13 (d, 2H, bpy), 8.23 (s, 2H, bpy), 8.56 (d, 2H, bpy); ESI-MS: m/z 353 ([M+H]+).

The PtII complexes were obtained by reaction of equimolar amounts of K2[PtCl4] and the respective ligands in an acidic aqueous solution at 343 K. After heating for 2 h, a yellow powder of (I) or (II) was deposited [yield: 30% for (I), 68% for (II)]. Recrystallization from N,N-dimethylformamide gave yellow needle crystals for (I) and yellow plate crystals for (II). For (I), 1H NMR (CDCl3, δ, p.p.m.): 0.93 (t, 3H, CH3), 1.39 (br, 8H, CH2), 1.75 (br, 4H, CH2), 2.81 (t, 4H, CH2), 7.20 (d, 2H, bpy), 7.90 (s, 2H, bpy), 9.20 (d, 2H, bpy); m.p. 483–484 K. For (II), 1H NMR (CDCl3, δ, p.p.m.): 0.90 (t, 6H, CH3), 1.30 (br, 8H, CH2), 1.36 (br, 8H, CH2), 1.75 (br, 4H, CH2), 2.81 (t, 4H, CH2), 7.20 (d, 2H, bpy), 7.90 (s, 2H, bpy), 9.19 (d, 2H, bpy); m.p. 421–424 K.

Refinement top

H atoms were refined using a riding model, with C—H = 0.95, 0.98 and 0.99 Å for pyridyl, methyl and methylene groups, respectively, and with Uiso(H) = 1.2Ueq(C). For (I), the large ratio (3.7) of Ueq(max)/Ueq(min) for C is attributed to the fluctuation of the end of the pentyl groups. Several peaks of residual electron density (2.0–2.3 e Å−3) and the deepest hole of −3.5 e Å−3 were observed within 1.0 Å of atom Pt1 for (I). For (II), the peaks of 3.9 and 3.4 e Å−3 and the hole of −1.8 e Å−3 are located at 1.63, 1.78 and 0.73 Å from atoms C2, C24 and Pt1, respectively.

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellispoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing structure of (I), viewed down the a axis. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellispoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The packing structure of (II), viewed down the b axis. H atoms have been omitted for clarity.
(I) Dichloro(4,4'-dipentyl-2,2'-bipyridine-κ2N,N')platinum(II) top
Crystal data top
[PtCl2(C20H28N2)]F(000) = 1096.00
Mr = 562.45Dx = 1.828 Mg m3
Monoclinic, P21/cMelting point = 483–484 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 7.1791 (19) ÅCell parameters from 6090 reflections
b = 13.853 (4) Åθ = 3.1–27.5°
c = 20.609 (5) ŵ = 7.11 mm1
β = 94.3564 (9)°T = 173 K
V = 2043.6 (9) Å3Needle, yellow
Z = 40.45 × 0.10 × 0.10 mm
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
3263 reflections with F2 > 2σ(F2)
Detector resolution: 14.71 pixels mm-1Rint = 0.098
ω scansθmax = 27.5°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 98
Tmin = 0.578, Tmax = 0.868k = 1717
15324 measured reflectionsl = 2626
4537 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.067 w = 1/[σ2(Fo2) + (0.0864P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.180(Δ/σ)max = 0.001
S = 0.97Δρmax = 2.30 e Å3
4537 reflectionsΔρmin = 3.54 e Å3
227 parameters
Crystal data top
[PtCl2(C20H28N2)]V = 2043.6 (9) Å3
Mr = 562.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1791 (19) ŵ = 7.11 mm1
b = 13.853 (4) ÅT = 173 K
c = 20.609 (5) Å0.45 × 0.10 × 0.10 mm
β = 94.3564 (9)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
4537 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3263 reflections with F2 > 2σ(F2)
Tmin = 0.578, Tmax = 0.868Rint = 0.098
15324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.067227 parameters
wR(F2) = 0.180H-atom parameters constrained
S = 0.97Δρmax = 2.30 e Å3
4537 reflectionsΔρmin = 3.54 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor(wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.29106 (5)0.07509 (3)0.58358 (2)0.02498 (15)
Cl10.2288 (4)0.0410 (2)0.68869 (14)0.0402 (6)
Cl20.4071 (4)0.2228 (2)0.61712 (14)0.0379 (6)
N10.2012 (11)0.0540 (6)0.5472 (4)0.0253 (18)
N20.3287 (11)0.0951 (6)0.4890 (4)0.0276 (19)
C10.1427 (13)0.1276 (8)0.5823 (5)0.028 (2)
C20.0892 (13)0.2146 (7)0.5532 (5)0.028 (2)
C30.0913 (13)0.2278 (7)0.4871 (5)0.028 (2)
C40.1536 (13)0.1496 (7)0.4508 (5)0.026 (2)
C50.2090 (13)0.0659 (6)0.4818 (5)0.0201 (19)
C60.2738 (13)0.0222 (7)0.4485 (5)0.027 (2)
C70.2851 (13)0.0283 (7)0.3817 (5)0.027 (2)
C80.3483 (14)0.1118 (8)0.3550 (5)0.029 (2)
C90.4084 (15)0.1847 (7)0.3953 (5)0.032 (2)
C100.3931 (14)0.1758 (7)0.4618 (5)0.028 (2)
C110.0335 (15)0.3204 (7)0.4548 (5)0.030 (2)
C120.2009 (15)0.3892 (8)0.4492 (5)0.033 (2)
C130.145 (2)0.4801 (8)0.4119 (7)0.048 (3)
C140.305 (2)0.5528 (9)0.4137 (8)0.054 (3)
C150.468 (2)0.5176 (12)0.3781 (8)0.073 (5)
C160.3572 (16)0.1205 (9)0.2813 (5)0.038 (2)
C170.1605 (17)0.1332 (8)0.2480 (5)0.037 (2)
C180.0697 (15)0.2271 (8)0.2671 (5)0.033 (2)
C190.1311 (17)0.2384 (9)0.2385 (6)0.043 (2)
C200.223 (2)0.3309 (11)0.2631 (7)0.060 (4)
H10.13770.12030.62790.034*
H20.05040.26610.57940.034*
H40.15730.15500.40490.031*
H70.24910.02500.35460.033*
H90.46060.24150.37820.038*
H100.42930.22870.48930.033*
H11A0.06070.35240.48020.036*
H11B0.02540.30670.41080.036*
H12A0.25380.40690.49340.039*
H12B0.29940.35540.42690.039*
H13A0.03640.50990.43100.058*
H13B0.10710.46330.36610.058*
H14A0.25870.61420.39380.065*
H14B0.34840.56620.45960.065*
H15A0.56490.56760.37930.088*
H15B0.42600.50330.33280.088*
H15C0.51960.45890.39920.088*
H16A0.43550.17650.27130.045*
H16B0.41520.06170.26440.045*
H17A0.08140.07840.25990.045*
H17B0.16780.13200.20030.045*
H18A0.07150.23030.31520.040*
H18B0.14460.28190.25250.040*
H19A0.13260.24070.19040.051*
H19B0.20470.18150.25040.051*
H20A0.35070.33610.24330.072*
H20B0.22470.32800.31060.072*
H20C0.15050.38740.25110.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
PT10.0229 (2)0.0251 (2)0.0259 (2)0.00473 (14)0.00454 (16)0.00285 (16)
CL10.0521 (18)0.0394 (15)0.0288 (14)0.0014 (14)0.0007 (12)0.0029 (12)
CL20.0408 (15)0.0307 (14)0.0406 (15)0.0015 (12)0.0067 (12)0.0102 (12)
N10.022 (4)0.022 (4)0.031 (4)0.003 (3)0.007 (3)0.001 (3)
N20.020 (4)0.030 (4)0.031 (4)0.000 (3)0.009 (3)0.009 (3)
C10.018 (4)0.041 (6)0.025 (5)0.006 (4)0.003 (3)0.005 (4)
C20.020 (4)0.025 (5)0.039 (6)0.003 (4)0.000 (4)0.008 (4)
C30.021 (5)0.024 (5)0.037 (5)0.002 (4)0.002 (4)0.003 (4)
C40.016 (4)0.035 (5)0.025 (5)0.001 (4)0.001 (3)0.001 (4)
C50.016 (4)0.018 (4)0.026 (4)0.005 (3)0.002 (3)0.010 (3)
C60.016 (4)0.028 (5)0.037 (5)0.006 (4)0.007 (4)0.007 (4)
C70.021 (4)0.027 (5)0.032 (5)0.004 (4)0.008 (4)0.010 (4)
C80.021 (5)0.029 (5)0.035 (5)0.004 (4)0.003 (4)0.004 (4)
C90.039 (6)0.025 (5)0.030 (5)0.002 (4)0.002 (4)0.013 (4)
C100.027 (5)0.023 (5)0.034 (5)0.004 (4)0.009 (4)0.009 (4)
C110.037 (6)0.022 (5)0.030 (5)0.001 (4)0.005 (4)0.001 (4)
C120.035 (6)0.030 (5)0.032 (6)0.004 (4)0.001 (4)0.004 (4)
C130.057 (8)0.026 (6)0.062 (9)0.002 (6)0.009 (6)0.002 (6)
C140.058 (9)0.032 (7)0.073 (11)0.007 (6)0.016 (7)0.006 (6)
C150.095 (13)0.057 (10)0.072 (12)0.006 (9)0.033 (10)0.012 (9)
C160.036 (6)0.038 (6)0.038 (6)0.007 (5)0.002 (5)0.007 (5)
C170.052 (7)0.033 (6)0.027 (5)0.006 (5)0.001 (5)0.004 (4)
C180.030 (5)0.042 (6)0.027 (5)0.002 (5)0.005 (4)0.003 (5)
C190.046 (7)0.040 (7)0.040 (7)0.007 (5)0.004 (5)0.009 (5)
C200.044 (8)0.068 (10)0.068 (10)0.021 (7)0.001 (7)0.020 (8)
Geometric parameters (Å, º) top
Pt1—Cl12.294 (3)C12—C131.513 (17)
Pt1—Cl22.295 (2)C12—H12A0.990
Pt1—N12.026 (8)C12—H12B0.990
Pt1—N22.007 (9)C13—C141.53 (2)
N1—C11.336 (14)C13—H13A0.990
N1—C51.362 (13)C13—H13B0.990
N2—C61.350 (13)C14—C151.51 (2)
N2—C101.348 (13)C14—H14A0.990
C1—C21.387 (15)C14—H14B0.990
C1—H10.950C15—H15A0.980
C2—C31.375 (15)C15—H15B0.980
C2—H20.950C15—H15C0.980
C3—C41.409 (15)C16—C171.532 (16)
C3—C111.490 (14)C16—H16A0.990
C4—C51.370 (14)C16—H16B0.990
C4—H40.950C17—C181.521 (17)
C5—C61.491 (14)C17—H17A0.990
C6—C71.388 (15)C17—H17B0.990
C7—C81.372 (15)C18—C191.524 (16)
C7—H70.950C18—H18A0.990
C8—C91.358 (15)C18—H18B0.990
C8—C161.529 (16)C19—C201.54 (2)
C9—C101.389 (16)C19—H19A0.990
C9—H90.950C19—H19B0.990
C10—H100.950C20—H20A0.980
C11—C121.546 (15)C20—H20B0.980
C11—H11A0.990C20—H20C0.980
C11—H11B0.990
Cl1—Pt1—Cl289.50 (11)C13—C12—H12A109.2
Cl1—Pt1—N195.1 (2)C13—C12—H12B109.2
Cl1—Pt1—N2174.7 (2)H12A—C12—H12B107.9
Cl2—Pt1—N1175.1 (2)C12—C13—C14111.5 (11)
Cl2—Pt1—N295.6 (2)C12—C13—H13A109.3
N1—Pt1—N279.9 (3)C12—C13—H13B109.3
Pt1—N1—C1125.3 (7)C14—C13—H13A109.3
Pt1—N1—C5115.9 (6)C14—C13—H13B109.3
C1—N1—C5118.8 (8)H13A—C13—H13B108.0
PT1—N2—C6116.2 (7)C13—C14—C15112.6 (12)
PT1—N2—C10126.4 (7)C13—C14—H14A109.1
C6—N2—C10117.2 (9)C13—C14—H14B109.1
N1—C1—C2121.1 (9)C15—C14—H14A109.1
N1—C1—H1119.4C15—C14—H14B109.1
C2—C1—H1119.4H14A—C14—H14B107.8
C1—C2—C3121.3 (10)C14—C15—H15A109.5
C1—C2—H2119.3C14—C15—H15B109.5
C3—C2—H2119.3C14—C15—H15C109.5
C2—C3—C4116.9 (9)H15A—C15—H15B109.5
C2—C3—C11122.2 (9)H15A—C15—H15C109.5
C4—C3—C11120.9 (9)H15B—C15—H15C109.5
C3—C4—C5119.7 (9)C8—C16—C17110.3 (9)
C3—C4—H4120.2C8—C16—H16A109.6
C5—C4—H4120.2C8—C16—H16B109.6
N1—C5—C4122.2 (9)C17—C16—H16A109.6
N1—C5—C6113.2 (8)C17—C16—H16B109.6
C4—C5—C6124.6 (9)H16A—C16—H16B108.1
N2—C6—C5114.5 (9)C16—C17—C18112.4 (9)
N2—C6—C7122.1 (9)C16—C17—H17A109.1
C5—C6—C7123.4 (9)C16—C17—H17B109.1
C6—C7—C8119.7 (10)C18—C17—H17A109.1
C6—C7—H7120.1C18—C17—H17B109.1
C8—C7—H7120.1H17A—C17—H17B107.9
C7—C8—C9118.7 (10)C17—C18—C19113.5 (9)
C7—C8—C16120.3 (10)C17—C18—H18A108.9
C9—C8—C16120.9 (10)C17—C18—H18B108.9
C8—C9—C10119.5 (10)C19—C18—H18A108.9
C8—C9—H9120.2C19—C18—H18B108.9
C10—C9—H9120.3H18A—C18—H18B107.7
N2—C10—C9122.6 (9)C18—C19—C20111.8 (10)
N2—C10—H10118.7C18—C19—H19A109.3
C9—C10—H10118.7C18—C19—H19B109.3
C3—C11—C12111.9 (8)C20—C19—H19A109.3
C3—C11—H11A109.2C20—C19—H19B109.3
C3—C11—H11B109.2H19A—C19—H19B107.9
C12—C11—H11A109.2C19—C20—H20A109.5
C12—C11—H11B109.2C19—C20—H20B109.5
H11A—C11—H11B107.9C19—C20—H20C109.5
C11—C12—C13112.0 (9)H20A—C20—H20B109.5
C11—C12—H12A109.2H20A—C20—H20C109.5
C11—C12—H12B109.2H20B—C20—H20C109.5
(II) dichloro(4,4'-diheptyl-2,2'-bipyridine-κ2N,N')platinum(II) top
Crystal data top
[PtCl2(C24H36N2)]F(000) = 1224.00
Mr = 618.56Dx = 1.654 Mg m3
Monoclinic, P21/cMelting point = 421–424 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 15.102 (8) ÅCell parameters from 7972 reflections
b = 10.781 (6) Åθ = 3.1–27.5°
c = 16.525 (10) ŵ = 5.85 mm1
β = 112.570 (3)°T = 173 K
V = 2484 (2) Å3Plate, yellow
Z = 40.37 × 0.30 × 0.17 mm
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
4970 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1Rint = 0.027
ω scansθmax = 27.5°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1917
Tmin = 0.182, Tmax = 0.363k = 1414
18483 measured reflectionsl = 1721
5522 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.9111P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.001
S = 1.12Δρmax = 3.87 e Å3
5522 reflectionsΔρmin = 1.83 e Å3
263 parameters
Crystal data top
[PtCl2(C24H36N2)]V = 2484 (2) Å3
Mr = 618.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.102 (8) ŵ = 5.85 mm1
b = 10.781 (6) ÅT = 173 K
c = 16.525 (10) Å0.37 × 0.30 × 0.17 mm
β = 112.570 (3)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
5522 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4970 reflections with F2 > 2σ(F2)
Tmin = 0.182, Tmax = 0.363Rint = 0.027
18483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041263 parameters
wR(F2) = 0.115H-atom parameters constrained
S = 1.12Δρmax = 3.87 e Å3
5522 reflectionsΔρmin = 1.83 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.446840 (10)0.16345 (2)0.134610 (10)0.03174 (10)
Cl10.32866 (11)0.31121 (13)0.16840 (10)0.0498 (3)
Cl20.37236 (10)0.07920 (12)0.27224 (8)0.0433 (3)
N10.5161 (2)0.2210 (3)0.0101 (2)0.0327 (8)
N20.5551 (2)0.0398 (3)0.0947 (2)0.0331 (8)
C10.4923 (4)0.3180 (4)0.0291 (4)0.0392 (11)
C20.5399 (4)0.3420 (4)0.1174 (4)0.0409 (13)
C30.6134 (3)0.2651 (4)0.1700 (3)0.0349 (10)
C40.6398 (3)0.1672 (3)0.1279 (3)0.0329 (10)
C50.5923 (3)0.1484 (4)0.0393 (3)0.0307 (10)
C60.6156 (3)0.0476 (4)0.0097 (3)0.0303 (9)
C70.6926 (3)0.0328 (4)0.0264 (3)0.0335 (10)
C80.7090 (3)0.1245 (4)0.0252 (3)0.0354 (10)
C90.6469 (4)0.1305 (4)0.1120 (3)0.0378 (11)
C100.5717 (3)0.0497 (4)0.1450 (3)0.0377 (11)
C110.6633 (4)0.2855 (5)0.2676 (3)0.0403 (11)
C120.7387 (3)0.3885 (5)0.2910 (3)0.0402 (11)
C130.8204 (4)0.3587 (6)0.2633 (4)0.0509 (14)
C140.8956 (4)0.4607 (6)0.2840 (4)0.0580 (16)
C150.9792 (5)0.4176 (6)0.2529 (4)0.0670 (18)
C161.0505 (5)0.5127 (7)0.2619 (5)0.0704 (19)
C171.1215 (4)0.4689 (7)0.2240 (4)0.0661 (18)
C180.7929 (3)0.2129 (4)0.0109 (3)0.0398 (11)
C190.8754 (4)0.1766 (4)0.0164 (4)0.0393 (12)
C200.9563 (3)0.2710 (5)0.0117 (3)0.0410 (11)
C211.0399 (3)0.2374 (4)0.0137 (3)0.0405 (11)
C221.1160 (4)0.3383 (4)0.0073 (3)0.0362 (11)
C231.2027 (4)0.3043 (5)0.0133 (3)0.0409 (11)
C241.2703 (4)0.4139 (5)0.0030 (4)0.0528 (15)
H10.44140.37110.00490.047*
H20.52220.41220.14260.049*
H40.69080.11360.16080.039*
H70.73400.02510.08630.040*
H90.65650.19160.14920.045*
H100.52990.05640.20490.045*
H11A0.69460.20720.29540.048*
H11B0.61470.30670.29200.048*
H12A0.70770.46650.26230.048*
H12B0.76440.40220.35510.048*
H13A0.79420.34300.19930.061*
H13B0.85180.28150.29290.061*
H14A0.92270.47740.34780.070*
H14B0.86580.53800.25330.070*
H15A1.01170.34420.28770.080*
H15B0.95000.39190.19070.080*
H16A1.08480.53310.32470.085*
H16B1.01820.58890.23120.085*
H17A1.16910.53410.23090.079*
H17B1.08760.45030.16150.079*
H17C1.15380.39400.25480.079*
H18A0.77110.29780.01040.048*
H18B0.81620.21390.07560.048*
H19A0.85050.16740.08090.047*
H19B0.90120.09510.00980.047*
H20A0.93020.35210.01480.049*
H20B0.98040.28060.07610.049*
H21A1.07020.16050.01740.049*
H21B1.01510.21990.07740.049*
H23A1.23830.23660.02630.049*
H23B1.18060.27300.07420.049*
H24A1.32480.38730.01700.063*
H24B1.23580.48070.04290.063*
H24C1.29360.44410.05760.063*
H22A1.13800.35890.07030.043*
H22B1.08620.41380.02620.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03402 (14)0.03214 (12)0.03065 (14)0.00164 (6)0.01417 (11)0.00531 (6)
Cl10.0503 (8)0.0526 (7)0.0443 (8)0.0167 (6)0.0156 (6)0.0123 (6)
Cl20.0495 (7)0.0450 (6)0.0308 (6)0.0046 (5)0.0102 (5)0.0043 (5)
N10.036 (2)0.035 (2)0.031 (2)0.0005 (16)0.0169 (18)0.0040 (16)
N20.037 (2)0.0300 (19)0.037 (2)0.0037 (15)0.0199 (19)0.0020 (15)
C10.040 (2)0.039 (2)0.045 (3)0.005 (2)0.022 (2)0.001 (2)
C20.042 (3)0.041 (3)0.049 (3)0.002 (2)0.028 (2)0.006 (2)
C30.041 (2)0.033 (2)0.035 (2)0.0015 (19)0.020 (2)0.0042 (19)
C40.033 (2)0.034 (2)0.035 (2)0.0018 (17)0.016 (2)0.0014 (17)
C50.031 (2)0.031 (2)0.034 (2)0.0045 (17)0.017 (2)0.0020 (17)
C60.033 (2)0.030 (2)0.032 (2)0.0075 (17)0.017 (2)0.0014 (17)
C70.035 (2)0.035 (2)0.032 (2)0.0004 (19)0.015 (2)0.0005 (18)
C80.040 (2)0.030 (2)0.041 (2)0.003 (2)0.022 (2)0.003 (2)
C90.043 (3)0.037 (2)0.037 (3)0.001 (2)0.019 (2)0.007 (2)
C100.051 (3)0.033 (2)0.035 (2)0.002 (2)0.023 (2)0.0022 (19)
C110.045 (3)0.043 (2)0.040 (3)0.005 (2)0.024 (2)0.002 (2)
C120.044 (3)0.043 (2)0.034 (2)0.002 (2)0.016 (2)0.003 (2)
C130.041 (3)0.076 (4)0.039 (3)0.001 (2)0.019 (2)0.011 (2)
C140.043 (3)0.085 (4)0.042 (3)0.009 (3)0.013 (2)0.005 (3)
C150.091 (5)0.059 (4)0.050 (3)0.020 (3)0.025 (3)0.007 (3)
C160.064 (4)0.073 (4)0.067 (4)0.011 (3)0.017 (3)0.003 (3)
C170.048 (3)0.097 (5)0.055 (4)0.006 (3)0.023 (3)0.001 (3)
C180.042 (2)0.032 (2)0.047 (3)0.004 (2)0.019 (2)0.003 (2)
C190.039 (3)0.036 (2)0.047 (3)0.0013 (19)0.022 (2)0.002 (2)
C200.044 (3)0.043 (2)0.041 (2)0.004 (2)0.022 (2)0.003 (2)
C210.042 (2)0.037 (2)0.048 (3)0.001 (2)0.023 (2)0.001 (2)
C220.041 (3)0.035 (2)0.040 (3)0.0027 (18)0.023 (2)0.0045 (18)
C230.045 (3)0.042 (2)0.040 (3)0.005 (2)0.022 (2)0.000 (2)
C240.041 (3)0.051 (3)0.073 (4)0.005 (2)0.029 (3)0.007 (3)
Geometric parameters (Å, º) top
Pt1—Cl12.2956 (15)C14—C151.604 (11)
Pt1—Cl22.3019 (11)C14—H14A0.990
Pt1—N12.015 (3)C14—H14B0.990
Pt1—N22.014 (3)C15—C161.452 (11)
N1—C11.350 (7)C15—H15A0.990
N1—C51.373 (5)C15—H15B0.990
N2—C61.353 (5)C16—C171.511 (12)
N2—C101.358 (7)C16—H16A0.990
C1—C21.381 (8)C16—H16B0.990
C1—H10.950C17—H17A0.980
C2—C31.392 (7)C17—H17B0.980
C2—H20.950C17—H17C0.980
C3—C41.403 (7)C18—C191.531 (9)
C3—C111.511 (7)C18—H18A0.990
C4—C51.376 (7)C18—H18B0.990
C4—H40.950C19—C201.518 (7)
C5—C61.476 (7)C19—H19A0.990
C6—C71.387 (6)C19—H19B0.990
C7—C81.388 (7)C20—C211.520 (9)
C7—H70.950C20—H20A0.990
C8—C91.382 (6)C20—H20B0.990
C8—C181.513 (7)C21—C221.523 (7)
C9—C101.367 (7)C21—H21A0.990
C9—H90.950C21—H21B0.990
C10—H100.950C22—C231.519 (9)
C11—C121.530 (7)C22—H22A0.990
C11—H11A0.990C22—H22B0.990
C11—H11B0.990C23—C241.528 (8)
C12—C131.507 (10)C23—H23A0.990
C12—H12A0.990C23—H23B0.990
C12—H12B0.990C24—H24A0.980
C13—C141.522 (9)C24—H24B0.980
C13—H13A0.990C24—H24C0.980
C13—H13B0.990
Cl1—Pt1—Cl289.66 (5)C15—C14—H14A109.8
Cl1—Pt1—N194.88 (12)C15—C14—H14B109.8
Cl1—Pt1—N2175.19 (12)H14A—C14—H14B108.3
Cl2—Pt1—N1174.64 (11)C14—C15—C16114.0 (6)
Cl2—Pt1—N295.14 (11)C14—C15—H15A108.8
N1—Pt1—N280.31 (16)C14—C15—H15B108.8
Pt1—N1—C1126.8 (3)C16—C15—H15A108.8
Pt1—N1—C5114.8 (3)C16—C15—H15B108.8
C1—N1—C5118.3 (4)H15A—C15—H15B107.7
Pt1—N2—C6116.0 (3)C15—C16—C17110.7 (6)
Pt1—N2—C10126.0 (2)C15—C16—H16A109.5
C6—N2—C10118.0 (3)C15—C16—H16B109.5
N1—C1—C2121.7 (4)C17—C16—H16A109.5
N1—C1—H1119.1C17—C16—H16B109.5
C2—C1—H1119.1H16A—C16—H16B108.1
C1—C2—C3121.0 (5)C16—C17—H17A109.5
C1—C2—H2119.5C16—C17—H17B109.5
C3—C2—H2119.5C16—C17—H17C109.5
C2—C3—C4116.7 (4)H17A—C17—H17B109.5
C2—C3—C11122.1 (5)H17A—C17—H17C109.5
C4—C3—C11121.2 (4)H17B—C17—H17C109.5
C3—C4—C5120.5 (4)C8—C18—C19112.1 (4)
C3—C4—H4119.7C8—C18—H18A109.2
C5—C4—H4119.7C8—C18—H18B109.2
N1—C5—C4121.6 (4)C19—C18—H18A109.2
N1—C5—C6114.6 (4)C19—C18—H18B109.2
C4—C5—C6123.8 (4)H18A—C18—H18B107.9
N2—C6—C5114.0 (3)C18—C19—C20112.9 (4)
N2—C6—C7121.9 (4)C18—C19—H19A109.0
C5—C6—C7124.1 (4)C18—C19—H19B109.0
C6—C7—C8119.9 (4)C20—C19—H19A109.0
C6—C7—H7120.1C20—C19—H19B109.0
C8—C7—H7120.1H19A—C19—H19B107.8
C7—C8—C9117.4 (4)C19—C20—C21114.3 (4)
C7—C8—C18121.8 (4)C19—C20—H20A108.7
C9—C8—C18120.7 (5)C19—C20—H20B108.7
C8—C9—C10120.9 (5)C21—C20—H20A108.7
C8—C9—H9119.6C21—C20—H20B108.7
C10—C9—H9119.6H20A—C20—H20B107.6
N2—C10—C9121.9 (4)C20—C21—C22113.7 (4)
N2—C10—H10119.1C20—C21—H21A108.8
C9—C10—H10119.0C20—C21—H21B108.8
C3—C11—C12113.1 (5)C22—C21—H21A108.8
C3—C11—H11A109.0C22—C21—H21B108.8
C3—C11—H11B109.0H21A—C21—H21B107.7
C12—C11—H11A108.9C21—C22—C23114.6 (4)
C12—C11—H11B108.9C21—C22—H22A108.6
H11A—C11—H11B107.8C21—C22—H22B108.6
C11—C12—C13112.7 (5)C23—C22—H22A108.6
C11—C12—H12A109.1C23—C22—H22B108.6
C11—C12—H12B109.1H22A—C22—H22B107.6
C13—C12—H12A109.1C22—C23—C24112.6 (4)
C13—C12—H12B109.0C22—C23—H23A109.1
H12A—C12—H12B107.8C22—C23—H23B109.1
C12—C13—C14113.9 (5)C24—C23—H23A109.1
C12—C13—H13A108.8C24—C23—H23B109.1
C12—C13—H13B108.8H23A—C23—H23B107.8
C14—C13—H13A108.8C23—C24—H24A109.5
C14—C13—H13B108.8C23—C24—H24B109.5
H13A—C13—H13B107.7C23—C24—H24C109.5
C13—C14—C15109.3 (5)H24A—C24—H24B109.5
C13—C14—H14A109.8H24A—C24—H24C109.5
C13—C14—H14B109.8H24B—C24—H24C109.5

Experimental details

(I)(II)
Crystal data
Chemical formula[PtCl2(C20H28N2)][PtCl2(C24H36N2)]
Mr562.45618.56
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)173173
a, b, c (Å)7.1791 (19), 13.853 (4), 20.609 (5)15.102 (8), 10.781 (6), 16.525 (10)
β (°) 94.3564 (9) 112.570 (3)
V3)2043.6 (9)2484 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)7.115.85
Crystal size (mm)0.45 × 0.10 × 0.100.37 × 0.30 × 0.17
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Rigaku Mercury CCD area-detector
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Numerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.578, 0.8680.182, 0.363
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
15324, 4537, 3263 18483, 5522, 4970
Rint0.0980.027
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.180, 0.97 0.041, 0.115, 1.12
No. of reflections45375522
No. of parameters227263
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.30, 3.543.87, 1.83

Computer programs: CrystalClear (Rigaku, 2001), CrystalClear, CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), CrystalStructure.

Selected geometric parameters (Å, º) for (I) top
Pt1—Cl12.294 (3)Pt1—N12.026 (8)
Pt1—Cl22.295 (2)Pt1—N22.007 (9)
Cl1—Pt1—Cl289.50 (11)Cl2—Pt1—N1175.1 (2)
Cl1—Pt1—N195.1 (2)Cl2—Pt1—N295.6 (2)
Cl1—Pt1—N2174.7 (2)N1—Pt1—N279.9 (3)
Selected geometric parameters (Å, º) for (II) top
Pt1—Cl12.2956 (15)Pt1—N12.015 (3)
Pt1—Cl22.3019 (11)Pt1—N22.014 (3)
Cl1—Pt1—Cl289.66 (5)Cl2—Pt1—N1174.64 (11)
Cl1—Pt1—N194.88 (12)Cl2—Pt1—N295.14 (11)
Cl1—Pt1—N2175.19 (12)N1—Pt1—N280.31 (16)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds