metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[{μ3-3-[4-(1H-imidazol-1-yl­methyl)phen­yl]prop-2-enoato-κN:η2:κO}copper(I)]

aDepartment of Chemistry and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China
*Correspondence e-mail: lby@mju.edu.cn

(Received 19 April 2011; accepted 21 April 2011; online 29 April 2011)

In the coordination polymer, [CuI(C13H11N2O2)]n, the CuI atom exists in a trigonal–planar geometry that is defined by the C=C unit, the imidazole N atom and carboxyl­ate O atoms from three different ozagrel ligands, resulting in the formation of a three-dimensional framework.

Related literature

For background to the design and construction of coordination polymers, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Zhao et al. (2008[Zhao, J., Mi, L., Hu, J., Hou, H. & Fan, Y. (2008). J. Am. Chem. Soc. 130, 15222-15223.]). For other olefin complexes, see: Kato et al. (1997[Kato, H., Emura, S., Takeuchi, N., Enoki, M., Oogushi, K., Takashima, T., Ohmori, K. & Saito, I. (1997). J. Int. Med. Res. 25, 108-111.]); Wang et al. (2005[Wang, X. S., Zhao, H., Li, Y. H., Xiong, R. G. & You, X. Z. (2005). Top. Catal. 35, 43-61.], 2007[Wang, Y. T., Tang, G. M., Liu, Z. M. & Yi, X. H. (2007). Cryst. Growth Des. 7, 2272-2275.]); Young et al. (1998[Young, D. M., Geiser, U., Schultz, A. J. & Wang, H. H. (1998). J. Am. Chem. Soc. 120, 1331-1332.]); Zhang et al. (2001[Zhang, J., Xiong, R. G., Chen, X. T., Che, C. M., Xue, Z. L. & You, X. Z. (2001). Organometallics, 20, 4118-4121.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H11N2O2)]

  • Mr = 290.78

  • Trigonal, P 31

  • a = 9.7894 (19) Å

  • c = 10.483 (2) Å

  • V = 870.0 (3) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.765, Tmax = 1.000

  • 6852 measured reflections

  • 2105 independent reflections

  • 1904 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.105

  • S = 1.03

  • 2105 reflections

  • 163 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 773 Friedel pairs

  • Flack parameter: 0.05 (3)

Table 1
Selected geometric parameters (Å, °)

Cu1—N1i 1.962 (5)
Cu1—C2 2.000 (6)
Cu1—O2ii 2.007 (4)
Cu1—C3 2.030 (5)
C2—C3 1.381 (7)
N1i—Cu1—C2 151.2 (2)
N1i—Cu1—O2ii 104.12 (19)
C2—Cu1—O2ii 104.49 (19)
N1i—Cu1—C3 111.1 (2)
C2—Cu1—C3 40.1 (2)
Symmetry codes: (i) [-x+y, -x, z+{\script{2\over 3}}]; (ii) [-y+1, x-y, z+{\script{1\over 3}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and construction of coordination polymers have been an area of explosive growth in recent years (Kitagawa et al., 2004). Some active pharmaceutical ingredients (APIs), which contain carboxylic group, N-containing ring in the structures, have also utilized for constructing specific functional coordination polymers (Zhao et al., 2008). The hydrophilic or hydrophobic groups in drug molecules may play an important role in the structures and properties of final metal- organic frameworks.

Ozagrel, (E)-3-[4-(1H-imidiazol-1-ylmethyl)phenyl]-2-propenic acid, is a selective thromboxane A2-synthetase inhibitor which is used for treating cerebrovascular disease (Kato et al., 1997). It has a carboxylic group and an imidazole ring in the structure. The molecule is an ideal building block for constructing coordination polymers with specific structures. In this contribution, we report a Cu(I)-olefin coordination polymer of ozagrel, [(C13H11N2O2)Cu(I)] (I), which was obtained under solvothermal reaction conditions. In the structure, conjugated olefinic and carboxylic groups of ozagrel link metal centers into a 3-fold helical chain which is linked into a three-dimensional framework structure by metal- imidazole coordination interactions.

Compound I crystallizes in the space group P31 with a deprotonated ozagrel anion and a Cu(I) cation in the asymmetric unit (Fig.1). There exist obvious interactions between Cu(I) center and CC moiety of the olefin of ozagrel (Cu1—C2, Cu1—C3, Table 1). The CC bond distance (1.381 Å) of the coordinated olefin is longer than that in free ozagrel (1.324 Å) (Wang et al., 2007). The lengthening of the CC distance is typical for ethylene that is η2-bonded to low-valent, electron-rich, transition metals such as copper(I) (Young et al., 1998). Cu(I) ion is nearly centered in a trigonal planar geometry, which is defined by CC moiety, imidazole N atom and carboxylic O atom from three different ozagrel molecules. Interestingly, carboxylic group of ozagrel doesn't serve as bidentate moiety as does it in [Cu(3-PYA)]n reported previously (Zhang et al., 2001). But, conjugated olefinic and carboxylic groups as bidentate spacer link Cu(I) centers into a 3-fold helical chain along c axis (Fig.2). Cu(I)-imidazole interactions further link the one-dimensional helical chain into a three-dimensional framework structure (Fig.3). Thus, ozagrel anion acting as a tridentate linker is coordinated to Cu(I) ion generating a three-dimensional coordination polymer based on one-dimensional helical chain of Cu(I) centers.

Since Schultz synthesized the first air-stable Cu(I)-olefin coordination polymer based on fumarate ligand under hydrothermal conditions (Young et al., 1998), some Cu(I)-olefin complexes with extended framework structures have been prepared by crystal engineering strategies (Wang et al., 2005). Impressively, two luminescent two-dimensional layered copper(I)-olefin coordination polymers were constructed by the use of 3(2)-pyridylacrylic acid as tetradentate linkers (Zhang et al., 2001). Therein, acrylic acid anions linked Cu(I) centers into a one-dimensional chain which was further linked into two-dimensional coordination layers by coordinated pyridyl rings. Otherwise from that in pyridylacrylic acid, the acrylic acid anion in ozagrel acts as a bidentate spacer and links Cu(I) centers into a 3-fold helical chain which is further linked into a three-dimensional framework structure by coordinated imidazole ring. In other words, rigid 3(2)-pyridylacrylic acid resulted in two-dimensional coordination layers by metal coordination to Cu(I) ion while more flexible ozagrel gave rise to a three-dimensional coordination framework. The flexible molecular structure of ozagrel could play the subtle role in the final extended structure.

In conclusion, a Cu(I)-olefin coordination polymer based on ozagrel ligand was synthesized under solvothermal conditions. Conjugated olefinic and carboxylic groups of ozagrel as bidentate spacer link Cu(I) centers into a 3-fold helical chain which is linked into a three-dimensional framework structure by metal-imidazole coordination interactions.

Related literature top

For background, see: Kitagawa et al. (2004); Zhao et al. (2008). For other olefin complexes, see: Kato et al. (1997); Wang et al. (2005, 2007); Young et al. (1998); Zhang et al. (2001).

Experimental top

Ozagrel (228 mg, 1 mmol) and Cu(NO3)2.3H2O (240 mg, 1 mmol) were suspended in 10 ml me thanol and a few drops of triethylamine were added. The mixture was placed in a 23 ml Teflon-lined autoclave, sealed, and placed in a furnace at 130 °C for 2 days. Yellow block crystals were isolated. Element analysis for C13H11N2O2 Cu1 (%), Calcd: C, 53.65; H, 3.22; N, 9.63; Found: C, 53.57; H, 3.89; N, 9.66.

Refinement top

H atoms were located geometrically (C—H = 0.95–1.00 Å) with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of compound I with 30% thermal ellipsoids. A = 1-Y,X—Y,Z+1/3; B = –X+Y,-X,Z+2/3
[Figure 2] Fig. 2. One-dimensional helical chain of Cu(I) along c axis in compound I. Imidazole group of ozagrel is omitted for clarity.
[Figure 3] Fig. 3. The three-dimensional structure of compound I viewed along c axis.
Poly[{µ3-3-[4-(1H-imidazol-1-ylmethyl)phenyl]prop-2-enoato- κN:η2:κO}copper(I)] top
Crystal data top
[Cu(C13H11N2O2)]Dx = 1.665 Mg m3
Mr = 290.78Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31Cell parameters from 987 reflections
Hall symbol: P 31θ = 2.4–27.4°
a = 9.7894 (19) ŵ = 1.88 mm1
c = 10.483 (2) ÅT = 293 K
V = 870.0 (3) Å3Block, yellow
Z = 30.20 × 0.20 × 0.20 mm
F(000) = 444
Data collection top
Rigaku Mercury CCD
diffractometer
2105 independent reflections
Radiation source: fine-focus sealed tube1904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.4°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 1212
Tmin = 0.765, Tmax = 1.000l = 913
6852 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.052P)2 + 0.5211P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2105 reflectionsΔρmax = 0.36 e Å3
163 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 773 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
[Cu(C13H11N2O2)]Z = 3
Mr = 290.78Mo Kα radiation
Trigonal, P31µ = 1.88 mm1
a = 9.7894 (19) ÅT = 293 K
c = 10.483 (2) Å0.20 × 0.20 × 0.20 mm
V = 870.0 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
2105 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1904 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 1.000Rint = 0.053
6852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.36 e Å3
S = 1.03Δρmin = 0.32 e Å3
2105 reflectionsAbsolute structure: Flack (1983), 773 Friedel pairs
163 parametersAbsolute structure parameter: 0.05 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.44797 (7)0.33783 (7)0.62232 (6)0.03118 (17)
O10.6474 (5)0.5593 (5)0.3892 (5)0.0532 (12)
N10.3953 (6)0.0278 (5)0.1055 (5)0.0353 (11)
C10.6055 (6)0.4173 (6)0.3901 (5)0.0335 (11)
O20.6941 (4)0.3626 (5)0.3546 (4)0.0413 (9)
N20.3899 (5)0.0886 (6)0.3067 (5)0.0375 (10)
C20.4448 (6)0.2963 (6)0.4352 (5)0.0312 (11)
H20.40690.18470.40930.037*
C30.3305 (6)0.3354 (6)0.4620 (5)0.0330 (12)
H30.35970.44360.43200.040*
C40.1578 (6)0.2269 (6)0.4662 (5)0.0311 (11)
C50.0875 (7)0.0622 (7)0.4627 (6)0.0403 (13)
H50.15190.01500.46310.048*
C60.0749 (7)0.0321 (7)0.4588 (6)0.0406 (13)
H60.12130.14360.45580.049*
C70.0604 (6)0.2919 (7)0.4678 (6)0.0387 (13)
H70.10610.40340.46920.046*
C80.1017 (7)0.1980 (7)0.4675 (6)0.0417 (14)
H80.16620.24490.47310.050*
C90.1707 (6)0.0355 (7)0.4591 (6)0.0357 (12)
C100.3482 (7)0.0695 (9)0.4438 (6)0.0441 (15)
H10A0.38240.17400.48240.053*
H10B0.40310.02160.48840.053*
C110.3627 (7)0.0271 (7)0.2233 (6)0.0403 (13)
H110.32500.13400.24620.048*
C120.4460 (7)0.2242 (7)0.2378 (6)0.0449 (14)
H120.47610.32610.27010.054*
C130.4504 (7)0.1860 (7)0.1143 (6)0.0392 (13)
H130.48630.25790.04480.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0309 (3)0.0364 (4)0.0284 (3)0.0185 (3)0.0010 (3)0.0030 (3)
O10.038 (2)0.035 (2)0.082 (4)0.0155 (18)0.004 (2)0.012 (2)
N10.041 (3)0.030 (2)0.036 (3)0.019 (2)0.003 (2)0.002 (2)
C10.029 (2)0.043 (3)0.029 (3)0.018 (2)0.002 (2)0.005 (2)
O20.037 (2)0.044 (2)0.043 (2)0.0197 (17)0.0039 (17)0.0035 (18)
N20.030 (2)0.044 (3)0.035 (3)0.016 (2)0.0026 (19)0.006 (2)
C20.030 (3)0.029 (2)0.030 (3)0.011 (2)0.002 (2)0.003 (2)
C30.031 (3)0.041 (3)0.030 (3)0.021 (2)0.005 (2)0.005 (2)
C40.032 (3)0.033 (3)0.028 (3)0.016 (2)0.002 (2)0.005 (2)
C50.041 (3)0.047 (3)0.043 (3)0.030 (3)0.002 (3)0.005 (3)
C60.036 (3)0.036 (3)0.042 (3)0.012 (2)0.001 (2)0.002 (2)
C70.029 (3)0.031 (3)0.052 (4)0.011 (2)0.006 (2)0.003 (3)
C80.036 (3)0.051 (3)0.048 (4)0.029 (3)0.007 (3)0.001 (3)
C90.031 (3)0.041 (3)0.027 (3)0.013 (2)0.000 (2)0.005 (2)
C100.030 (3)0.054 (4)0.036 (3)0.012 (3)0.001 (2)0.008 (3)
C110.041 (3)0.037 (3)0.037 (3)0.015 (2)0.002 (2)0.004 (2)
C120.050 (3)0.038 (3)0.048 (4)0.023 (3)0.002 (3)0.000 (3)
C130.047 (3)0.031 (3)0.041 (3)0.021 (3)0.003 (3)0.003 (2)
Geometric parameters (Å, º) top
Cu1—N1i1.962 (5)C4—C71.386 (8)
Cu1—C22.000 (6)C4—C51.402 (8)
Cu1—O2ii2.007 (4)C5—C61.383 (8)
Cu1—C32.030 (5)C5—H50.9500
O1—C11.237 (7)C6—C91.392 (8)
N1—C111.320 (8)C6—H60.9500
N1—C131.364 (7)C7—C81.380 (7)
N1—Cu1iii1.962 (5)C7—H70.9500
C1—O21.281 (6)C8—C91.386 (8)
C1—C21.496 (7)C8—H80.9500
O2—Cu1iv2.007 (4)C9—C101.521 (8)
N2—C111.347 (7)C10—H10A0.9900
N2—C121.363 (8)C10—H10B0.9900
N2—C101.480 (8)C11—H110.9500
C2—C31.381 (7)C12—C131.354 (9)
C2—H21.0000C12—H120.9500
C3—C41.481 (7)C13—H130.9500
C3—H31.0000
N1i—Cu1—C2151.2 (2)C6—C5—C4120.5 (5)
N1i—Cu1—O2ii104.12 (19)C6—C5—H5119.7
C2—Cu1—O2ii104.49 (19)C4—C5—H5119.7
N1i—Cu1—C3111.1 (2)C5—C6—C9120.3 (5)
C2—Cu1—C340.1 (2)C5—C6—H6119.8
O2ii—Cu1—C3144.1 (2)C9—C6—H6119.8
C11—N1—C13106.1 (5)C8—C7—C4121.3 (5)
C11—N1—Cu1iii122.7 (4)C8—C7—H7119.3
C13—N1—Cu1iii130.5 (4)C4—C7—H7119.3
O1—C1—O2123.6 (5)C7—C8—C9120.2 (5)
O1—C1—C2121.2 (5)C7—C8—H8119.9
O2—C1—C2115.2 (5)C9—C8—H8119.9
C1—O2—Cu1iv104.3 (3)C8—C9—C6119.2 (5)
C11—N2—C12106.8 (5)C8—C9—C10121.3 (5)
C11—N2—C10126.7 (5)C6—C9—C10119.5 (5)
C12—N2—C10126.1 (5)N2—C10—C9109.7 (5)
C3—C2—C1121.5 (5)N2—C10—H10A109.7
C3—C2—Cu171.1 (3)C9—C10—H10A109.7
C1—C2—Cu1104.2 (3)N2—C10—H10B109.7
C3—C2—H2116.6C9—C10—H10B109.7
C1—C2—H2116.6H10A—C10—H10B108.2
Cu1—C2—H2116.6N1—C11—N2111.0 (5)
C2—C3—C4126.9 (5)N1—C11—H11124.5
C2—C3—Cu168.8 (3)N2—C11—H11124.5
C4—C3—Cu1114.9 (4)C13—C12—N2106.9 (5)
C2—C3—H3112.8C13—C12—H12126.6
C4—C3—H3112.8N2—C12—H12126.6
Cu1—C3—H3112.8C12—C13—N1109.2 (5)
C7—C4—C5118.2 (5)C12—C13—H13125.4
C7—C4—C3118.2 (5)N1—C13—H13125.4
C5—C4—C3123.5 (5)
Symmetry codes: (i) x+y, x, z+2/3; (ii) y+1, xy, z+1/3; (iii) y, xy, z2/3; (iv) x+y+1, x+1, z1/3.

Experimental details

Crystal data
Chemical formula[Cu(C13H11N2O2)]
Mr290.78
Crystal system, space groupTrigonal, P31
Temperature (K)293
a, c (Å)9.7894 (19), 10.483 (2)
V3)870.0 (3)
Z3
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.765, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6852, 2105, 1904
Rint0.053
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.03
No. of reflections2105
No. of parameters163
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.32
Absolute structureFlack (1983), 773 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N1i1.962 (5)Cu1—C32.030 (5)
Cu1—C22.000 (6)C2—C31.381 (7)
Cu1—O2ii2.007 (4)
N1i—Cu1—C2151.2 (2)N1i—Cu1—C3111.1 (2)
N1i—Cu1—O2ii104.12 (19)C2—Cu1—C340.1 (2)
C2—Cu1—O2ii104.49 (19)
Symmetry codes: (i) x+y, x, z+2/3; (ii) y+1, xy, z+1/3.
 

Acknowledgements

The author is grateful for grants from the National Natural Science Foundation of China (grant No. 20901037), Fujian Provincial Department of Education (grant No. JB09181) and the Program for New Century Excellent Talents in Fujian Province University (grant No. JK2010043).

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKato, H., Emura, S., Takeuchi, N., Enoki, M., Oogushi, K., Takashima, T., Ohmori, K. & Saito, I. (1997). J. Int. Med. Res. 25, 108–111.  CAS PubMed Web of Science Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. T., Tang, G. M., Liu, Z. M. & Yi, X. H. (2007). Cryst. Growth Des. 7, 2272–2275.  CrossRef CAS Google Scholar
First citationWang, X. S., Zhao, H., Li, Y. H., Xiong, R. G. & You, X. Z. (2005). Top. Catal. 35, 43–61.  CrossRef Google Scholar
First citationYoung, D. M., Geiser, U., Schultz, A. J. & Wang, H. H. (1998). J. Am. Chem. Soc. 120, 1331–1332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Xiong, R. G., Chen, X. T., Che, C. M., Xue, Z. L. & You, X. Z. (2001). Organometallics, 20, 4118–4121.  CrossRef CAS Google Scholar
First citationZhao, J., Mi, L., Hu, J., Hou, H. & Fan, Y. (2008). J. Am. Chem. Soc. 130, 15222–15223.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds