organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1279

5-Bromo-3-cyclo­hexyl­sulfonyl-2,7-di­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 14 April 2011; accepted 24 April 2011; online 29 April 2011)

In the title compound, C16H19BrO3S, the cyclo­hexyl ring adopts a chair conformation. In the crystal, mol­ecules are linked through weak C—H⋯O hydrogen bonds and Br⋯O contacts [3.211 (1) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 3-cyclo­hexyl­sulfonyl-5-halo-2-methyl-1-benzofuran derivatives, see: Choi et al. (2011a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o542.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o828.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19BrO3S

  • Mr = 371.28

  • Triclinic, [P \overline 1]

  • a = 6.6992 (2) Å

  • b = 8.4654 (2) Å

  • c = 14.1065 (3) Å

  • α = 101.773 (1)°

  • β = 99.283 (1)°

  • γ = 92.067 (1)°

  • V = 770.94 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.81 mm−1

  • T = 173 K

  • 0.26 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.525, Tmax = 0.591

  • 13840 measured reflections

  • 3542 independent reflections

  • 3247 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.10

  • 3542 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.98 2.55 3.384 (2) 143
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing a benzofuran skeleton have drawn much attention owing to diverse pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 3-cyclohexylsulfonyl-5-halo-2-methyl-1-benzofuran analogues (Choi et al., 2011a,b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form. The molecular packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds between a methyl H atom and the O atom of the sulfonyl group (Table 1; C10—H10B···O2ii). The crystal packing (Fig. 2) is further stabilized by a Br···O halogen-bonding between the bromine and the O atom of the sulfonyl group [Br1···O2i = 3.211 (1) Å, C4—Br1···O2i = 168.13 (6)°] (Politzer et al., 2007).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 3-cyclohexylsulfonyl-5-halo-2-methyl-1-benzofuran derivatives, see: Choi et al. (2011a,b). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-chloroperoxybenzoic acid (448 mg, 2.0 mmol) was added in small portions to a stirred solution of 5-bromo-3-cyclohexylsulfanyl-2,7-dimethyl-1-benzofuran (305 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 72%, m.p. 440–441 K; Rf = 0.55 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the Br···O and C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x, - y + 1, - z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z.]
5-Bromo-3-cyclohexylsulfonyl-2,7-dimethyl-1-benzofuran top
Crystal data top
C16H19BrO3SZ = 2
Mr = 371.28F(000) = 380
Triclinic, P1Dx = 1.599 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6992 (2) ÅCell parameters from 7893 reflections
b = 8.4654 (2) Åθ = 2.5–27.5°
c = 14.1065 (3) ŵ = 2.81 mm1
α = 101.773 (1)°T = 173 K
β = 99.283 (1)°Block, colourless
γ = 92.067 (1)°0.26 × 0.25 × 0.21 mm
V = 770.94 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3542 independent reflections
Radiation source: rotating anode3247 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.5°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1011
Tmin = 0.525, Tmax = 0.591l = 1818
13840 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.066H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.2732P]
where P = (Fo2 + 2Fc2)/3
3542 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C16H19BrO3Sγ = 92.067 (1)°
Mr = 371.28V = 770.94 (3) Å3
Triclinic, P1Z = 2
a = 6.6992 (2) ÅMo Kα radiation
b = 8.4654 (2) ŵ = 2.81 mm1
c = 14.1065 (3) ÅT = 173 K
α = 101.773 (1)°0.26 × 0.25 × 0.21 mm
β = 99.283 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3542 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3247 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 0.591Rint = 0.032
13840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.10Δρmax = 0.27 e Å3
3542 reflectionsΔρmin = 0.59 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23387 (3)0.56750 (2)0.639762 (13)0.02642 (7)
S10.18306 (6)0.68046 (5)0.21799 (3)0.02179 (10)
O10.68271 (17)0.88970 (14)0.39103 (9)0.0209 (2)
O20.00575 (19)0.67623 (17)0.26350 (10)0.0308 (3)
O30.1772 (2)0.76300 (17)0.13792 (10)0.0319 (3)
C10.3856 (3)0.7638 (2)0.31083 (12)0.0199 (3)
C20.4083 (2)0.7416 (2)0.41070 (12)0.0186 (3)
C30.2943 (2)0.6642 (2)0.46471 (12)0.0205 (3)
H30.16610.60860.43620.025*
C40.3779 (3)0.6731 (2)0.56194 (13)0.0205 (3)
C50.5655 (3)0.7538 (2)0.60597 (12)0.0207 (3)
H50.61470.75620.67330.025*
C60.6817 (2)0.8306 (2)0.55345 (12)0.0193 (3)
C70.5946 (2)0.8214 (2)0.45637 (12)0.0187 (3)
C80.5527 (3)0.8528 (2)0.30300 (12)0.0210 (3)
C90.8873 (3)0.9137 (2)0.59697 (14)0.0259 (4)
H9A0.99040.85460.56520.039*
H9B0.91500.91610.66760.039*
H9C0.89101.02460.58650.039*
C100.6222 (3)0.9166 (2)0.22308 (13)0.0278 (4)
H10A0.51720.89030.16410.042*
H10B0.74710.86770.20850.042*
H10C0.64831.03430.24350.042*
C110.2440 (3)0.4760 (2)0.17876 (12)0.0212 (3)
H110.29260.43340.23890.025*
C120.0529 (3)0.3725 (2)0.12283 (14)0.0305 (4)
H12A0.05210.37880.16520.037*
H12B0.00160.41370.06370.037*
C130.1038 (3)0.1970 (3)0.09238 (17)0.0399 (5)
H13A0.14550.15320.15190.048*
H13B0.01870.13160.05340.048*
C140.2727 (3)0.1828 (3)0.03208 (16)0.0386 (5)
H14A0.22530.21520.03090.046*
H14B0.30690.06860.01690.046*
C150.4616 (3)0.2888 (2)0.08642 (15)0.0321 (4)
H15A0.56480.28250.04310.039*
H15B0.51890.24770.14520.039*
C160.4139 (3)0.4651 (2)0.11810 (14)0.0277 (4)
H16A0.53680.52930.15760.033*
H16B0.37230.51070.05920.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02483 (10)0.02977 (12)0.02630 (10)0.00189 (7)0.00582 (7)0.00932 (8)
S10.0202 (2)0.0225 (2)0.0199 (2)0.00190 (16)0.00183 (15)0.00234 (17)
O10.0188 (6)0.0227 (6)0.0203 (6)0.0014 (5)0.0035 (5)0.0031 (5)
O20.0196 (6)0.0361 (8)0.0324 (7)0.0021 (5)0.0016 (5)0.0002 (6)
O30.0372 (8)0.0301 (7)0.0265 (7)0.0024 (6)0.0058 (6)0.0103 (6)
C10.0199 (8)0.0190 (8)0.0187 (8)0.0020 (6)0.0012 (6)0.0007 (6)
C20.0190 (8)0.0149 (8)0.0196 (8)0.0025 (6)0.0017 (6)0.0005 (6)
C30.0177 (8)0.0186 (8)0.0228 (8)0.0010 (6)0.0024 (6)0.0004 (7)
C40.0205 (8)0.0177 (8)0.0235 (8)0.0008 (6)0.0056 (6)0.0038 (7)
C50.0216 (8)0.0196 (8)0.0193 (8)0.0035 (6)0.0008 (6)0.0019 (7)
C60.0169 (7)0.0169 (8)0.0216 (8)0.0016 (6)0.0012 (6)0.0003 (6)
C70.0187 (8)0.0164 (8)0.0209 (8)0.0016 (6)0.0051 (6)0.0024 (6)
C80.0231 (8)0.0189 (8)0.0191 (8)0.0044 (6)0.0020 (6)0.0003 (7)
C90.0190 (8)0.0286 (10)0.0270 (9)0.0014 (7)0.0007 (7)0.0027 (8)
C100.0284 (9)0.0320 (10)0.0245 (9)0.0009 (8)0.0060 (7)0.0085 (8)
C110.0235 (8)0.0198 (8)0.0176 (8)0.0012 (7)0.0003 (6)0.0010 (7)
C120.0256 (9)0.0335 (11)0.0267 (9)0.0072 (8)0.0036 (7)0.0043 (8)
C130.0410 (12)0.0302 (11)0.0400 (12)0.0125 (9)0.0069 (9)0.0095 (9)
C140.0407 (12)0.0329 (11)0.0334 (11)0.0007 (9)0.0038 (9)0.0107 (9)
C150.0304 (10)0.0286 (10)0.0339 (10)0.0035 (8)0.0047 (8)0.0008 (8)
C160.0258 (9)0.0266 (10)0.0300 (9)0.0005 (7)0.0068 (7)0.0032 (8)
Geometric parameters (Å, º) top
Br1—C41.9011 (17)C9—H9C0.9800
Br1—O2i3.2114 (14)C10—H10A0.9800
S1—O31.4406 (13)C10—H10B0.9800
S1—O21.4410 (14)C10—H10C0.9800
S1—C11.7420 (17)C11—C161.525 (3)
S1—C111.7891 (18)C11—C121.530 (2)
O1—C81.368 (2)C11—H111.0000
O1—C71.379 (2)C12—C131.526 (3)
C1—C81.359 (2)C12—H12A0.9900
C1—C21.444 (2)C12—H12B0.9900
C2—C71.390 (2)C13—C141.515 (3)
C2—C31.396 (2)C13—H13A0.9900
C3—C41.381 (2)C13—H13B0.9900
C3—H30.9500C14—C151.523 (3)
C4—C51.395 (2)C14—H14A0.9900
C5—C61.387 (2)C14—H14B0.9900
C5—H50.9500C15—C161.529 (3)
C6—C71.385 (2)C15—H15A0.9900
C6—C91.500 (2)C15—H15B0.9900
C8—C101.476 (2)C16—H16A0.9900
C9—H9A0.9800C16—H16B0.9900
C9—H9B0.9800
C4—Br1—O2i168.13 (6)H10A—C10—H10B109.5
O3—S1—O2118.36 (9)C8—C10—H10C109.5
O3—S1—C1109.59 (8)H10A—C10—H10C109.5
O2—S1—C1107.06 (8)H10B—C10—H10C109.5
O3—S1—C11109.54 (8)C16—C11—C12111.87 (15)
O2—S1—C11107.55 (8)C16—C11—S1111.84 (12)
C1—S1—C11103.73 (8)C12—C11—S1109.74 (13)
C8—O1—C7107.00 (13)C16—C11—H11107.7
C8—C1—C2107.69 (15)C12—C11—H11107.7
C8—C1—S1127.55 (14)S1—C11—H11107.7
C2—C1—S1124.69 (13)C13—C12—C11109.64 (16)
C7—C2—C3119.34 (15)C13—C12—H12A109.7
C7—C2—C1104.60 (15)C11—C12—H12A109.7
C3—C2—C1136.06 (15)C13—C12—H12B109.7
C4—C3—C2116.33 (15)C11—C12—H12B109.7
C4—C3—H3121.8H12A—C12—H12B108.2
C2—C3—H3121.8C14—C13—C12111.54 (18)
C3—C4—C5123.20 (16)C14—C13—H13A109.3
C3—C4—Br1118.84 (12)C12—C13—H13A109.3
C5—C4—Br1117.95 (13)C14—C13—H13B109.3
C6—C5—C4121.37 (15)C12—C13—H13B109.3
C6—C5—H5119.3H13A—C13—H13B108.0
C4—C5—H5119.3C13—C14—C15111.59 (17)
C7—C6—C5114.55 (15)C13—C14—H14A109.3
C7—C6—C9122.37 (16)C15—C14—H14A109.3
C5—C6—C9123.07 (16)C13—C14—H14B109.3
O1—C7—C6124.35 (15)C15—C14—H14B109.3
O1—C7—C2110.43 (14)H14A—C14—H14B108.0
C6—C7—C2125.21 (15)C14—C15—C16111.47 (17)
C1—C8—O1110.27 (15)C14—C15—H15A109.3
C1—C8—C10134.88 (16)C16—C15—H15A109.3
O1—C8—C10114.85 (15)C14—C15—H15B109.3
C6—C9—H9A109.5C16—C15—H15B109.3
C6—C9—H9B109.5H15A—C15—H15B108.0
H9A—C9—H9B109.5C11—C16—C15110.14 (16)
C6—C9—H9C109.5C11—C16—H16A109.6
H9A—C9—H9C109.5C15—C16—H16A109.6
H9B—C9—H9C109.5C11—C16—H16B109.6
C8—C10—H10A109.5C15—C16—H16B109.6
C8—C10—H10B109.5H16A—C16—H16B108.1
O3—S1—C1—C820.06 (19)C9—C6—C7—C2177.58 (17)
O2—S1—C1—C8149.60 (16)C3—C2—C7—O1179.90 (14)
C11—S1—C1—C896.84 (17)C1—C2—C7—O10.31 (18)
O3—S1—C1—C2163.32 (14)C3—C2—C7—C60.7 (3)
O2—S1—C1—C233.78 (17)C1—C2—C7—C6179.11 (16)
C11—S1—C1—C279.78 (16)C2—C1—C8—O10.13 (19)
C8—C1—C2—C70.26 (19)S1—C1—C8—O1176.95 (12)
S1—C1—C2—C7176.92 (13)C2—C1—C8—C10179.71 (19)
C8—C1—C2—C3179.99 (19)S1—C1—C8—C103.2 (3)
S1—C1—C2—C32.8 (3)C7—O1—C8—C10.06 (18)
C7—C2—C3—C40.2 (2)C7—O1—C8—C10179.94 (15)
C1—C2—C3—C4179.56 (18)O3—S1—C11—C1643.02 (15)
C2—C3—C4—C50.0 (3)O2—S1—C11—C16172.87 (12)
C2—C3—C4—Br1178.90 (12)C1—S1—C11—C1673.92 (14)
O2i—Br1—C4—C356.5 (3)O3—S1—C11—C1281.75 (14)
O2i—Br1—C4—C5122.5 (3)O2—S1—C11—C1248.11 (14)
C3—C4—C5—C60.4 (3)C1—S1—C11—C12161.32 (13)
Br1—C4—C5—C6178.57 (13)C16—C11—C12—C1357.1 (2)
C4—C5—C6—C70.8 (2)S1—C11—C12—C13178.14 (14)
C4—C5—C6—C9177.76 (17)C11—C12—C13—C1456.2 (2)
C8—O1—C7—C6179.18 (16)C12—C13—C14—C1555.8 (2)
C8—O1—C7—C20.24 (18)C13—C14—C15—C1655.0 (3)
C5—C6—C7—O1179.69 (15)C12—C11—C16—C1556.6 (2)
C9—C6—C7—O11.8 (3)S1—C11—C16—C15179.81 (12)
C5—C6—C7—C21.0 (3)C14—C15—C16—C1154.9 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2ii0.982.553.384 (2)143
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H19BrO3S
Mr371.28
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.6992 (2), 8.4654 (2), 14.1065 (3)
α, β, γ (°)101.773 (1), 99.283 (1), 92.067 (1)
V3)770.94 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.81
Crystal size (mm)0.26 × 0.25 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.525, 0.591
No. of measured, independent and
observed [I > 2σ(I)] reflections
13840, 3542, 3247
Rint0.032
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.10
No. of reflections3542
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.59

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.982.553.384 (2)143
Symmetry code: (i) x+1, y, z.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o828.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1279
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds