organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1227

N,N-Di­methylpyridin-4-aminium 1-phenyl­cyclo­pentane-1-carboxyl­ate monohydrate

aInstitute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, and bDepartment of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
*Correspondence e-mail: he_guangwen@ices.a-star.edu.sg, reginald_tan@ices.a-star.edu.sg

(Received 19 April 2011; accepted 22 April 2011; online 29 April 2011)

The cation of the title salt, C7H11N2+·C12H13O2·H2O, is planar (r.m.s. deviation = 0.0184 Å). In the crystal, the cation, anion and water mol­ecule are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming a chain running along the a axis.

Related literature

For the structure of 4-dimethyl­amino­pyridine, see: Ohms & Guth (1984[Ohms, U. & Guth, H. (1984). Z. Kristallogr. 166, 213-217.]). For the structure of 1-phenyl­cyclo­pentane-1-carb­oxy­lic acid, see: Margulis (1975[Margulis, T. N. (1975). Acta Cryst. B31, 1049-1052.]). For recent mol­ecular co-crystals and salts of 4-dimethyl­amino­pyridine, see: Dastidar et al. (1993[Dastidar, P., Row, T. N. G., Prasad, B. R., Subramanian, C. K. & Bhattacharya, S. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2419-2422.]). For recent mol­ecular co-crystals of 1-phenyl­cyclo­pentane-1-carb­oxy­lic acid, see: He et al. (2010[He, G., Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2010). Acta Cryst. E66, o3339-o3340.], 2011[He, G., Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2011). Acta Cryst. E67, o552-o553.]). For comparative bond dimensions in pyridinium carboxyl­ates, see: Kumar et al. (2009[Kumar, T. L., Vishweshwar, P., Babu, J. M. & Vyas, K. (2009). Cryst. Growth Des. 9, 4822-4829.]).

[Scheme 1]

Experimental

Crystal data
  • C7H11N2+·C12H13O2·H2O

  • Mr = 330.42

  • Monoclinic, P 21 /n

  • a = 6.1666 (12) Å

  • b = 18.206 (4) Å

  • c = 15.702 (3) Å

  • β = 97.33 (3)°

  • V = 1748.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 110 K

  • 0.44 × 0.33 × 0.22 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.964, Tmax = 0.982

  • 12519 measured reflections

  • 4233 independent reflections

  • 3945 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.139

  • S = 1.13

  • 4233 reflections

  • 231 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H7⋯O2 0.94 (2) 1.72 (2) 2.6458 (15) 168 (2)
O3—H3⋯O2 0.87 (2) 1.93 (2) 2.7935 (14) 167 (2)
O3—H6⋯O1i 0.87 (2) 1.90 (2) 2.7634 (15) 169 (2)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted pyridines such as 4-dimethylaminopyridine was found to form binary salt hydrate with l-tartaric acid (Dastidar et al., 1993). The authors have shown that this molecular complex possesses high nonlinear optical (NLO) effects, viz. second harmonic generation (SHG) in the crystalline state. In our previous work, we have demonstrated the formation of a salt and a cocrystal of a substituted pyridine, 2-aminopyridine, with 1-phenylcyclopropane-1-carboxylic acid and 1-phenylcyclopentane-1-carboxylic acid, respectively (He et al., 2010; He et al., 2011). Here we have selected 4-dimethylaminopyridine and 1-phenylcyclopentane-1-carboxylic acid as a model molecular pair.

The crystal structure of the title salt hydrate contains each one molecule of 4-dimethylaminopyridinium ion, 1-phenylcyclopentane-1-carboxylate ion, and water (Fig. 1). The title molecular complex is a salt rather than a cocrystal is evident by the proton transfer from the carboxylic acid to the pyridine nitrogen of the 4-dimethylaminopyridine, which was located in the difference Fourier map during the refinement cycles. Furthermore, the C—O/C=O bond distances (1.2412 (16) Å and 1.2700 (16) Å) and C—N—C angle of pyridine group (119.93 (12)°) are in well agreement with the corresponding distances/angles that are generally observed for a carboxylic acid-pyridine salts (Kumar et al., 2009). In the crystal structure, the translation related 1-phenylcyclopentane-1-carboxylate ions are connected via water molecules involving O—H···O hydrogen bonds (Table 1) and generate infinite hydrogen bonded chains along the crystallographic a-axis (Fig. 2). The 4-dimethylaminopyridinium ion hydrogen bonded to one of the O atoms of the carboxylate ion via N—H···O hydrogen bond (Fig. 2). The hydrogen bonded chians close pack to build up the overall crystal structure (Fig. 3). A TGA experiment indicates an initial weight loss (ca 6%) upon heating (Fig. 4). This number matches with the water content in the title salt hydrate, implying that the resulting molecular complex is indeed a hydrate.

Related literature top

For the structure of 4-dimethylaminopyridine, see: Ohms & Guth (1984). For the structure of 1-phenylcyclopentane-1-carboxylic acid, see: Margulis (1975). For recent molecular co-crystals and salts of 4-dimethylaminopyridine, see: Dastidar et al. (1993). For recent molecular co-crystals of 1-phenylcyclopentane-1-carboxylic acid, see: He et al. (2010, 2011). For comparison bond dimensions in pyridinium carboxylates, see: Kumar et al. (2009).

Experimental top

0.1224 g (1 mmol) of 4-dimethylaminopyridine (Alfa Aesar, 99%) and 0.1902 g (1 mmol) of 1-phenylcyclopentane-1-carboxylic acid (Alfa Aesar, 98%) and were dissolved into 7 ml of acetonitrile/water (90/10 v/v%) (acetonitrile, Fisher Scientific, HPLC; deionized water). Solution was then filtered through a 0.22 µm PTFE filter. Filtered solution was finally sealed with Parafilm and small holes were made to allow solvent to slowly evaporate. The colorless block-shaped crystal (0.44 × 0.33 × 0.22 mm) suitable for single-crystal X-ray diffraction (Rigaku Saturn 70 CCD area detector with Mo Kα radiation = 0.71073 Å at 50 kV and 40 mA) was collected after three day. TGA-DSC experiment of the resulting crystals was run using a TA Instrument SDT-TGA (SDT2960) at a ramping rate of 10 °C/min to 1000 °C.

Refinement top

A low-angle reflection, (011), whose intensity was strongly affected by the beam-stop, was omitted in the refinement cycles. H atoms bonded to N and O atoms were located in a difference map and allowed to ride on their parent atoms in the refinement cycles.The O—H bond distances and H—O—H angle of the water molecule were found to be deviating from the normal values. These were restrained using DFIX and DANG commands in the SHELX, and the deviations from the normal values are 0.04 (2), 0.02 (2) and 4 (2). The H atoms connected to C atoms were positioned geometrically and refined using a riding model.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of 4-dimethylaminopyridine, 1-phenylcyclopentane-1-carboxylic acid and water, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A supramolecular unit in the crystal structure of the title salt hydrate, featuring the O—H···O interaction between the carboxylate ion and the water molecule and the N—H···O interaction between the carboxylate ion and the pyridinium ions.
[Figure 3] Fig. 3. Part of the crystal structure of the title salt hydrate, showing the close packing of hydrogen bonded chains.
[Figure 4] Fig. 4. Profiles of heat flow and weight loss of the title salt hydrate determined by DSC and TGA, respectively.
N,N-Dimethylpyridin-4-aminium 1-phenylcyclopentane-1-carboxylate monohydrate top
Crystal data top
C7H11N2+·C12H13O2·H2OF(000) = 712
Mr = 330.42Dx = 1.255 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5283 reflections
a = 6.1666 (12) Åθ = 2.2–31.0°
b = 18.206 (4) ŵ = 0.09 mm1
c = 15.702 (3) ÅT = 110 K
β = 97.33 (3)°Block, colorless
V = 1748.4 (6) Å30.44 × 0.33 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
4233 independent reflections
Radiation source: fine-focus sealed tube3945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 88
Tmin = 0.964, Tmax = 0.982k = 2123
12519 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.4696P]
where P = (Fo2 + 2Fc2)/3
4233 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.23 e Å3
3 restraintsΔρmin = 0.21 e Å3
Crystal data top
C7H11N2+·C12H13O2·H2OV = 1748.4 (6) Å3
Mr = 330.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.1666 (12) ŵ = 0.09 mm1
b = 18.206 (4) ÅT = 110 K
c = 15.702 (3) Å0.44 × 0.33 × 0.22 mm
β = 97.33 (3)°
Data collection top
Bruker APEXII
diffractometer
4233 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3945 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.982Rint = 0.017
12519 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.23 e Å3
4233 reflectionsΔρmin = 0.21 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.46197 (17)0.37281 (6)0.40367 (7)0.0322 (2)
H30.337 (3)0.3496 (12)0.3979 (14)0.062 (6)*
H60.561 (3)0.3390 (10)0.4004 (13)0.053 (6)*
C10.0970 (2)0.21395 (7)0.17867 (8)0.0237 (3)
H10.23490.19360.18640.028*
C20.3042 (2)0.27379 (7)0.15451 (8)0.0270 (3)
H20.44190.29410.14630.032*
C30.06856 (19)0.25206 (7)0.38099 (7)0.0206 (2)
C40.0648 (2)0.24247 (7)0.09887 (8)0.0261 (3)
H40.18020.24100.05260.031*
C50.2731 (2)0.24498 (7)0.23453 (8)0.0232 (3)
H50.38970.24580.28030.028*
C60.03032 (19)0.18630 (7)0.33520 (7)0.0206 (2)
C70.07135 (19)0.21492 (7)0.24761 (7)0.0203 (2)
C80.2357 (2)0.15696 (7)0.39066 (8)0.0256 (3)
H8A0.32310.12560.35640.031*
H8B0.32830.19780.41600.031*
C90.1353 (2)0.27300 (7)0.08674 (8)0.0277 (3)
H90.15670.29320.03260.033*
C100.1238 (2)0.11900 (7)0.33039 (8)0.0269 (3)
H10A0.27860.13460.31930.032*
H10B0.09280.08520.28410.032*
C110.0764 (3)0.08142 (8)0.41878 (9)0.0361 (3)
H11A0.19330.09280.45450.043*
H11B0.06800.02750.41200.043*
C120.1442 (3)0.11201 (9)0.46066 (9)0.0367 (3)
H12A0.12350.14360.51040.044*
H12B0.24500.07150.48070.044*
O10.26922 (15)0.25454 (6)0.38244 (6)0.0300 (2)
O20.06558 (15)0.30076 (5)0.41263 (6)0.0302 (2)
C130.1993 (2)0.49016 (7)0.62159 (8)0.0232 (3)
H130.32390.52080.63430.028*
C140.0210 (2)0.49587 (7)0.67079 (8)0.0227 (3)
C150.1584 (2)0.40174 (7)0.57900 (9)0.0275 (3)
H150.28220.37140.56290.033*
C160.1610 (2)0.44957 (7)0.64561 (9)0.0270 (3)
H160.28560.45190.67540.032*
C170.1905 (2)0.44045 (7)0.55616 (8)0.0247 (3)
H170.31110.43670.52430.030*
C180.2073 (2)0.59162 (8)0.76179 (9)0.0325 (3)
H18A0.24610.61660.71050.049*
H18B0.33310.56340.78860.049*
H18C0.16580.62820.80260.049*
C190.1612 (3)0.54665 (9)0.78639 (10)0.0383 (3)
H19A0.19880.49730.80470.057*
H19B0.28700.56800.75030.057*
H19C0.12240.57770.83700.057*
N10.01572 (18)0.39651 (6)0.53538 (7)0.0254 (2)
N20.02411 (19)0.54214 (6)0.73743 (7)0.0274 (2)
H70.012 (4)0.3632 (12)0.4892 (15)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0281 (5)0.0291 (5)0.0406 (6)0.0046 (4)0.0092 (4)0.0074 (4)
C10.0227 (5)0.0241 (6)0.0235 (6)0.0010 (4)0.0000 (4)0.0030 (5)
C20.0290 (6)0.0267 (6)0.0260 (6)0.0025 (5)0.0063 (5)0.0011 (5)
C30.0219 (5)0.0241 (6)0.0159 (5)0.0011 (4)0.0024 (4)0.0003 (4)
C40.0306 (6)0.0261 (6)0.0201 (6)0.0041 (5)0.0024 (5)0.0032 (5)
C50.0229 (6)0.0243 (6)0.0217 (6)0.0005 (4)0.0005 (4)0.0030 (4)
C60.0204 (5)0.0221 (6)0.0190 (5)0.0020 (4)0.0017 (4)0.0025 (4)
C70.0219 (5)0.0204 (6)0.0183 (5)0.0020 (4)0.0016 (4)0.0030 (4)
C80.0268 (6)0.0257 (6)0.0235 (6)0.0022 (5)0.0003 (5)0.0010 (5)
C90.0371 (7)0.0256 (6)0.0206 (6)0.0020 (5)0.0048 (5)0.0000 (5)
C100.0309 (6)0.0238 (6)0.0260 (6)0.0077 (5)0.0036 (5)0.0043 (5)
C110.0483 (8)0.0301 (7)0.0302 (7)0.0111 (6)0.0066 (6)0.0017 (6)
C120.0434 (8)0.0365 (8)0.0287 (7)0.0050 (6)0.0014 (6)0.0089 (6)
O10.0213 (4)0.0349 (5)0.0343 (5)0.0002 (4)0.0053 (4)0.0061 (4)
O20.0251 (5)0.0301 (5)0.0357 (5)0.0041 (4)0.0049 (4)0.0140 (4)
C130.0235 (6)0.0208 (6)0.0249 (6)0.0005 (4)0.0013 (4)0.0003 (4)
C140.0267 (6)0.0184 (6)0.0226 (6)0.0023 (4)0.0014 (4)0.0014 (4)
C150.0284 (6)0.0225 (6)0.0305 (6)0.0025 (5)0.0000 (5)0.0005 (5)
C160.0266 (6)0.0251 (6)0.0298 (6)0.0017 (5)0.0052 (5)0.0000 (5)
C170.0259 (6)0.0241 (6)0.0239 (6)0.0043 (5)0.0029 (4)0.0015 (5)
C180.0406 (8)0.0270 (7)0.0299 (7)0.0053 (6)0.0042 (5)0.0072 (5)
C190.0465 (9)0.0346 (8)0.0371 (8)0.0005 (6)0.0184 (6)0.0083 (6)
N10.0298 (5)0.0209 (5)0.0243 (5)0.0017 (4)0.0005 (4)0.0022 (4)
N20.0318 (6)0.0246 (6)0.0266 (5)0.0000 (4)0.0061 (4)0.0044 (4)
Geometric parameters (Å, º) top
O3—H30.874 (15)C11—C121.538 (2)
O3—H60.872 (15)C11—H11A0.9900
C1—C41.3937 (18)C11—H11B0.9900
C1—C71.4010 (16)C12—H12A0.9900
C1—H10.9500C12—H12B0.9900
C2—C91.3908 (19)C13—C171.3649 (18)
C2—C51.3970 (18)C13—C141.4262 (17)
C2—H20.9500C13—H130.9500
C3—O11.2414 (15)C14—N21.3416 (16)
C3—O21.2696 (15)C14—C161.4189 (17)
C3—C61.5603 (16)C15—N11.3488 (18)
C4—C91.3885 (19)C15—C161.3625 (19)
C4—H40.9500C15—H150.9500
C5—C71.3981 (17)C16—H160.9500
C5—H50.9500C17—N11.3485 (17)
C6—C71.5218 (16)C17—H170.9500
C6—C81.5382 (17)C18—N21.4571 (18)
C6—C101.5465 (16)C18—H18A0.9800
C8—C121.5345 (19)C18—H18B0.9800
C8—H8A0.9900C18—H18C0.9800
C8—H8B0.9900C19—N21.4587 (18)
C9—H90.9500C19—H19A0.9800
C10—C111.5414 (19)C19—H19B0.9800
C10—H10A0.9900C19—H19C0.9800
C10—H10B0.9900N1—H70.94 (2)
H3—O3—H6105.5 (18)C12—C11—H11B110.5
C4—C1—C7120.90 (12)C10—C11—H11B110.5
C4—C1—H1119.5H11A—C11—H11B108.7
C7—C1—H1119.5C8—C12—C11105.83 (11)
C9—C2—C5120.61 (12)C8—C12—H12A110.6
C9—C2—H2119.7C11—C12—H12A110.6
C5—C2—H2119.7C8—C12—H12B110.6
O1—C3—O2124.66 (11)C11—C12—H12B110.6
O1—C3—C6119.03 (10)H12A—C12—H12B108.7
O2—C3—C6116.28 (10)C17—C13—C14119.77 (12)
C9—C4—C1120.23 (12)C17—C13—H13120.1
C9—C4—H4119.9C14—C13—H13120.1
C1—C4—H4119.9N2—C14—C16121.50 (12)
C2—C5—C7120.38 (12)N2—C14—C13122.20 (12)
C2—C5—H5119.8C16—C14—C13116.30 (11)
C7—C5—H5119.8N1—C15—C16121.53 (12)
C7—C6—C8114.25 (10)N1—C15—H15119.2
C7—C6—C10113.53 (10)C16—C15—H15119.2
C8—C6—C10102.06 (10)C15—C16—C14120.47 (12)
C7—C6—C3105.88 (9)C15—C16—H16119.8
C8—C6—C3110.33 (10)C14—C16—H16119.8
C10—C6—C3110.89 (10)N1—C17—C13121.96 (12)
C5—C7—C1118.48 (11)N1—C17—H17119.0
C5—C7—C6121.36 (10)C13—C17—H17119.0
C1—C7—C6120.11 (10)N2—C18—H18A109.5
C12—C8—C6103.84 (10)N2—C18—H18B109.5
C12—C8—H8A111.0H18A—C18—H18B109.5
C6—C8—H8A111.0N2—C18—H18C109.5
C12—C8—H8B111.0H18A—C18—H18C109.5
C6—C8—H8B111.0H18B—C18—H18C109.5
H8A—C8—H8B109.0N2—C19—H19A109.5
C4—C9—C2119.40 (12)N2—C19—H19B109.5
C4—C9—H9120.3H19A—C19—H19B109.5
C2—C9—H9120.3N2—C19—H19C109.5
C11—C10—C6105.25 (10)H19A—C19—H19C109.5
C11—C10—H10A110.7H19B—C19—H19C109.5
C6—C10—H10A110.7C17—N1—C15119.93 (11)
C11—C10—H10B110.7C17—N1—H7120.4 (13)
C6—C10—H10B110.7C15—N1—H7119.7 (13)
H10A—C10—H10B108.8C14—N2—C18121.77 (11)
C12—C11—C10106.26 (11)C14—N2—C19120.81 (12)
C12—C11—H11A110.5C18—N2—C19117.38 (11)
C10—C11—H11A110.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H7···O20.94 (2)1.72 (2)2.6458 (15)168 (2)
O3—H3···O20.87 (2)1.93 (2)2.7935 (14)167 (2)
O3—H6···O1i0.87 (2)1.90 (2)2.7634 (15)169 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H11N2+·C12H13O2·H2O
Mr330.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)6.1666 (12), 18.206 (4), 15.702 (3)
β (°) 97.33 (3)
V3)1748.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.33 × 0.22
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.964, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12519, 4233, 3945
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 1.13
No. of reflections4233
No. of parameters231
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H7···O20.94 (2)1.72 (2)2.6458 (15)168 (2)
O3—H3···O20.874 (15)1.934 (16)2.7935 (14)167 (2)
O3—H6···O1i0.872 (15)1.902 (16)2.7634 (15)169 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDastidar, P., Row, T. N. G., Prasad, B. R., Subramanian, C. K. & Bhattacharya, S. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2419–2422.  CrossRef Google Scholar
First citationHe, G., Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2010). Acta Cryst. E66, o3339–o3340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, G., Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2011). Acta Cryst. E67, o552–o553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, T. L., Vishweshwar, P., Babu, J. M. & Vyas, K. (2009). Cryst. Growth Des. 9, 4822–4829.  CAS Google Scholar
First citationMargulis, T. N. (1975). Acta Cryst. B31, 1049–1052.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOhms, U. & Guth, H. (1984). Z. Kristallogr. 166, 213–217.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1227
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds