Download citation
Download citation
link to html
The title compound 3,3′-[o-phenyl­enebis­(methyl­eneoxy)]­bis(6-chloro­flavone), C38H24Cl2O6, (I), crystallizes in the monoclinic space group C2/c, with the molecules lying across twofold rotation axes so that there is half a mol­ecule in the asymmetric unit, while the other title compound, 3,3′-propyl­ene­dioxy­bis­[6-chloro-2-(2-furyl)-4H-1-benzopyran-4-one], C29H18Cl2O8, (II), crystallizes in monoclinic space group P21/n with one mol­ecule in the asymmetric unit. In both compounds, the benzopyran moiety is nearly planar, with dihedral angles between the two fused rings of 1.43 (8)° in (I), and 2.54 (7) and 3.00 (6)° with respect to the benzopyran moieties in the two halves of (II). The furan rings are twisted by 8.3 (1) and 8.4 (1)° in the two halves of (II). In both compounds, the molecular structure is stabilized by intramolecular C—H...O hydrogen bonds, while the crystal packing is stabilized by C—H...Cl and C—H...O intermolecular hydrogen bonds in (I) and (II), respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103002361/na1583sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103002361/na1583Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103002361/na1583IIsup3.hkl
Contains datablock II

CCDC references: 211738; 211739

Comment top

Flavonoids exhibit antidiabetic (Hii & Howell, 1985; Basnet et al., 1993; Ragunathan & Sulochana, 1994) and aldose reductase inhibitory activities (Varma & Kinoshita, 1976; Okuda et al., 1984; Aida et al., 1990). Flavone derivatives are known to have a coronary dilatory effect (Itz & Potzsch, 1963) and capillary resistance activity (Gabor, 1981). Chromanone derivatives dilate the heart and are used to treat angina pectoris (Hasegaida, 1967). Against this background and in order to obtain detailed information about the molecular conformations of the title compounds in the solid state, X-ray structure determinations of (I) and (II) were carried out and the results are presented here.

Figs. 1 and 2 show ORTEP and ZORTEP plots of the molecules of (I) and (II), respectively, with atom-numbering schemes. The asymmetric unit of the xylene derivative, (I), consists of a half molecule, while that of the propane derivative, (II), comprises one whole molecule. In (I), a phenyl ring is substituted to the flavone moiety, whereas in (II), a furan ring is substituted. Four C and two O atoms form a linear coupling chain between the two flavone moieties in (I), while in (II), this coupling chain consists of three C and two O atoms.

In compound (I), the C8—O2 bond length (Table 1) agrees with the value of 1.385 (3) Å reported by Bruno et al. (2001). In compound (II), the C8—O2 and C24—O7 bond lengths agree with the literature values [1.364 (2) Å in Shuib et al. (1999) and 1.352 (3) Å in Thinagar et al. (2000)]. The angle C3—C8—C7 in (I) agrees with the literature value [122.1 (3)° in Ozbey et al. (1999)], while C7—C8—-C3 and C19—C24—C23 in (II) are comparable with the reported value [121.4 (4)° in Letcher et al. (1992)].

The pyran rings are planar in both compounds and contrast with the normal half-chair conformation, as reported in Alex et al. (1993). The hetero atoms, viz. O2 in the ring and the oxo substituent O1 at position 4, cause slight varaiations in the geometric parameters within the ring. The values of the bond angles within the heterocyclic ring are in the range 113.3 (2)–122.6 (2)° in (I) and in the ranges 114.5 (2)–122.8 (2) and 114.4 (2)–123.0 (2)° in the two halves of (II) (Table 1). Similar variations in the geometric parameters of the the pyran ring of the benzopyran system have been reported previously (Rybarczyk-Pirek et al., 2002).

The torsion angle C1—C9—C10—C11 shows a +synclinal (+sc) orientation of the phenyl ring with respect to the 4-chromanone moiety (C1–C8/O2/C9/O1) in (I), while torsion angles C1—C9—C10—C13 and C17—C25—C26—C29 indicate +synperiplanar (+sp) orientations of the two furan rings with respect to the 4-chromanone moieties (O1/O2/C1–C9 and O6/O7/C17–C25, respectively) in (II). The torsion angle O3—C16—C17—C18 in (I) is +anticlinal (+ac), while O4—C14—C15—C16 and O5—C16—C15—C14 in (II) are +synclinal.

The benzopyran systems of (I) and (II) are not strictly planar and the dihedral angle formed by the benzene and pyran planes is 1.43 (8)° in (I), and 2.54 (7) and 3.00 (6)° in the two halves of (II). The dihedral angle between the best planes of the 4-chromanone moiety (C1–C8/O2/C9/O1) and the phenyl ring is 53.5 (1)° in (I). In (II), the furan rings are not quite coplanar with flavone moieties C1–C8/O2/O3/C9–C13 and C17–C24/O7/O8/C25–C29, the corresponding dihedral angles being 6.88 (6) and 6.77 (6)°, respectively. The dihedral angles formed by the O3/C10–C13 and O8/C26–C29 furan rings with the O1/O2/C1–C9 and O6/O7/C17–C25 4-chromanone moieties are 9.22 (6) and 9.41 (6)°, respectively. The oxo and oxy atoms lie practically in the benzopyran plane in (I) and the two halves of (II).

In addition to van der Waals interactions, an intermolecular C—H···Cl hydrogen bond stabilizes the crystal packing of (I). The H18···Cl1 (2.88 Å) contact is significantly shorter than the sum of van der Waals radii (2.95 Å; Bondi, 1964; Taylor & Kennard, 1982). The molecular packing is stabilized by one intramolecular C—H···O hydrogen bond. In (II), the molecular structure is stabilized by two intramolecular C—H···O hydrogen bonds, while the crystal packing is stabilized by two intermolecular C—H···O hydrogen bonds. The hydrogen-bond geometry for (I) and (II) are given in Tables 2 and 4, respectively.

Experimental top

A suspension of 6-chloro-3-hydroxy-2-(2-furyl)-4-oxo-4H-1-benzopyran (1 g, 0.0038 mol), 1,ω-dibromoalkane (0.0019m ol) [bis(1,1'-dibromoethylbenzene for (I) and 1,3-dibromopropane for (II)], tetra-n-butylammonium iodide (1 g) and freshly ignited K2CO3 (1 g) were refluxed in dry acetone (30 ml) for 4 h. The colour of the reaction mixture changed from yellow to colourless. The reaction mixture, after filtration and distillation of acetone, was poured into cold water, giving a mixture of monochromone and bischromone. This was then crystallized from acetone to obtain the pure bischromone compounds.

Refinement top

In both compounds, all the H atoms were fixed geometrically and allowed to ride on the corresponding non-H atoms, with C—H distances of 0.93 and 0.97 Å, and Uiso = 1.2Ueq of the attached C atoms for non-methyl H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994) for (I); SMART (Siemens, 1996) for (II). Cell refinement: CAD-4 EXPRESS for (I); SAINT (Siemens, 1996) for (II). Data reduction: XCAD4 (Harms & Wocadlo, 1996) for (I); SAINT for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (I); SHELXL97(Sheldrick, 1997) for (II). Molecular graphics: ORTEPII (Johnson, 1976) for (I); ZORTEP (Zsolnai, 1997) for (II). For both compounds, software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the molecular structure of (I), showing 35% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. ZORTEP (Zsolnai, 1997) plot of the molecular structure of (II), showing 35% probability displacement ellipsoids and the atom-numbering scheme.
(I) 3,3'-[o-Phenylenebis(methyleneoxy)]bis(6-chloro-2-phenylflavanone) top
Crystal data top
C38H24Cl2O6F(000) = 1336
Mr = 647.47Dx = 1.382 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.236 (1) ÅCell parameters from 25 reflections
b = 10.799 (4) Åθ = 1.2–28°
c = 21.775 (4) ŵ = 0.26 mm1
β = 91.393 (3)°T = 293 K
V = 3111.5 (13) Å3Block, colourless
Z = 40.47 × 0.43 × 0.40 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 30.4°, θmin = 2.4°
Graphite monochromatorh = 018
Non–profiled w/2θ scansk = 015
4781 measured reflectionsl = 3131
4612 independent reflections3 standard reflections every 100 reflections
1928 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1073P)2 + 1.2599P]
where P = (Fo2 + 2Fc2)/3
4612 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C38H24Cl2O6V = 3111.5 (13) Å3
Mr = 647.47Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.236 (1) ŵ = 0.26 mm1
b = 10.799 (4) ÅT = 293 K
c = 21.775 (4) Å0.47 × 0.43 × 0.40 mm
β = 91.393 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.024
4781 measured reflections3 standard reflections every 100 reflections
4612 independent reflections intensity decay: none
1928 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.230H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
4612 reflectionsΔρmin = 0.45 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00142 (10)0.19640 (16)0.02509 (5)0.1133 (6)
O10.31016 (18)0.0226 (2)0.08577 (10)0.0645 (7)
O20.14304 (14)0.1378 (2)0.22423 (8)0.0434 (5)
O30.37549 (15)0.03714 (19)0.20629 (9)0.0472 (5)
C10.2884 (2)0.0245 (3)0.19096 (12)0.0381 (6)
C20.2607 (2)0.0279 (3)0.12679 (13)0.0434 (7)
C30.1672 (2)0.0969 (3)0.11629 (13)0.0423 (7)
C40.1304 (3)0.1116 (3)0.05660 (14)0.0576 (9)
H40.16420.07590.02310.069*
C50.0444 (3)0.1791 (4)0.04859 (15)0.0622 (10)
C60.0083 (3)0.2306 (4)0.09685 (16)0.0616 (10)
H60.06670.27590.08990.074*
C70.0250 (2)0.2153 (3)0.15547 (15)0.0520 (8)
H70.01080.24900.18880.062*
C80.1128 (2)0.1488 (3)0.16410 (13)0.0409 (7)
C90.2309 (2)0.0754 (3)0.23602 (12)0.0383 (6)
C100.2516 (2)0.0731 (3)0.30218 (13)0.0400 (7)
C110.2684 (3)0.0377 (3)0.33210 (15)0.0543 (8)
H110.26580.11160.31020.065*
C120.2890 (3)0.0404 (4)0.39440 (16)0.0618 (10)
H120.29920.11560.41410.074*
C130.2943 (3)0.0683 (4)0.42649 (15)0.0641 (10)
H130.30930.06700.46800.077*
C140.2776 (3)0.1794 (4)0.39761 (15)0.0605 (9)
H140.28120.25300.41960.073*
C150.2554 (2)0.1817 (3)0.33566 (14)0.0505 (8)
H150.24310.25700.31650.061*
C160.4669 (2)0.0283 (4)0.18564 (14)0.0544 (9)
H16A0.52490.02530.19090.065*
H16B0.46230.04650.14220.065*
C170.4833 (2)0.1466 (3)0.21990 (13)0.0450 (7)
C180.4660 (3)0.2595 (4)0.1916 (2)0.0765 (12)
H180.44250.26060.15170.092*
C190.4828 (3)0.3696 (4)0.2213 (3)0.106 (2)
H190.47030.44420.20160.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1048 (10)0.1815 (15)0.0554 (6)0.0481 (9)0.0362 (6)0.0058 (7)
O10.0578 (14)0.0859 (18)0.0501 (12)0.0237 (13)0.0090 (11)0.0225 (13)
O20.0404 (11)0.0515 (13)0.0385 (10)0.0121 (9)0.0033 (8)0.0000 (9)
O30.0376 (11)0.0517 (13)0.0526 (12)0.0093 (9)0.0108 (9)0.0076 (10)
C10.0348 (14)0.0382 (15)0.0418 (14)0.0043 (12)0.0105 (11)0.0044 (13)
C20.0412 (15)0.0476 (17)0.0419 (15)0.0053 (14)0.0091 (12)0.0108 (14)
C30.0399 (15)0.0466 (17)0.0408 (15)0.0046 (13)0.0092 (12)0.0037 (13)
C40.0557 (19)0.077 (2)0.0407 (16)0.0133 (18)0.0089 (14)0.0066 (16)
C50.055 (2)0.090 (3)0.0429 (16)0.0126 (19)0.0191 (15)0.0083 (18)
C60.0446 (17)0.079 (3)0.061 (2)0.0148 (18)0.0088 (16)0.0146 (19)
C70.0388 (16)0.065 (2)0.0527 (17)0.0122 (15)0.0012 (13)0.0048 (16)
C80.0373 (14)0.0471 (17)0.0387 (14)0.0031 (13)0.0073 (12)0.0050 (13)
C90.0388 (15)0.0386 (16)0.0377 (14)0.0008 (12)0.0076 (11)0.0035 (12)
C100.0337 (14)0.0456 (17)0.0409 (15)0.0029 (13)0.0058 (11)0.0027 (13)
C110.064 (2)0.050 (2)0.0491 (17)0.0044 (16)0.0040 (15)0.0030 (15)
C120.071 (2)0.067 (2)0.0477 (18)0.0068 (19)0.0062 (16)0.0168 (18)
C130.062 (2)0.093 (3)0.0377 (16)0.003 (2)0.0101 (15)0.0132 (19)
C140.069 (2)0.071 (2)0.0426 (16)0.0014 (19)0.0150 (16)0.0064 (17)
C150.059 (2)0.0499 (19)0.0430 (15)0.0062 (15)0.0118 (14)0.0027 (14)
C160.0338 (15)0.082 (2)0.0474 (17)0.0106 (16)0.0050 (13)0.0131 (17)
C170.0331 (15)0.0540 (19)0.0478 (16)0.0036 (13)0.0037 (12)0.0059 (14)
C180.050 (2)0.086 (3)0.094 (3)0.006 (2)0.001 (2)0.036 (3)
C190.052 (3)0.056 (2)0.210 (8)0.001 (2)0.002 (3)0.033 (3)
Geometric parameters (Å, º) top
Cl1—C51.739 (3)C10—C151.382 (4)
O1—C21.223 (4)C11—C121.391 (4)
O2—C91.373 (3)C11—H110.9300
O2—C81.383 (3)C12—C131.369 (5)
O3—C11.379 (3)C12—H120.9300
O3—C161.463 (4)C13—C141.375 (5)
C1—C91.345 (4)C13—H130.9300
C1—C21.454 (4)C14—C151.388 (4)
C2—C31.468 (4)C14—H140.9300
C3—C81.371 (4)C15—H150.9300
C3—C41.408 (4)C16—C171.498 (5)
C4—C51.367 (5)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
C5—C61.365 (5)C17—C181.387 (5)
C6—C71.370 (4)C17—C17i1.394 (6)
C6—H60.9300C18—C191.375 (7)
C7—C81.384 (4)C18—H180.9300
C7—H70.9300C19—C19i1.340 (11)
C9—C101.473 (4)C19—H190.9300
C10—C111.384 (4)
C9—O2—C8119.0 (2)C15—C10—C9120.8 (3)
C1—O3—C16112.5 (2)C10—C11—C12121.0 (3)
C9—C1—O3118.9 (2)C10—C11—H11119.5
C9—C1—C2122.6 (2)C12—C11—H11119.5
O3—C1—C2118.5 (2)C13—C12—C11119.6 (3)
O1—C2—C1123.2 (3)C13—C12—H12120.2
O1—C2—C3123.4 (3)C11—C12—H12120.2
C1—C2—C3113.3 (2)C12—C13—C14120.3 (3)
C8—C3—C4117.9 (3)C12—C13—H13119.9
C8—C3—C2121.2 (2)C14—C13—H13119.9
C4—C3—C2120.9 (3)C13—C14—C15120.1 (3)
C5—C4—C3119.1 (3)C13—C14—H14120.0
C5—C4—H4120.5C15—C14—H14120.0
C3—C4—H4120.5C10—C15—C14120.6 (3)
C6—C5—C4122.0 (3)C10—C15—H15119.7
C6—C5—Cl1118.9 (3)C14—C15—H15119.7
C4—C5—Cl1119.0 (3)O3—C16—C17112.8 (2)
C5—C6—C7119.9 (3)O3—C16—H16A109.0
C5—C6—H6120.0C17—C16—H16A109.0
C7—C6—H6120.0O3—C16—H16B109.0
C6—C7—C8118.6 (3)C17—C16—H16B109.0
C6—C7—H7120.7H16A—C16—H16B107.8
C8—C7—H7120.7C18—C17—C17i118.5 (2)
C3—C8—C7122.4 (3)C18—C17—C16120.0 (3)
C3—C8—O2121.7 (2)C17i—C17—C16121.43 (17)
C7—C8—O2115.9 (3)C19—C18—C17121.4 (4)
C1—C9—O2122.1 (2)C19—C18—H18119.3
C1—C9—C10126.2 (2)C17—C18—H18119.3
O2—C9—C10111.7 (2)C19i—C19—C18120.1 (3)
C11—C10—C15118.5 (3)C19i—C19—H19120.0
C11—C10—C9120.7 (3)C18—C19—H19120.0
C16—O3—C1—C9111.1 (3)O3—C1—C9—O2179.8 (3)
C16—O3—C1—C271.0 (3)C2—C1—C9—O22.0 (4)
C9—C1—C2—O1176.8 (3)O3—C1—C9—C100.3 (4)
O3—C1—C2—O11.0 (5)C2—C1—C9—C10178.1 (3)
C9—C1—C2—C32.7 (4)C8—O2—C9—C10.2 (4)
O3—C1—C2—C3179.5 (3)C8—O2—C9—C10179.7 (2)
O1—C2—C3—C8178.1 (3)C1—C9—C10—C1154.1 (4)
C1—C2—C3—C81.4 (4)O2—C9—C10—C11126.0 (3)
O1—C2—C3—C41.8 (5)C1—C9—C10—C15125.4 (3)
C1—C2—C3—C4178.7 (3)O2—C9—C10—C1554.4 (4)
C8—C3—C4—C51.7 (5)C15—C10—C11—C120.2 (5)
C2—C3—C4—C5178.4 (3)C9—C10—C11—C12179.3 (3)
C3—C4—C5—C61.4 (6)C10—C11—C12—C130.9 (5)
C3—C4—C5—Cl1179.6 (3)C11—C12—C13—C141.1 (5)
C4—C5—C6—C70.1 (6)C12—C13—C14—C150.1 (5)
Cl1—C5—C6—C7178.3 (3)C11—C10—C15—C141.3 (5)
C5—C6—C7—C80.9 (6)C9—C10—C15—C14178.3 (3)
C4—C3—C8—C70.7 (5)C13—C14—C15—C101.1 (5)
C2—C3—C8—C7179.4 (3)C1—O3—C16—C1768.8 (3)
C4—C3—C8—O2179.4 (3)O3—C16—C17—C18106.2 (3)
C2—C3—C8—O20.5 (5)O3—C16—C17—C17i74.4 (4)
C6—C7—C8—C30.6 (5)C17i—C17—C18—C191.1 (6)
C6—C7—C8—O2179.3 (3)C16—C17—C18—C19178.3 (4)
C9—O2—C8—C31.4 (4)C17—C18—C19—C19i0.4 (8)
C9—O2—C8—C7178.5 (3)
Symmetry code: (i) x+1, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O10.972.503.091 (4)119
C18—H18···Cl1ii0.932.883.676 (5)144
Symmetry code: (ii) x+1/2, y+1/2, z.
(II) 3,3'-Propylenedioxybis[6-chloro-2-(2-furyl)flavanone] top
Crystal data top
C29H18Cl2O8F(000) = 1160
Mr = 565.33Dx = 1.605 Mg m3
Dm = 0.44 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.0485 (2) ÅCell parameters from 10418 reflections
b = 7.6144 (1) Åθ = 1.5–28.6°
c = 20.7890 (2) ŵ = 0.34 mm1
β = 100.784 (1)°T = 293 K
V = 2340.04 (5) Å3Prism, colourless
Z = 40.44 × 0.18 × 0.16 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5813 independent reflections
Radiation source: fine-focus sealed tube3529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 28.6°, θmin = 1.5°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1920
Tmin = 0.867, Tmax = 0.948k = 510
15953 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 0.92
5813 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C29H18Cl2O8V = 2340.04 (5) Å3
Mr = 565.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.0485 (2) ŵ = 0.34 mm1
b = 7.6144 (1) ÅT = 293 K
c = 20.7890 (2) Å0.44 × 0.18 × 0.16 mm
β = 100.784 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5813 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3529 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.948Rint = 0.088
15953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 0.92Δρmax = 0.56 e Å3
5813 reflectionsΔρmin = 0.46 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27684 (5)0.04043 (10)0.21880 (3)0.0623 (2)
Cl21.24467 (4)0.00895 (9)0.80900 (3)0.05341 (19)
O10.58386 (10)0.1925 (2)0.36368 (8)0.0539 (5)
O20.40531 (9)0.17555 (19)0.48759 (7)0.0383 (4)
O30.43745 (11)0.2454 (2)0.60864 (8)0.0464 (4)
O40.63782 (10)0.2882 (2)0.49802 (8)0.0517 (4)
O50.87566 (11)0.2711 (2)0.52660 (7)0.0511 (4)
O60.93334 (10)0.1953 (2)0.66247 (8)0.0496 (4)
O71.10726 (9)0.15019 (19)0.53612 (7)0.0371 (3)
O81.07277 (10)0.2062 (2)0.41415 (7)0.0442 (4)
C10.55250 (14)0.2439 (3)0.46873 (10)0.0362 (5)
C20.52998 (14)0.1930 (3)0.40109 (11)0.0379 (5)
C30.43593 (13)0.1378 (3)0.37958 (10)0.0342 (5)
C40.40346 (14)0.0872 (3)0.31524 (11)0.0386 (5)
H40.44010.09610.28400.046*
C50.31786 (15)0.0248 (3)0.29843 (11)0.0388 (5)
C60.26120 (15)0.0098 (3)0.34375 (12)0.0437 (5)
H60.20320.03590.33140.052*
C70.29164 (14)0.0628 (3)0.40650 (11)0.0407 (5)
H70.25420.05620.43730.049*
C80.37853 (14)0.1265 (3)0.42403 (10)0.0349 (5)
C90.49042 (14)0.2362 (3)0.50820 (10)0.0353 (5)
C100.50583 (15)0.2853 (3)0.57608 (11)0.0373 (5)
C110.46442 (18)0.3079 (3)0.67028 (12)0.0519 (6)
H110.43090.29790.70340.062*
C120.54377 (19)0.3842 (3)0.67724 (12)0.0547 (6)
H120.57520.43760.71490.066*
C130.57200 (17)0.3697 (3)0.61688 (12)0.0503 (6)
H130.62610.41060.60700.060*
C140.69328 (15)0.3888 (3)0.46276 (11)0.0415 (5)
H14A0.65630.47000.43320.050*
H14B0.72430.31170.43710.050*
C150.76059 (14)0.4878 (3)0.51150 (12)0.0431 (5)
H15A0.79690.55920.48770.052*
H15B0.72770.56730.53500.052*
C160.82270 (14)0.3816 (3)0.56027 (11)0.0420 (5)
H16A0.86200.45830.59020.050*
H16B0.78810.31040.58550.050*
C170.96155 (14)0.2291 (3)0.55547 (11)0.0365 (5)
C180.98638 (13)0.1895 (3)0.62451 (10)0.0348 (5)
C191.08064 (13)0.1373 (3)0.64575 (10)0.0320 (4)
C201.11493 (14)0.1006 (3)0.71098 (10)0.0346 (5)
H201.07970.11850.74270.042*
C211.20114 (15)0.0376 (3)0.72805 (11)0.0376 (5)
C221.25475 (15)0.0088 (3)0.68169 (11)0.0428 (5)
H221.31250.03820.69420.051*
C231.22273 (14)0.0493 (3)0.61799 (11)0.0414 (5)
H231.25880.03420.58660.050*
C241.13578 (13)0.1132 (3)0.60052 (10)0.0332 (4)
C251.02245 (14)0.2120 (3)0.51543 (10)0.0337 (4)
C261.00571 (14)0.2517 (3)0.44661 (10)0.0360 (5)
C271.04502 (18)0.2598 (3)0.35162 (11)0.0478 (6)
H271.07790.24410.31840.057*
C280.96548 (18)0.3368 (3)0.34377 (12)0.0525 (6)
H280.93320.38500.30530.063*
C290.93907 (17)0.3318 (3)0.40518 (12)0.0523 (6)
H290.88560.37570.41510.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0464 (4)0.0846 (5)0.0546 (4)0.0084 (3)0.0060 (3)0.0173 (3)
Cl20.0417 (4)0.0711 (4)0.0449 (3)0.0082 (3)0.0017 (3)0.0048 (3)
O10.0330 (9)0.0806 (12)0.0529 (10)0.0091 (8)0.0205 (8)0.0126 (9)
O20.0268 (8)0.0478 (8)0.0425 (8)0.0001 (6)0.0122 (7)0.0011 (7)
O30.0387 (9)0.0593 (10)0.0447 (9)0.0021 (7)0.0166 (7)0.0036 (8)
O40.0291 (9)0.0803 (12)0.0455 (9)0.0118 (8)0.0063 (7)0.0130 (8)
O50.0342 (9)0.0762 (11)0.0425 (9)0.0174 (8)0.0063 (7)0.0075 (8)
O60.0303 (8)0.0762 (11)0.0459 (9)0.0090 (8)0.0163 (7)0.0083 (8)
O70.0260 (8)0.0490 (9)0.0378 (8)0.0025 (6)0.0100 (6)0.0008 (7)
O80.0385 (9)0.0560 (9)0.0413 (9)0.0020 (7)0.0154 (7)0.0011 (7)
C10.0244 (11)0.0425 (11)0.0425 (12)0.0007 (9)0.0079 (9)0.0049 (9)
C20.0284 (11)0.0426 (12)0.0450 (12)0.0021 (9)0.0131 (10)0.0014 (9)
C30.0256 (11)0.0320 (10)0.0468 (12)0.0029 (8)0.0115 (9)0.0014 (9)
C40.0325 (12)0.0392 (11)0.0459 (12)0.0029 (9)0.0125 (10)0.0009 (10)
C50.0314 (12)0.0372 (11)0.0477 (12)0.0020 (9)0.0076 (10)0.0025 (9)
C60.0290 (12)0.0426 (12)0.0596 (15)0.0020 (9)0.0086 (11)0.0027 (11)
C70.0272 (11)0.0479 (12)0.0497 (13)0.0002 (9)0.0137 (10)0.0037 (10)
C80.0279 (11)0.0337 (10)0.0443 (12)0.0044 (8)0.0103 (9)0.0017 (9)
C90.0289 (11)0.0351 (11)0.0433 (12)0.0040 (8)0.0098 (9)0.0056 (9)
C100.0338 (12)0.0393 (11)0.0412 (12)0.0070 (9)0.0130 (10)0.0086 (9)
C110.0523 (16)0.0675 (16)0.0394 (13)0.0093 (13)0.0177 (12)0.0026 (11)
C120.0570 (17)0.0635 (16)0.0432 (13)0.0026 (13)0.0086 (12)0.0020 (12)
C130.0430 (14)0.0595 (15)0.0500 (14)0.0062 (12)0.0125 (12)0.0010 (12)
C140.0297 (11)0.0487 (12)0.0466 (12)0.0018 (10)0.0084 (10)0.0108 (10)
C150.0338 (12)0.0406 (12)0.0553 (13)0.0037 (9)0.0096 (11)0.0036 (10)
C160.0286 (11)0.0477 (12)0.0502 (13)0.0025 (9)0.0084 (10)0.0067 (10)
C170.0272 (11)0.0415 (11)0.0416 (11)0.0032 (9)0.0080 (9)0.0024 (9)
C180.0250 (10)0.0415 (11)0.0394 (11)0.0022 (8)0.0097 (9)0.0016 (9)
C190.0241 (10)0.0331 (10)0.0394 (11)0.0028 (8)0.0075 (8)0.0011 (8)
C200.0285 (11)0.0361 (11)0.0406 (11)0.0004 (8)0.0099 (9)0.0011 (9)
C210.0314 (11)0.0391 (11)0.0413 (11)0.0006 (9)0.0041 (9)0.0005 (9)
C220.0262 (12)0.0494 (13)0.0518 (13)0.0072 (9)0.0052 (10)0.0028 (11)
C230.0289 (12)0.0524 (13)0.0451 (12)0.0040 (10)0.0129 (10)0.0040 (10)
C240.0245 (10)0.0378 (11)0.0374 (11)0.0021 (8)0.0063 (8)0.0024 (9)
C250.0272 (11)0.0353 (10)0.0389 (11)0.0010 (8)0.0072 (8)0.0025 (9)
C260.0335 (12)0.0363 (11)0.0410 (12)0.0018 (9)0.0140 (10)0.0045 (9)
C270.0516 (15)0.0574 (14)0.0377 (12)0.0058 (12)0.0164 (11)0.0028 (11)
C280.0550 (16)0.0640 (16)0.0384 (13)0.0038 (13)0.0083 (11)0.0016 (11)
C290.0448 (15)0.0716 (17)0.0418 (13)0.0150 (12)0.0113 (11)0.0024 (12)
Geometric parameters (Å, º) top
Cl1—C51.728 (2)C11—H110.9300
Cl2—C211.724 (2)C12—C131.402 (3)
O1—C21.224 (2)C12—H120.9300
O2—C91.353 (2)C13—H130.9300
O2—C81.360 (3)C14—C151.495 (3)
O3—C111.356 (3)C14—H14A0.9700
O3—C101.368 (2)C14—H14B0.9700
O4—C11.357 (3)C15—C161.484 (3)
O4—C141.432 (2)C15—H15A0.9700
O5—C171.357 (3)C15—H15B0.9700
O5—C161.429 (2)C16—H16A0.9700
O6—C181.224 (2)C16—H16B0.9700
O7—C251.353 (2)C17—C251.355 (3)
O7—C241.357 (2)C17—C181.446 (3)
O8—C271.352 (3)C18—C191.460 (3)
O8—C261.360 (2)C19—C241.378 (2)
C1—C91.355 (2)C19—C201.386 (3)
C1—C21.437 (3)C20—C211.366 (3)
C2—C31.464 (3)C20—H200.9300
C3—C81.381 (2)C21—C221.385 (3)
C3—C41.390 (3)C22—C231.357 (3)
C4—C51.356 (3)C22—H220.9300
C4—H40.9300C23—C241.380 (3)
C5—C61.389 (3)C23—H230.9300
C6—C71.361 (3)C25—C261.438 (3)
C6—H60.9300C26—C291.340 (3)
C7—C81.378 (3)C27—C281.315 (3)
C7—H70.9300C27—H270.9300
C9—C101.436 (3)C28—C291.407 (3)
C10—C131.345 (3)C28—H280.9300
C11—C121.312 (4)C29—H290.9300
C9—O2—C8119.5 (2)C16—C15—C14116.63 (19)
C11—O3—C10105.66 (19)C16—C15—H15A108.1
C1—O4—C14119.79 (17)C14—C15—H15A108.1
C17—O5—C16119.62 (17)C16—C15—H15B108.1
C25—O7—C24119.4 (2)C14—C15—H15B108.1
C27—O8—C26106.03 (18)H15A—C15—H15B107.3
C9—C1—O4116.14 (19)O5—C16—C15108.91 (18)
C9—C1—C2121.2 (2)O5—C16—H16A109.9
O4—C1—C2122.45 (17)C15—C16—H16A109.9
O1—C2—C1124.0 (2)O5—C16—H16B109.9
O1—C2—C3121.5 (2)C15—C16—H16B109.9
C1—C2—C3114.5 (2)H16A—C16—H16B108.3
C8—C3—C4118.38 (19)C25—C17—O5116.65 (19)
C8—C3—C2120.3 (2)C25—C17—C18120.7 (2)
C4—C3—C2121.28 (17)O5—C17—C18122.41 (17)
C5—C4—C3119.41 (19)O6—C18—C17123.7 (2)
C5—C4—H4120.3O6—C18—C19121.93 (19)
C3—C4—H4120.3C17—C18—C19114.4 (2)
C4—C5—C6121.9 (2)C24—C19—C20118.64 (19)
C4—C5—Cl1119.96 (16)C24—C19—C18120.3 (2)
C6—C5—Cl1118.15 (18)C20—C19—C18120.91 (16)
C7—C6—C5119.1 (2)C21—C20—C19119.12 (18)
C7—C6—H6120.4C21—C20—H20120.4
C5—C6—H6120.4C19—C20—H20120.4
C6—C7—C8119.37 (19)C20—C21—C22121.5 (2)
C6—C7—H7120.3C20—C21—Cl2119.64 (16)
C8—C7—H7120.3C22—C21—Cl2118.82 (17)
O2—C8—C7116.59 (17)C23—C22—C21119.7 (2)
O2—C8—C3121.6 (2)C23—C22—H22120.1
C7—C8—C3121.8 (2)C21—C22—H22120.1
O2—C9—C1122.8 (2)C22—C23—C24118.89 (18)
O2—C9—C10111.67 (16)C22—C23—H23120.6
C1—C9—C10125.5 (2)C24—C23—H23120.6
C13—C10—O3109.33 (19)O7—C24—C19121.7 (2)
C13—C10—C9135.13 (19)O7—C24—C23116.25 (17)
O3—C10—C9115.5 (2)C19—C24—C23122.0 (2)
C12—C11—O3111.42 (19)O7—C25—C17123.0 (2)
C12—C11—H11124.3O7—C25—C26111.64 (16)
O3—C11—H11124.3C17—C25—C26125.3 (2)
C11—C12—C13106.8 (2)C29—C26—O8109.42 (18)
C11—C12—H12126.6C29—C26—C25134.89 (19)
C13—C12—H12126.6O8—C26—C25115.62 (19)
C10—C13—C12106.8 (2)C28—C27—O8111.35 (19)
C10—C13—H13126.6C28—C27—H27124.3
C12—C13—H13126.6O8—C27—H27124.3
O4—C14—C15107.98 (18)C27—C28—C29106.3 (2)
O4—C14—H14A110.1C27—C28—H28126.9
C15—C14—H14A110.1C29—C28—H28126.9
O4—C14—H14B110.1C26—C29—C28106.9 (2)
C15—C14—H14B110.1C26—C29—H29126.5
H14A—C14—H14B108.4C28—C29—H29126.5
C14—O4—C1—C9146.3 (2)C17—O5—C16—C15147.85 (19)
C14—O4—C1—C238.9 (3)C14—C15—C16—O561.4 (2)
C9—C1—C2—O1177.9 (2)C16—O5—C17—C25145.39 (19)
O4—C1—C2—O13.3 (3)C16—O5—C17—C1839.8 (3)
C9—C1—C2—C31.3 (3)C25—C17—C18—O6176.8 (2)
O4—C1—C2—C3175.84 (18)O5—C17—C18—O62.2 (3)
O1—C2—C3—C8174.9 (2)C25—C17—C18—C191.9 (3)
C1—C2—C3—C84.3 (3)O5—C17—C18—C19176.56 (18)
O1—C2—C3—C41.8 (3)O6—C18—C19—C24172.7 (2)
C1—C2—C3—C4179.05 (18)C17—C18—C19—C246.0 (3)
C8—C3—C4—C51.5 (3)O6—C18—C19—C203.3 (3)
C2—C3—C4—C5175.20 (19)C17—C18—C19—C20177.99 (18)
C3—C4—C5—C60.0 (3)C24—C19—C20—C211.7 (3)
C3—C4—C5—Cl1179.44 (16)C18—C19—C20—C21174.38 (19)
C4—C5—C6—C71.5 (3)C19—C20—C21—C220.4 (3)
Cl1—C5—C6—C7179.04 (17)C19—C20—C21—Cl2179.92 (15)
C5—C6—C7—C81.4 (3)C20—C21—C22—C232.3 (3)
C9—O2—C8—C7178.83 (18)Cl2—C21—C22—C23178.11 (18)
C9—O2—C8—C30.4 (3)C21—C22—C23—C242.2 (3)
C6—C7—C8—O2179.30 (19)C25—O7—C24—C190.2 (3)
C6—C7—C8—C30.1 (3)C25—O7—C24—C23179.48 (18)
C4—C3—C8—O2179.24 (18)C20—C19—C24—O7178.55 (18)
C2—C3—C8—O24.0 (3)C18—C19—C24—O75.4 (3)
C4—C3—C8—C71.6 (3)C20—C19—C24—C231.8 (3)
C2—C3—C8—C7175.2 (2)C18—C19—C24—C23174.24 (19)
C8—O2—C9—C12.9 (3)C22—C23—C24—O7179.54 (19)
C8—O2—C9—C10178.65 (17)C22—C23—C24—C190.1 (3)
O4—C1—C9—O2172.61 (18)C24—O7—C25—C174.3 (3)
C2—C1—C9—O22.3 (3)C24—O7—C25—C26177.19 (17)
O4—C1—C9—C105.7 (3)O5—C17—C25—O7171.74 (18)
C2—C1—C9—C10179.43 (19)C18—C17—C25—O73.2 (3)
C11—O3—C10—C130.1 (2)O5—C17—C25—C266.6 (3)
C11—O3—C10—C9177.91 (18)C18—C17—C25—C26178.46 (19)
O2—C9—C10—C13170.4 (2)C27—O8—C26—C290.4 (2)
C1—C9—C10—C1311.2 (4)C27—O8—C26—C25177.95 (18)
O2—C9—C10—O36.7 (3)O7—C25—C26—C29171.0 (3)
C1—C9—C10—O3171.7 (2)C17—C25—C26—C2910.5 (4)
C10—O3—C11—C120.6 (3)O7—C25—C26—O85.7 (3)
O3—C11—C12—C130.8 (3)C17—C25—C26—O8172.78 (19)
O3—C10—C13—C120.4 (3)C26—O8—C27—C280.6 (3)
C9—C10—C13—C12176.8 (2)O8—C27—C28—C290.6 (3)
C11—C12—C13—C100.7 (3)O8—C26—C29—C280.0 (3)
C1—O4—C14—C15153.75 (19)C25—C26—C29—C28176.9 (2)
O4—C14—C15—C1659.9 (2)C27—C28—C29—C260.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O40.932.492.896 (3)107
C29—H29···O50.932.482.898 (3)107
C6—H6···O6i0.932.413.299 (3)160
C22—H22···O1ii0.932.443.161 (3)134
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC38H24Cl2O6C29H18Cl2O8
Mr647.47565.33
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)13.236 (1), 10.799 (4), 21.775 (4)15.0485 (2), 7.6144 (1), 20.7890 (2)
β (°) 91.393 (3) 100.784 (1)
V3)3111.5 (13)2340.04 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.260.34
Crystal size (mm)0.47 × 0.43 × 0.400.44 × 0.18 × 0.16
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.867, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
4781, 4612, 1928 15953, 5813, 3529
Rint0.0240.088
(sin θ/λ)max1)0.7120.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.230, 1.00 0.054, 0.153, 0.92
No. of reflections46125813
No. of parameters208352
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.450.56, 0.46

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), SMART (Siemens, 1996), CAD-4 EXPRESS, SAINT (Siemens, 1996), XCAD4 (Harms & Wocadlo, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97(Sheldrick, 1997), ORTEPII (Johnson, 1976), ZORTEP (Zsolnai, 1997), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (I) top
O2—C81.383 (3)C2—C31.468 (4)
C1—C91.345 (4)C3—C81.371 (4)
C1—C21.454 (4)
C9—O2—C8119.0 (2)C3—C8—C7122.4 (3)
C9—C1—C2122.6 (2)C3—C8—O2121.7 (2)
C1—C2—C3113.3 (2)C1—C9—O2122.1 (2)
C8—C3—C2121.2 (2)
C1—C9—C10—C1154.1 (4)O3—C16—C17—C18106.2 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O10.972.503.091 (4)119
C18—H18···Cl1i0.932.883.676 (5)144
Symmetry code: (i) x+1/2, y+1/2, z.
Selected geometric parameters (Å, º) for (II) top
O2—C81.360 (3)C3—C81.381 (2)
O7—C241.357 (2)C17—C251.355 (3)
C1—C91.355 (2)C17—C181.446 (3)
C1—C21.437 (3)C18—C191.460 (3)
C2—C31.464 (3)C19—C241.378 (2)
C9—O2—C8119.5 (2)O2—C9—C1122.8 (2)
C25—O7—C24119.4 (2)C25—C17—C18120.7 (2)
C9—C1—C2121.2 (2)C17—C18—C19114.4 (2)
C1—C2—C3114.5 (2)C24—C19—C18120.3 (2)
C8—C3—C2120.3 (2)O7—C24—C19121.7 (2)
O2—C8—C3121.6 (2)C19—C24—C23122.0 (2)
C7—C8—C3121.8 (2)O7—C25—C17123.0 (2)
C1—C9—C10—C1311.2 (4)C14—C15—C16—O561.4 (2)
O4—C14—C15—C1659.9 (2)C17—C25—C26—C2910.5 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O40.932.492.896 (3)107
C29—H29···O50.932.482.898 (3)107
C6—H6···O6i0.932.413.299 (3)160
C22—H22···O1ii0.932.443.161 (3)134
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds