Download citation
Download citation
link to html
In the title compound, poly[[aqua(1,10-phenanthroline)­cobalt(II)]-μ4-di­hydrogen benzene-1,2,4,5-tetra­carboxyl­ato], [Co(C10H4O8)(C12H8N2)(H2O)]n, each cobalt(II) cation has an octahedral geometry completed by one aqua O atom, three carboxy O atoms belonging to three H2TCB2− anions (H2TCB2− is di­hydrogen ­benzene-1,2,4,5-tetra­carboxyl­ate) and two N atoms from a 1,10-phenanthroline mol­ecule. In the asymmetric unit, there are two half H2TCB2− anions lying about independent inversion centres. The bridging H2TCB2− anions have two coordination modes, viz. μ2-H2TCB2− and μ4-H2TCB2−, resulting in a two-dimensional coordination polymer. Furthermore, a three-dimensional network is formed by Ocarboxy...Ocarboxy hydrogen-bond interactions, with H...A distances in the range 1.69–1.82 Å, and Ocarboxy...Owater interactions, with H...A distances in the range 1.91–1.94 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103029445/na1629sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103029445/na1629Isup2.hkl
Contains datablock I

CCDC reference: 235314

Comment top

Research on metal-directed coordination polymers has been expanding rapidily owing to their interesting topologies and potential applications as functional materials (Kitagawa & Kondo, 1998; Seo & Whang, 2000; Yaghi & Li, 1998). Bi- or multidentate ligands containing O– or N-donors are often used to coordinate to metal centers (Fujita & Ogura, 1996; Mori & Takamizawa, 2000). Accordingly, benzene- 1,2,4,5-tetracarboxylic acid (H4TCB) is a good bridging ligand that can sometimes be used to generate unexpected interesting coordination polymers (Gutschke, et al., 2001), and small changes in experimental conditions (concentration, molecular ratio, solvent etc.) can lead to very different architectures. We report here the hydrothermal synthesis and crystal structure of a two-dimensional-network coordination polymer.

In the title compound, (I), each cobalt(II) cation has a six-coordinated environment, composed of one aqua O atom, three carboxyl O atoms belonging to three H2TCB2− anions and two N atoms from a phen molecule (Fig. 1). The geometry around the cobalt(II) cation is octahedral, with the four equatorial positions occupied by the two phen N atoms, one carboxyl O atom and the aqua O atom, and with all distances lying in the 2.083 (1)–2.127 (1) Å range. The two apical positions are filled by two carboxyl O atoms from another two H2TCB2− anions, the corresponding axial bond lengths [Co—O4 = 2.1220 (12) Å and Co—O5 = 2.1266 (12) Å] being longer than the equatorial bond lengths.

The µ-H2TCB2− ligands exhibit two coordination modes. The first is that four carboxylate groups, involving two undeprotonated carboxylate groups, bond to four cobalt(II) cations. ??A similar coordination mode of undeprotonated carboxylate groups was reported by reported Livage et al. (2001), with four carboxylate groups binding to? four cobalt(II) cations in monodentate fashion. In the second mode, only the two deprotonated carboxylate groups at ?opposite positions? bind to two cobalt(II) cations (Fig. 2); this mode is similar to that reported for Cu(phen)(H2TCB) (Hu et al., 2003). The µ2-H2TCB2− ligands are parallel to two neighboring phen molecules, but the diheral angle between the µ4-H2 TCB2− ring and the neighboring phen ring is 65.35 (4)°. A two-dimensional network is thus formed by µ4-H2TCB2− and µ2-H2TCB2− ligands, central cobalt(II) cations, aqua molecules and terminal phen molecules. The µ4-H2TCB2− and µ2-H2TCB2− ligands and phen molecules are almost linear along [1 1 1]. Moreover, the O(carboxyl)···O(carboxyl) and O(carboxyl)···O(water) hydrogen-bond interactions, with H···A distances in the 1.69–1.82 Å and 1.91–1.94 Å ranges, respectively, connect the two-dimensional networks, resulting in a three-dimensional stucture.

Experimental top

The title compound was synthesized by a hydrothermal method from a mixture of 1,2,4,5-benzenetetracarboxylic acid (1 mmol, 0.257 g), Co(SO4)2·6H2O(1 mmol, 0.281 g), 1,10-phenanthroline (0.05 mmol, 0.0991 g) and 2-aminopyrimidine (2 mmol, 0.192 g) in a 30 ml teflon-lined stainless steel reactor. The solution was heated at 403 K for 5 d, and then the solution was cooled slowly to room temperature; red prism-shaped crystals of (I) were collected for X-ray analysis.

Refinement top

The O—H distance was refined subject to a distance restraint [O—H = 0.82 (1) Å]. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 Å, with Uiso(H) equal to 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The coordination environment of the cobalt(II) cation in (I), with atom numbering, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The two-dimensional-network strucure in (I).
poly[[aqua(1,10-phenanthroline)cobalt(II)]-µ4-dihydrogen benzene-1,2,4,5- tetracarboxylato] top
Crystal data top
[Co(C10H4O8)(C12H8N2)(H2O)]Z = 2
Mr = 509.28F(000) = 518
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 9.6876 (9) ÅCell parameters from 248 reflections
b = 10.2079 (10) Åθ = 2.4–23.0°
c = 11.3561 (11) ŵ = 0.95 mm1
α = 86.808 (1)°T = 273 K
β = 72.141 (1)°Prism, red
γ = 64.928 (1)°0.59 × 0.55 × 0.34 mm
V = 964.58 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3371 independent reflections
Radiation source: fine-focus sealed tube3215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.571, Tmax = 0.722k = 1211
6669 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.522P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3371 reflectionsΔρmax = 0.28 e Å3
315 parametersΔρmin = 0.29 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0414 (17)
Crystal data top
[Co(C10H4O8)(C12H8N2)(H2O)]γ = 64.928 (1)°
Mr = 509.28V = 964.58 (16) Å3
Triclinic, P1Z = 2
a = 9.6876 (9) ÅMo Kα radiation
b = 10.2079 (10) ŵ = 0.95 mm1
c = 11.3561 (11) ÅT = 273 K
α = 86.808 (1)°0.59 × 0.55 × 0.34 mm
β = 72.141 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3371 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3215 reflections with I > 2σ(I)
Tmin = 0.571, Tmax = 0.722Rint = 0.012
6669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.28 e Å3
3371 reflectionsΔρmin = 0.29 e Å3
315 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The O—H distance was refined subject to a distance restraint [O—H = 0.82 (1) %A]. H9 can be positioned with a SHELXL HFIX 147 command, but H9b only can be positioned from a difference map and refined subject to a distance restraint [O—H = 0.82 (1) Å], so that H9b approximately same as H9, which is why these two water H atoms [H9 and H9B] were treated differently.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.03047 (3)0.64435 (2)0.26583 (2)0.01981 (10)
O10.15217 (15)0.58018 (14)0.36161 (11)0.0274 (3)
O20.24254 (18)0.55106 (18)0.21105 (12)0.0379 (4)
H20.18810.59140.17090.057*
O30.31281 (14)0.65972 (13)0.65043 (12)0.0255 (3)
O40.15180 (14)0.42311 (13)0.59928 (11)0.0232 (3)
O50.07601 (15)0.68519 (13)0.12147 (11)0.0256 (3)
O60.19525 (18)0.76792 (14)0.02205 (12)0.0340 (3)
O70.37471 (16)1.00736 (15)0.20818 (14)0.0391 (4)
O80.38653 (17)0.78590 (15)0.21772 (15)0.0440 (4)
H80.47600.76710.26660.066*
O90.18396 (17)0.44222 (14)0.16821 (13)0.0320 (3)
H90.22700.38610.21420.048*
N10.10232 (18)0.85251 (15)0.36087 (13)0.0239 (3)
N20.19074 (17)0.73961 (16)0.19143 (13)0.0234 (3)
C10.2458 (2)0.9054 (2)0.44578 (18)0.0336 (4)
H10.30070.84740.46630.040*
C20.3181 (3)1.0449 (2)0.5059 (2)0.0437 (5)
H2A0.41951.07880.56470.052*
C30.2382 (3)1.1305 (2)0.4771 (2)0.0450 (6)
H30.28551.22380.51600.054*
C40.0847 (3)1.0783 (2)0.38913 (18)0.0348 (5)
C50.0121 (3)1.1573 (2)0.3574 (2)0.0442 (6)
H50.02881.25090.39420.053*
C60.1603 (3)1.0987 (2)0.2760 (2)0.0438 (6)
H60.22061.15220.25810.053*
C70.2283 (3)0.9555 (2)0.21557 (18)0.0330 (4)
C80.3838 (3)0.8874 (3)0.1315 (2)0.0426 (5)
H8A0.44940.93580.11050.051*
C90.4380 (3)0.7500 (3)0.0809 (2)0.0424 (5)
H9A0.54140.70340.02600.051*
C100.3374 (2)0.6799 (2)0.11196 (18)0.0329 (4)
H100.37520.58690.07520.040*
C110.1359 (2)0.87599 (19)0.24367 (16)0.0239 (4)
C120.0216 (2)0.93725 (18)0.33264 (16)0.0247 (4)
C130.2456 (2)0.55366 (18)0.32534 (16)0.0214 (4)
C140.37430 (19)0.52296 (17)0.41623 (15)0.0191 (3)
C150.38829 (19)0.52132 (17)0.54273 (15)0.0182 (3)
C160.5140 (2)0.49829 (17)0.62414 (15)0.0201 (3)
H160.52410.49700.70830.024*
C170.27171 (19)0.53728 (17)0.59906 (14)0.0185 (3)
C180.1196 (2)0.77691 (17)0.04299 (15)0.0204 (3)
C190.0615 (2)0.89547 (17)0.02549 (15)0.0194 (3)
C200.0892 (2)0.86184 (18)0.05910 (15)0.0211 (3)
H200.14980.76890.09930.025*
C210.1519 (2)0.96457 (18)0.08526 (15)0.0204 (3)
C220.3159 (2)0.92358 (19)0.17620 (16)0.0239 (4)
H9B0.171 (3)0.393 (2)0.1223 (18)0.042 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01856 (14)0.02002 (14)0.02412 (15)0.01067 (10)0.00741 (10)0.00112 (9)
O10.0270 (7)0.0426 (8)0.0246 (6)0.0253 (6)0.0099 (5)0.0082 (5)
O20.0484 (9)0.0664 (10)0.0230 (7)0.0466 (8)0.0131 (6)0.0136 (6)
O30.0231 (6)0.0226 (6)0.0322 (7)0.0096 (5)0.0100 (5)0.0036 (5)
O40.0202 (6)0.0237 (6)0.0264 (6)0.0069 (5)0.0111 (5)0.0006 (5)
O50.0317 (7)0.0300 (7)0.0274 (7)0.0217 (6)0.0149 (5)0.0121 (5)
O60.0517 (9)0.0355 (7)0.0354 (7)0.0293 (7)0.0268 (7)0.0105 (6)
O70.0302 (7)0.0365 (8)0.0486 (9)0.0213 (6)0.0018 (6)0.0032 (6)
O80.0297 (8)0.0295 (7)0.0564 (10)0.0136 (6)0.0129 (7)0.0142 (7)
O90.0407 (8)0.0237 (7)0.0342 (7)0.0098 (6)0.0200 (6)0.0038 (6)
N10.0235 (8)0.0233 (7)0.0244 (7)0.0080 (6)0.0098 (6)0.0016 (6)
N20.0233 (8)0.0249 (7)0.0256 (7)0.0128 (6)0.0091 (6)0.0032 (6)
C10.0260 (10)0.0363 (11)0.0324 (10)0.0076 (8)0.0090 (8)0.0009 (8)
C20.0352 (12)0.0395 (12)0.0359 (11)0.0021 (10)0.0085 (9)0.0053 (9)
C30.0565 (14)0.0248 (10)0.0377 (11)0.0024 (10)0.0206 (11)0.0065 (8)
C40.0538 (13)0.0213 (9)0.0323 (10)0.0108 (9)0.0255 (10)0.0040 (8)
C50.0801 (18)0.0235 (10)0.0433 (12)0.0257 (11)0.0338 (13)0.0064 (9)
C60.0784 (17)0.0380 (12)0.0457 (13)0.0425 (12)0.0371 (13)0.0176 (10)
C70.0496 (12)0.0381 (11)0.0329 (10)0.0320 (10)0.0247 (9)0.0156 (8)
C80.0484 (13)0.0621 (15)0.0435 (12)0.0443 (12)0.0222 (10)0.0211 (11)
C90.0290 (11)0.0589 (14)0.0435 (12)0.0255 (10)0.0084 (9)0.0112 (10)
C100.0274 (10)0.0361 (10)0.0333 (10)0.0144 (8)0.0052 (8)0.0016 (8)
C110.0323 (10)0.0246 (9)0.0239 (9)0.0161 (8)0.0161 (8)0.0064 (7)
C120.0349 (10)0.0204 (8)0.0242 (9)0.0116 (8)0.0170 (8)0.0042 (7)
C130.0226 (9)0.0219 (8)0.0230 (9)0.0123 (7)0.0076 (7)0.0028 (6)
C140.0179 (8)0.0171 (8)0.0232 (8)0.0082 (7)0.0066 (7)0.0019 (6)
C150.0164 (8)0.0161 (8)0.0234 (8)0.0070 (6)0.0078 (6)0.0012 (6)
C160.0217 (8)0.0222 (8)0.0188 (8)0.0112 (7)0.0070 (7)0.0027 (6)
C170.0168 (8)0.0238 (9)0.0166 (8)0.0113 (7)0.0040 (6)0.0021 (6)
C180.0212 (8)0.0214 (8)0.0183 (8)0.0101 (7)0.0039 (7)0.0006 (6)
C190.0232 (8)0.0208 (8)0.0184 (8)0.0112 (7)0.0099 (7)0.0038 (6)
C200.0234 (9)0.0180 (8)0.0220 (8)0.0091 (7)0.0068 (7)0.0005 (6)
C210.0211 (9)0.0228 (8)0.0194 (8)0.0102 (7)0.0084 (7)0.0025 (6)
C220.0231 (9)0.0258 (9)0.0239 (9)0.0110 (7)0.0080 (7)0.0014 (7)
Geometric parameters (Å, º) top
Co1—O92.0834 (13)C4—C121.406 (2)
Co1—N12.1028 (15)C4—C51.436 (3)
Co1—N22.1103 (14)C5—C61.339 (4)
Co1—O12.1131 (12)C5—H50.9300
Co1—O4i2.1220 (12)C6—C71.436 (3)
Co1—O52.1266 (12)C6—H60.9300
O1—C131.229 (2)C7—C81.403 (3)
O2—C131.291 (2)C7—C111.405 (2)
O2—H20.8200C8—C91.361 (3)
O3—C171.256 (2)C8—H8A0.9300
O4—C171.250 (2)C9—C101.393 (3)
O4—Co1i2.1220 (12)C9—H9A0.9300
O5—C181.285 (2)C10—H100.9300
O6—C181.220 (2)C11—C121.434 (3)
O7—C221.200 (2)C13—C141.491 (2)
O8—C221.314 (2)C14—C16ii1.394 (2)
O8—H80.8200C14—C151.401 (2)
O9—H90.8200C15—C161.386 (2)
O9—H9B0.816 (10)C15—C171.524 (2)
N1—C11.324 (2)C16—C14ii1.394 (2)
N1—C121.360 (2)C16—H160.9300
N2—C101.321 (2)C18—C191.517 (2)
N2—C111.358 (2)C19—C201.387 (2)
C1—C21.397 (3)C19—C21iii1.397 (2)
C1—H10.9300C20—C211.397 (2)
C2—C31.363 (3)C20—H200.9300
C2—H2A0.9300C21—C19iii1.397 (2)
C3—C41.404 (3)C21—C221.498 (2)
C3—H30.9300
O9—Co1—N1173.81 (6)C8—C7—C6124.17 (19)
O9—Co1—N294.98 (6)C11—C7—C6118.6 (2)
N1—Co1—N279.21 (6)C9—C8—C7119.57 (18)
O9—Co1—O194.40 (6)C9—C8—H8A120.2
N1—Co1—O191.33 (5)C7—C8—H8A120.2
N2—Co1—O1170.41 (5)C8—C9—C10119.5 (2)
O9—Co1—O4i87.74 (5)C8—C9—H9A120.2
N1—Co1—O4i89.54 (5)C10—C9—H9A120.2
N2—Co1—O4i84.46 (5)N2—C10—C9122.85 (19)
O1—Co1—O4i93.95 (5)N2—C10—H10118.6
O9—Co1—O585.42 (5)C9—C10—H10118.6
N1—Co1—O597.40 (5)N2—C11—C7122.60 (18)
N2—Co1—O597.47 (5)N2—C11—C12117.39 (15)
O1—Co1—O585.23 (5)C7—C11—C12120.00 (17)
O4i—Co1—O5173.03 (5)N1—C12—C4122.75 (18)
C13—O1—Co1131.03 (11)N1—C12—C11117.43 (15)
C13—O2—H2109.5C4—C12—C11119.80 (17)
C17—O4—Co1i129.86 (11)O1—C13—O2124.50 (16)
C18—O5—Co1143.28 (11)O1—C13—C14119.91 (15)
C22—O8—H8109.5O2—C13—C14115.59 (14)
Co1—O9—H9109.5C16ii—C14—C15119.55 (15)
Co1—O9—H9B131.2 (17)C16ii—C14—C13119.73 (15)
H9—O9—H9B105.5C15—C14—C13120.67 (14)
C1—N1—C12118.31 (16)C16—C15—C14118.44 (15)
C1—N1—Co1128.59 (13)C16—C15—C17116.36 (14)
C12—N1—Co1113.01 (12)C14—C15—C17125.16 (14)
C10—N2—C11118.19 (15)C15—C16—C14ii122.01 (15)
C10—N2—Co1128.66 (13)C15—C16—H16119.0
C11—N2—Co1112.83 (11)C14ii—C16—H16119.0
N1—C1—C2122.8 (2)O4—C17—O3126.60 (15)
N1—C1—H1118.6O4—C17—C15115.95 (14)
C2—C1—H1118.6O3—C17—C15117.08 (14)
C3—C2—C1119.1 (2)O6—C18—O5123.67 (15)
C3—C2—H2A120.5O6—C18—C19119.30 (15)
C1—C2—H2A120.5O5—C18—C19116.88 (14)
C2—C3—C4120.24 (19)C20—C19—C21iii118.91 (15)
C2—C3—H3119.9C20—C19—C18116.76 (14)
C4—C3—H3119.9C21iii—C19—C18124.29 (15)
C3—C4—C12116.83 (19)C19—C20—C21121.42 (16)
C3—C4—C5124.31 (19)C19—C20—H20119.3
C12—C4—C5118.8 (2)C21—C20—H20119.3
C6—C5—C4121.19 (19)C20—C21—C19iii119.67 (16)
C6—C5—H5119.4C20—C21—C22119.83 (15)
C4—C5—H5119.4C19iii—C21—C22120.50 (15)
C5—C6—C7121.62 (19)O7—C22—O8124.14 (16)
C5—C6—H6119.2O7—C22—C21123.77 (16)
C7—C6—H6119.2O8—C22—C21112.08 (14)
C8—C7—C11117.26 (19)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1, z+1; (iii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.821.692.494 (3)166
C20—H20···O80.932.352.688 (2)101
O8—H8···O3iv0.821.822.597 (2)158
O9—H9B···O6v0.81 (3)1.94 (2)2.730 (2)163 (2)
O9—H9···O3i0.821.912.668 (2)153
C8—H8A···O7vi0.932.563.297 (4)137
C16—H16···O2ii0.932.412.741 (2)101
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1, z+1; (iv) x+1, y, z1; (v) x, y+1, z; (vi) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Co(C10H4O8)(C12H8N2)(H2O)]
Mr509.28
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)9.6876 (9), 10.2079 (10), 11.3561 (11)
α, β, γ (°)86.808 (1), 72.141 (1), 64.928 (1)
V3)964.58 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.59 × 0.55 × 0.34
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.571, 0.722
No. of measured, independent and
observed [I > 2σ(I)] reflections
6669, 3371, 3215
Rint0.012
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.07
No. of reflections3371
No. of parameters315
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Co1—O92.0834 (13)Co1—O12.1131 (12)
Co1—N12.1028 (15)Co1—O4i2.1220 (12)
Co1—N22.1103 (14)Co1—O52.1266 (12)
O9—Co1—N1173.81 (6)N2—Co1—O4i84.46 (5)
O9—Co1—N294.98 (6)O1—Co1—O4i93.95 (5)
N1—Co1—N279.21 (6)O9—Co1—O585.42 (5)
O9—Co1—O194.40 (6)N1—Co1—O597.40 (5)
N1—Co1—O191.33 (5)N2—Co1—O597.47 (5)
N2—Co1—O1170.41 (5)O1—Co1—O585.23 (5)
O9—Co1—O4i87.74 (5)O4i—Co1—O5173.03 (5)
N1—Co1—O4i89.54 (5)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.821.692.494 (3)166
C20—H20···O80.932.352.688 (2)101
O8—H8···O3ii0.821.822.597 (2)158
O9—H9B···O6iii0.81 (3)1.94 (2)2.730 (2)163 (2)
O9—H9···O3i0.821.912.668 (2)153
C8—H8A···O7iv0.932.563.297 (4)137
C16—H16···O2v0.932.412.741 (2)101
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z1; (iii) x, y+1, z; (iv) x+1, y+2, z; (v) x1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds