Download citation
Download citation
link to html
The title enanti­omorphic compounds, C16H23NO4S, have been obtained in an enanti­omerically pure form by crystallization from a diastereomeric mixture either of (2S,4S)- and (2R,4S)- or of (2R,4R)- and (2S,4R)-2-tert-butyl-4-methyl-3-(4-tolyl­sulfon­yl)-1,3-oxazolidine-4-carbaldehyde. These mixtures were prepared by an aziridination rearrangement process starting with (S)- or (R)-2-tert-butyl-5-methyl-4H-1,3-dioxine. The crystal structures indicate an envelope conformation of the oxazolidine moiety for both compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106001119/ln1192sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106001119/ln1192Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106001119/ln1192IIsup3.hkl
Contains datablock II

CCDC references: 221590; 221591

Comment top

Aziridination of alkenes is an attractive process for the preparation of biologically active compounds (Tanner, 1994). Several aziridination methods are described in the literature, particularly for substituted alkenes (Evans et al., 1994). However, less is known about the aziridination of functionalized alkenes, for example enol ethers and related compounds. Recently, we have investigated the aziridination of cyclic vinyl acetals. We found that these compounds undergo an in situ aziridination-rearrangement process to give 1,3-oxazolidine-4-carbaldehydes (Flock & Frauenrath, 2001). For example, treatment of (S)-(-)-2-tert-butyl-5-methyl-4H-1,3-dioxin (92% ee), prepared by NiBr2[(-)-Diop]/LiBHEt3-catalyzed isomerization of 2-tert-butyl-5-methylene-1,3-dioxane (Diop is diisooctyl phthalate) (Frauenrath et al., 1998; Flock et al., 2005), with [N-(p-toluenesulfonyl)imino]phenyliodinane (PhINTs) in the presence of 10 mol% CuOTf benzene complex (OTf is trifluoromethanesulfonate) led in a one-step procedure to a 70:30 mixture of (2S,4S)- and (2R,4S)-2-tert-butyl-4-methyl-3-(toluene-4-sulfonyl) −1,3-oxazolidine-4-carbaldehyde (Flock, 2003). After purification of the crude reaction product and recrystallization from tert-butylmethyl ether, the major diastereomer, (2S,4S)-(I), was obtained in a crystalline form. For the determination of the optical purity by NMR spectroscopy, the crystalline solid was reacted with (2R,3R)-(-)-butanediol to give N-[(1-(4,5)-dimethyl-1,3-dioxolan-2-yl)-2-hydroxy-1-methylethyl]- 4-methylbenzenesulfonamide, (III). Surprisingly, only one diastereomer could be detected in the NMR spectra of the crude reaction mixture, indicating that the crystalline diastereomer, (I), was obtained in an enantiomerically pure form. The opposite enantiomer, (2R,4R)-(II), was prepared by the same procedure from (R)-(+)-2-tert-butyl-5-methyl-4H-1,3-dioxin (91% ee). The latter compound was readily obtained by asymmetric double-bond isomerization of 2-tert-butyl-5-methylene-1,3-dioxane using NiBr2[(+)-Diop]/LiBHEt3 as a catalyst (Flock et al., 2005). Compounds (I) and (II) are useful chiral building blocks, for example for the synthesis of unnatural amino acids bearing a quaternary chiral center, and a knowledge of the absolute configuration of these compounds is important for gaining more insight into the diastereoselective course of the intermediate aziridination process. For this reason, the structures and absolute configurations of compounds (I) and (II) have been established by X-ray crystallography.

The molecular structures and correct absolute configurations, as confirmed by refinement of the absolute structure parameter (Flack, 1983), of compounds (I) and (II) are shown in Figs. 1 and 2, respectively. In both structures, the bond distances and angles agree with the expected values and no unusual intermolecular interactions could be found. For (I), the closest intermolecular contacts to neighboring molecules are C4···C3i and C5···O4ii [3.2369 (16) and 3.2252 (19) Å; symmetry codes: (i) −x, y − 1/2, −z + 3/2; (ii) x + 1/2, −y + 1/2, −z + 1]. The C11···O1iii distance of 3.3863 (17) Å [symmetry code: (iii) −x, y + 1/2, −z + 3/2] may be regarded as an extremly weak C—H···O hydrogen bridge. The corresponding contact distances in compound (II) are almost identical. The oxazolidine moieties of both (I) and (II) adopt the same envelope conformation, with atom C2 lying 0.479 (2) Å (mean value) above the plane formed by atoms C1, C3, O1 and N1. The deviation of atoms C1, C3, O1 and N1 from the ring plane [the mean deviations are −0.035 (1), −0.022 (1), 0.022 (1) and 0.035 (1) Å, respectively] and the distance of atom C2 from this plane are identical within 3σ for the two structures. Oxazolidine rings preferably adopt envelope conformations in the crystalline state, but with different atoms lying out of the plane. In the archetypal unsubstituted p-tosyl-1,3-oxazolidine (Gálvez-Ruiz et al., 2004), the O atom lies out of the molecular plane, a conformation typically found for p-tosyl-1,3-oxazolidine derivatives with only Csp3 atoms and a CH2 group in the non acetalic α-position to the ring O atom. However, p-tosyl-1,3-oxazolidines with this CH2 group out of the molecular plane (as found for the present structures) are not unusual. Twisted five-membered rings or conformations with N or other C atoms out of the plane exist but are rarely found exceptions. Therefore, we assume that, in the present case, the envelope conformation is mostly influenced by the substitution pattern of the quarternary C atom in the α-position (C3) to the N atom. A closely related envelope conformation was found for 3-(tert-butyloxycarbonyl)-2,2-dimethyl-4-methyl-1,3-oxazolidine-4-carbaldehyde, which has a comparable substitution pattern in the C3 position (Avenoza et al., 2003). The absolute value of the N1—C3—C4—O2 torsion angle is 156.63 (13)° in (I) and 156.80 (13)° in (II), which are also identical within 3σ and indicate a gauche orientation of the carbonyl group [C4O2] with respect to the methyl group at C5. Obviously, this orientation of the C4O2 carbonyl group leads to a minimization of the interaction of the carbonyl atom O2 with atoms O1 and O4.

Experimental top

For the preparation of (I) and (II), under an inert atmosphere, PhINTs (15 mmol, 5.598 g) was added in small portions over a period of 3 h to a solution of (-)-2-tert-butyl-5-methyl-4H-1,3-dioxin (10 mmol, 1.562 g, 92% ee) or (+)-2-tert-butyl-5-methyl-4H-1,3-dioxin (91% ee), respectively, and CuOTf benzene complex (0.503 g, 10 mol %) in dry tert-butylmethyl ether (25 ml). After complete conversion (monitored by gas chromatography), the solvent was evaporated under reduced pressure, and the oily residue was purified by column chromatography (silica, light petroleum/ diethyl ether, 5:1) to afford a diastereomeric mixture (70:30) of the oxazolidine carbaldehyde as a colourless solid. Recrystallization from tert-butylmethyl ether led to single crystals of the main diastereomer, (I) and (II), respectively (m.p. 398–399 K). 1H NMR (500 MHz, CDCl3): δ 0.84 [s, 9H, C(CH3)3], 1.63 (s, 3H, CH3), 2.44 (s, 3H, Ph—CH3), 4.04 (d, 1H, 2J = 10.0 Hz, O—CH2), 4.10 (d, 1H, 2J = 10.0 Hz, O—CH2), 5.44 (s, 1H, O—CHR—N), 7.32 (m, 2H, CH arom), 7.76 (m, 2H, CH arom), 9.87 (s, 1H, CHO). 13C NMR (125 MHz, CDCl3): δ 17.6 (1 C, CH3), 21.5 (1 C, Ph—CH3), 26.3 [3 C, C(CH3)3], 38.0 [1 C, C(CH3)3], 71.9 (1 C, N—C—CH3), 73.2 (1 C, OCH2), 100.5 (1 C, O—CHR—N), 127.5 (2 C, C2 + 6 arom), 129.9 (2 C, C3 + 5 arom), 138.0 (1 C, C1 arom), 144.0 (1 C, C4 arom), 198.4 (1 C, CHO). IR (ATR, cm−1): δ 2962, 2927, 2852, 1737, 1451, 1334, 1259, 1160, 1090, 1012, 812, 705, 665, 594, 547. Analysis calculated for C16H23NO4S (325.42): C 59.05, H 7.12, N 4.30%; found: C 59.03, H 7.07, N 4.28%. (I): [α]20D = −76.1 (c = 2.95, CHCl3). (II): [α]20D = +73.03 (c = 1.65, CHCl3).

Refinement top

The methyl H atoms were constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) values of 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All other H atoms were positioned geometrically and refined using a riding model, with C—H distances in the range 0.93–0.98 Å and Uiso(H) values of 1.2Ueq(C).

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2004); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level and H atoms are drawn as circles of arbitrary radii.
[Figure 2] Fig. 2. The asymmetric unit of (II), showing the atom-labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level and H atoms are drawn as circles of arbitrary radii.
(I) (2S,4S)-2-tert-butyl-4-methyl-3-(4-tolylsulfonyl)-1,3-oxazolidine- 4-carbaldehyde top
Crystal data top
C16H23NO4SF(000) = 696
Mr = 325.41Dx = 1.317 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 16746 reflections
a = 8.5175 (6) Åθ = 2.2–27.0°
b = 11.3011 (8) ŵ = 0.21 mm1
c = 17.0503 (13) ÅT = 100 K
V = 1641.2 (2) Å3Plate, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
STOE IPDS-II
diffractometer
3518 independent reflections
Radiation source: fine-focus sealed tube3192 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 2.2°
ϕ or ω scans?h = 1010
Absorption correction: integration
(X-RED; Stoe & Cie, 2004)
k = 1414
Tmin = 0.923, Tmax = 0.980l = 2121
9743 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0374P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 0.95Δρmax = 0.22 e Å3
3518 reflectionsΔρmin = 0.27 e Å3
205 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0103 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1486 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (5)
Crystal data top
C16H23NO4SV = 1641.2 (2) Å3
Mr = 325.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5175 (6) ŵ = 0.21 mm1
b = 11.3011 (8) ÅT = 100 K
c = 17.0503 (13) Å0.30 × 0.20 × 0.10 mm
Data collection top
STOE IPDS-II
diffractometer
3518 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2004)
3192 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.980Rint = 0.029
9743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.22 e Å3
S = 0.95Δρmin = 0.27 e Å3
3518 reflectionsAbsolute structure: Flack (1983), 1486 Friedel pairs
205 parametersAbsolute structure parameter: 0.04 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.02226 (18)0.15792 (11)0.62997 (8)0.0198 (3)
H40.07500.17610.67620.024*
C50.17191 (19)0.22723 (12)0.52784 (9)0.0226 (3)
H5A0.09180.27470.50380.034*
H5B0.17300.15020.50410.034*
H5C0.27220.26440.52060.034*
C60.41058 (17)0.37324 (12)0.73830 (9)0.0205 (3)
C90.49627 (19)0.32697 (12)0.81125 (9)0.0267 (3)
H9A0.51610.24380.80540.040*
H9B0.43220.34000.85680.040*
H9C0.59410.36820.81720.040*
C80.37661 (19)0.50512 (13)0.75071 (10)0.0287 (4)
H8A0.47360.54680.75840.043*
H8B0.31110.51500.79610.043*
H8C0.32380.53620.70540.043*
C70.51252 (19)0.35622 (15)0.66597 (10)0.0321 (3)
H7A0.45420.37830.62000.048*
H7B0.54320.27470.66210.048*
H7C0.60450.40490.67010.048*
C10.25244 (17)0.30696 (11)0.73339 (9)0.0174 (3)
H10.18810.33040.77840.021*
O10.27002 (12)0.18134 (8)0.73484 (6)0.0198 (2)
C20.26050 (17)0.13754 (11)0.65689 (9)0.0207 (3)
H2A0.22780.05530.65680.025*
H2B0.36160.14350.63100.025*
C30.13820 (17)0.21514 (11)0.61506 (9)0.0180 (3)
O20.08277 (13)0.09072 (9)0.58466 (7)0.0284 (3)
N10.15862 (13)0.32747 (9)0.65998 (7)0.0168 (2)
S10.01560 (4)0.42522 (3)0.65859 (2)0.01677 (8)
O30.02654 (12)0.45591 (8)0.73767 (6)0.0222 (2)
O40.10141 (12)0.37777 (8)0.60675 (6)0.0222 (2)
C100.09087 (16)0.55395 (11)0.61323 (8)0.0175 (3)
C110.04177 (16)0.66292 (12)0.64254 (8)0.0187 (3)
H110.02070.66680.68720.022*
C120.08755 (18)0.76584 (12)0.60399 (9)0.0219 (3)
H120.05590.83890.62360.026*
C130.17950 (18)0.76151 (13)0.53693 (9)0.0228 (3)
C140.22948 (19)0.65080 (12)0.50938 (9)0.0238 (3)
H140.29350.64680.46530.029*
C150.18482 (18)0.54717 (13)0.54699 (9)0.0215 (3)
H150.21750.47410.52800.026*
C160.2250 (2)0.87375 (14)0.49491 (11)0.0327 (4)
H16A0.15220.93540.50820.049*
H16B0.22280.86050.43930.049*
H16C0.32890.89680.51050.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0227 (7)0.0166 (6)0.0199 (7)0.0003 (6)0.0035 (6)0.0019 (5)
C50.0298 (8)0.0192 (7)0.0188 (7)0.0011 (6)0.0025 (7)0.0010 (6)
C60.0191 (7)0.0200 (6)0.0225 (8)0.0012 (5)0.0030 (6)0.0014 (6)
C90.0256 (8)0.0232 (6)0.0313 (8)0.0010 (7)0.0103 (7)0.0011 (6)
C80.0268 (8)0.0191 (7)0.0403 (10)0.0035 (6)0.0111 (8)0.0008 (7)
C70.0223 (7)0.0410 (8)0.0331 (9)0.0091 (7)0.0029 (8)0.0009 (7)
C10.0199 (7)0.0145 (6)0.0178 (7)0.0018 (5)0.0002 (6)0.0004 (5)
O10.0249 (5)0.0142 (4)0.0203 (5)0.0002 (4)0.0039 (4)0.0013 (4)
C20.0224 (7)0.0165 (6)0.0233 (7)0.0021 (5)0.0006 (7)0.0019 (6)
C30.0217 (7)0.0139 (6)0.0183 (7)0.0005 (5)0.0001 (6)0.0007 (5)
O20.0311 (6)0.0239 (5)0.0303 (6)0.0063 (5)0.0064 (5)0.0015 (5)
N10.0188 (5)0.0144 (5)0.0172 (6)0.0012 (4)0.0012 (5)0.0018 (5)
S10.01676 (15)0.01517 (14)0.01838 (16)0.00138 (12)0.00098 (14)0.00095 (12)
O30.0257 (5)0.0199 (4)0.0209 (5)0.0038 (4)0.0052 (5)0.0019 (4)
O40.0193 (5)0.0204 (5)0.0268 (6)0.0001 (4)0.0038 (5)0.0012 (4)
C100.0186 (6)0.0162 (6)0.0177 (7)0.0007 (5)0.0024 (6)0.0009 (5)
C110.0207 (7)0.0182 (6)0.0173 (7)0.0016 (5)0.0005 (6)0.0012 (5)
C120.0250 (7)0.0166 (6)0.0239 (8)0.0024 (6)0.0005 (7)0.0019 (6)
C130.0241 (7)0.0183 (7)0.0260 (9)0.0019 (6)0.0009 (7)0.0018 (6)
C140.0282 (8)0.0213 (7)0.0220 (8)0.0006 (6)0.0064 (7)0.0005 (6)
C150.0234 (7)0.0186 (6)0.0225 (8)0.0026 (5)0.0002 (6)0.0016 (5)
C160.0418 (10)0.0193 (7)0.0372 (10)0.0009 (7)0.0103 (8)0.0033 (7)
Geometric parameters (Å, º) top
C4—O21.1997 (17)O1—C21.4205 (18)
C4—C31.533 (2)C2—C31.5371 (19)
C4—H40.9300C2—H2A0.9700
C5—C31.521 (2)C2—H2B0.9700
C5—H5A0.9600C3—N11.4927 (17)
C5—H5B0.9600N1—S11.6446 (11)
C5—H5C0.9600S1—O41.4361 (11)
C6—C71.521 (2)S1—O31.4377 (10)
C6—C81.533 (2)S1—C101.7680 (14)
C6—C91.534 (2)C10—C151.386 (2)
C6—C11.543 (2)C10—C111.3933 (18)
C9—H9A0.9600C11—C121.392 (2)
C9—H9B0.9600C11—H110.9300
C9—H9C0.9600C12—C131.387 (2)
C8—H8A0.9600C12—H120.9300
C8—H8B0.9600C13—C141.403 (2)
C8—H8C0.9600C13—C161.507 (2)
C7—H7A0.9600C14—C151.388 (2)
C7—H7B0.9600C14—H140.9300
C7—H7C0.9600C15—H150.9300
C1—O11.4277 (15)C16—H16A0.9600
C1—N11.5031 (18)C16—H16B0.9600
C1—H10.9800C16—H16C0.9600
O2—C4—C3122.90 (14)O1—C2—H2B110.6
O2—C4—H4118.6C3—C2—H2B110.6
C3—C4—H4118.6H2A—C2—H2B108.7
C3—C5—H5A109.5N1—C3—C5113.78 (11)
C3—C5—H5B109.5N1—C3—C4112.18 (11)
H5A—C5—H5B109.5C5—C3—C4111.61 (12)
C3—C5—H5C109.5N1—C3—C299.69 (11)
H5A—C5—H5C109.5C5—C3—C2112.15 (12)
H5B—C5—H5C109.5C4—C3—C2106.65 (11)
C7—C6—C8110.04 (13)C3—N1—C1110.98 (10)
C7—C6—C9110.05 (13)C3—N1—S1118.53 (9)
C8—C6—C9108.02 (12)C1—N1—S1120.62 (9)
C7—C6—C1113.14 (12)O4—S1—O3119.61 (6)
C8—C6—C1108.34 (12)O4—S1—N1105.79 (6)
C9—C6—C1107.08 (12)O3—S1—N1109.48 (6)
C6—C9—H9A109.5O4—S1—C10106.84 (6)
C6—C9—H9B109.5O3—S1—C10107.60 (6)
H9A—C9—H9B109.5N1—S1—C10106.88 (6)
C6—C9—H9C109.5C15—C10—C11120.95 (12)
H9A—C9—H9C109.5C15—C10—S1121.35 (10)
H9B—C9—H9C109.5C11—C10—S1117.49 (11)
C6—C8—H8A109.5C12—C11—C10119.03 (13)
C6—C8—H8B109.5C12—C11—H11120.5
H8A—C8—H8B109.5C10—C11—H11120.5
C6—C8—H8C109.5C13—C12—C11121.21 (13)
H8A—C8—H8C109.5C13—C12—H12119.4
H8B—C8—H8C109.5C11—C12—H12119.4
C6—C7—H7A109.5C12—C13—C14118.62 (14)
C6—C7—H7B109.5C12—C13—C16120.49 (13)
H7A—C7—H7B109.5C14—C13—C16120.89 (14)
C6—C7—H7C109.5C15—C14—C13120.97 (15)
H7A—C7—H7C109.5C15—C14—H14119.5
H7B—C7—H7C109.5C13—C14—H14119.5
O1—C1—N1102.91 (10)C10—C15—C14119.20 (13)
O1—C1—C6112.96 (11)C10—C15—H15120.4
N1—C1—C6115.74 (11)C14—C15—H15120.4
O1—C1—H1108.3C13—C16—H16A109.5
N1—C1—H1108.3C13—C16—H16B109.5
C6—C1—H1108.3H16A—C16—H16B109.5
C2—O1—C1108.93 (10)C13—C16—H16C109.5
O1—C2—C3105.90 (11)H16A—C16—H16C109.5
O1—C2—H2A110.6H16B—C16—H16C109.5
C3—C2—H2A110.6
C7—C6—C1—O167.43 (16)C6—C1—N1—S197.41 (13)
C8—C6—C1—O1170.28 (12)C3—N1—S1—O43.19 (12)
C9—C6—C1—O153.99 (16)C1—N1—S1—O4145.87 (10)
C7—C6—C1—N150.85 (16)C3—N1—S1—O3126.95 (10)
C8—C6—C1—N171.45 (16)C1—N1—S1—O315.73 (12)
C9—C6—C1—N1172.27 (11)C3—N1—S1—C10116.79 (10)
N1—C1—O1—C226.07 (14)C1—N1—S1—C10100.53 (11)
C6—C1—O1—C299.46 (14)O4—S1—C10—C1570.55 (13)
C1—O1—C2—C336.08 (14)O3—S1—C10—C15159.85 (12)
O2—C4—C3—N1156.63 (13)N1—S1—C10—C1542.34 (14)
O2—C4—C3—C527.59 (18)O4—S1—C10—C11104.24 (12)
O2—C4—C3—C295.22 (16)O3—S1—C10—C1125.37 (13)
O1—C2—C3—N129.01 (13)N1—S1—C10—C11142.88 (11)
O1—C2—C3—C5149.76 (11)C15—C10—C11—C120.4 (2)
O1—C2—C3—C487.78 (12)S1—C10—C11—C12174.38 (11)
C5—C3—N1—C1133.07 (13)C10—C11—C12—C130.6 (2)
C4—C3—N1—C199.03 (13)C11—C12—C13—C141.6 (2)
C2—C3—N1—C113.52 (14)C11—C12—C13—C16178.63 (15)
C5—C3—N1—S180.90 (14)C12—C13—C14—C151.7 (2)
C4—C3—N1—S147.00 (15)C16—C13—C14—C15178.55 (15)
C2—C3—N1—S1159.55 (10)C11—C10—C15—C140.3 (2)
O1—C1—N1—C36.33 (14)S1—C10—C15—C14174.26 (12)
C6—C1—N1—C3117.37 (12)C13—C14—C15—C100.7 (2)
O1—C1—N1—S1138.89 (9)
(II) (2R,4R)-2-tert-butyl-4-methyl-3-(4-tolylsulfonyl)-1,3-oxazolidine- 4-carbaldehyde top
Crystal data top
C16H23NO4SF(000) = 696
Mr = 325.41Dx = 1.314 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 17010 reflections
a = 8.5276 (6) Åθ = 1.9–27.8°
b = 11.3090 (11) ŵ = 0.21 mm1
c = 17.0624 (12) ÅT = 100 K
V = 1645.5 (2) Å3Plate, colourless
Z = 40.35 × 0.30 × 0.20 mm
Data collection top
STOE IPDS-II
diffractometer
3772 independent reflections
Radiation source: fine-focus sealed tube3554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 6.67 pixels mm-1θmax = 27.6°, θmin = 2.2°
ϕ or ω scans?h = 1011
Absorption correction: integration
(X-RED; Stoe & Cie, 2004)
k = 1414
Tmin = 0.941, Tmax = 0.971l = 2121
13910 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0579P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.012
S = 1.02Δρmax = 0.19 e Å3
3772 reflectionsΔρmin = 0.31 e Å3
205 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.028 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1617 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (5)
Crystal data top
C16H23NO4SV = 1645.5 (2) Å3
Mr = 325.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5276 (6) ŵ = 0.21 mm1
b = 11.3090 (11) ÅT = 100 K
c = 17.0624 (12) Å0.35 × 0.30 × 0.20 mm
Data collection top
STOE IPDS-II
diffractometer
3772 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2004)
3554 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.971Rint = 0.043
13910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.19 e Å3
S = 1.02Δρmin = 0.31 e Å3
3772 reflectionsAbsolute structure: Flack (1983), 1617 Friedel pairs
205 parametersAbsolute structure parameter: 0.04 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate

(isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51561 (3)0.57476 (3)0.65858 (2)0.02166 (9)
O30.47337 (11)0.54408 (8)0.73763 (6)0.0270 (2)
O40.39856 (11)0.62247 (8)0.60672 (6)0.0271 (2)
N10.65852 (12)0.67247 (9)0.66014 (7)0.0218 (2)
O10.76996 (11)0.81849 (8)0.73488 (6)0.0245 (2)
O20.41727 (13)0.90936 (9)0.58459 (7)0.0332 (2)
C10.75211 (15)0.69330 (11)0.73329 (9)0.0224 (3)
H10.68650.66950.77920.027*
C20.76053 (15)0.86252 (11)0.65705 (9)0.0252 (3)
H2A0.86360.85660.63070.030*
H2B0.72710.94640.65710.030*
C30.63822 (15)0.78496 (11)0.61500 (8)0.0227 (3)
C40.47745 (15)0.84202 (11)0.63007 (8)0.0248 (3)
H40.42350.82330.67720.030*
C50.67219 (18)0.77260 (12)0.52791 (9)0.0281 (3)
H5A0.77470.73500.52070.042*
H5B0.67290.85100.50350.042*
H5C0.59090.72380.50340.042*
C60.91019 (15)0.62651 (12)0.73831 (9)0.0251 (3)
C71.01240 (17)0.64353 (15)0.66608 (10)0.0364 (3)
H7A1.10530.59280.67000.055*
H7B1.04520.72640.66260.055*
H7C0.95260.62230.61910.055*
C80.87645 (17)0.49493 (13)0.75057 (10)0.0339 (3)
H8A0.82640.46250.70350.051*
H8B0.80630.48500.79560.051*
H8C0.97500.45300.76040.051*
C90.99659 (18)0.67302 (12)0.81105 (9)0.0323 (3)
H9A1.09720.63190.81640.048*
H9B0.93250.65870.85780.048*
H9C1.01520.75810.80530.048*
C100.59033 (14)0.44626 (11)0.61332 (8)0.0229 (3)
C110.54186 (14)0.33703 (11)0.64256 (8)0.0238 (3)
H110.47880.33280.68840.029*
C120.58704 (17)0.23422 (12)0.60377 (9)0.0264 (3)
H120.55400.15970.62350.032*
C130.67928 (17)0.23852 (12)0.53689 (9)0.0275 (3)
C140.72945 (17)0.34922 (13)0.50939 (9)0.0288 (3)
H140.79520.35320.46450.035*
C150.68467 (16)0.45310 (12)0.54663 (9)0.0256 (3)
H150.71780.52770.52700.031*
C160.7249 (2)0.12631 (13)0.49486 (11)0.0380 (4)
H16A0.82940.10140.51220.057*
H16B0.72640.14060.43820.057*
H16C0.64870.06410.50690.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01631 (13)0.02281 (14)0.02588 (17)0.00114 (10)0.00100 (11)0.00086 (11)
O30.0255 (5)0.0272 (4)0.0284 (5)0.0037 (4)0.0052 (4)0.0007 (4)
O40.0173 (4)0.0290 (5)0.0349 (6)0.0005 (4)0.0041 (4)0.0012 (4)
N10.0182 (5)0.0218 (5)0.0255 (6)0.0007 (4)0.0007 (4)0.0011 (4)
O10.0231 (4)0.0219 (4)0.0283 (5)0.0003 (3)0.0033 (4)0.0010 (3)
O20.0301 (5)0.0311 (5)0.0383 (6)0.0064 (4)0.0073 (4)0.0023 (4)
C10.0184 (5)0.0227 (6)0.0262 (7)0.0010 (5)0.0012 (5)0.0005 (5)
C20.0222 (5)0.0241 (6)0.0294 (7)0.0012 (5)0.0026 (5)0.0025 (5)
C30.0211 (6)0.0210 (6)0.0260 (7)0.0006 (5)0.0004 (5)0.0016 (5)
C40.0213 (6)0.0239 (5)0.0291 (7)0.0001 (5)0.0027 (5)0.0020 (5)
C50.0301 (7)0.0276 (7)0.0266 (8)0.0008 (5)0.0030 (6)0.0017 (5)
C60.0173 (6)0.0282 (6)0.0298 (8)0.0008 (5)0.0024 (5)0.0011 (5)
C70.0209 (6)0.0479 (8)0.0404 (9)0.0074 (6)0.0036 (6)0.0018 (6)
C80.0264 (7)0.0269 (7)0.0484 (10)0.0040 (5)0.0110 (6)0.0002 (6)
C90.0270 (7)0.0313 (6)0.0387 (8)0.0004 (6)0.0110 (6)0.0014 (6)
C100.0184 (5)0.0242 (6)0.0261 (7)0.0019 (5)0.0011 (5)0.0013 (5)
C110.0210 (6)0.0257 (6)0.0248 (7)0.0025 (4)0.0002 (5)0.0008 (5)
C120.0240 (6)0.0239 (6)0.0315 (8)0.0007 (5)0.0005 (5)0.0017 (5)
C130.0241 (6)0.0261 (6)0.0324 (8)0.0017 (5)0.0005 (6)0.0018 (6)
C140.0269 (7)0.0295 (7)0.0299 (8)0.0004 (5)0.0069 (6)0.0008 (5)
C150.0230 (6)0.0254 (6)0.0285 (7)0.0023 (5)0.0026 (5)0.0012 (5)
C160.0435 (9)0.0267 (7)0.0439 (10)0.0009 (6)0.0111 (7)0.0034 (6)
Geometric parameters (Å, º) top
S1—O31.4385 (11)C7—H7A0.9800
S1—O41.4390 (10)C7—H7B0.9800
S1—N11.6452 (11)C7—H7C0.9800
S1—C101.7648 (13)C8—H8A0.9800
N1—C31.4971 (16)C8—H8B0.9800
N1—C11.5001 (17)C8—H8C0.9800
O1—C21.4205 (18)C9—H9A0.9800
O1—C11.4242 (15)C9—H9B0.9800
O2—C41.2024 (17)C9—H9C0.9800
C1—C61.5476 (17)C10—C111.3948 (17)
C1—H11.0000C10—C151.3958 (19)
C2—C31.5402 (18)C11—C121.3922 (19)
C2—H2A0.9900C11—H110.9500
C2—H2B0.9900C12—C131.387 (2)
C3—C51.520 (2)C12—H120.9500
C3—C41.5369 (17)C13—C141.404 (2)
C4—H40.9500C13—C161.5086 (19)
C5—H5A0.9800C14—C151.3891 (19)
C5—H5B0.9800C14—H140.9500
C5—H5C0.9800C15—H150.9500
C6—C71.522 (2)C16—H16A0.9800
C6—C81.530 (2)C16—H16B0.9800
C6—C91.536 (2)C16—H16C0.9800
O3—S1—O4119.56 (6)C6—C7—H7A109.5
O3—S1—N1109.41 (6)C6—C7—H7B109.5
O4—S1—N1105.78 (6)H7A—C7—H7B109.5
O3—S1—C10107.58 (6)C6—C7—H7C109.5
O4—S1—C10106.86 (6)H7A—C7—H7C109.5
N1—S1—C10107.02 (6)H7B—C7—H7C109.5
C3—N1—C1110.86 (10)C6—C8—H8A109.5
C3—N1—S1118.47 (8)C6—C8—H8B109.5
C1—N1—S1120.86 (9)H8A—C8—H8B109.5
C2—O1—C1108.94 (10)C6—C8—H8C109.5
O1—C1—N1103.23 (10)H8A—C8—H8C109.5
O1—C1—C6113.01 (10)H8B—C8—H8C109.5
N1—C1—C6115.64 (11)C6—C9—H9A109.5
O1—C1—H1108.2C6—C9—H9B109.5
N1—C1—H1108.2H9A—C9—H9B109.5
C6—C1—H1108.2C6—C9—H9C109.5
O1—C2—C3105.91 (10)H9A—C9—H9C109.5
O1—C2—H2A110.6H9B—C9—H9C109.5
C3—C2—H2A110.6C11—C10—C15120.76 (12)
O1—C2—H2B110.6C11—C10—S1117.76 (10)
C3—C2—H2B110.6C15—C10—S1121.28 (10)
H2A—C2—H2B108.7C12—C11—C10119.18 (12)
N1—C3—C5113.75 (11)C12—C11—H11120.4
N1—C3—C4111.95 (11)C10—C11—H11120.4
C5—C3—C4111.84 (11)C13—C12—C11121.25 (13)
N1—C3—C299.56 (10)C13—C12—H12119.4
C5—C3—C2112.25 (11)C11—C12—H12119.4
C4—C3—C2106.68 (10)C12—C13—C14118.63 (13)
O2—C4—C3122.60 (13)C12—C13—C16120.53 (13)
O2—C4—H4118.7C14—C13—C16120.84 (14)
C3—C4—H4118.7C15—C14—C13121.17 (14)
C3—C5—H5A109.5C15—C14—H14119.4
C3—C5—H5B109.5C13—C14—H14119.4
H5A—C5—H5B109.5C14—C15—C10118.98 (12)
C3—C5—H5C109.5C14—C15—H15120.5
H5A—C5—H5C109.5C10—C15—H15120.5
H5B—C5—H5C109.5C13—C16—H16A109.5
C7—C6—C8109.97 (13)C13—C16—H16B109.5
C7—C6—C9109.65 (12)H16A—C16—H16B109.5
C8—C6—C9108.23 (12)C13—C16—H16C109.5
C7—C6—C1113.10 (12)H16A—C16—H16C109.5
C8—C6—C1108.57 (11)H16B—C16—H16C109.5
C9—C6—C1107.18 (12)
O3—S1—N1—C3127.08 (10)C2—C3—C4—O295.29 (16)
O4—S1—N1—C32.95 (11)O1—C1—C6—C767.43 (16)
C10—S1—N1—C3116.64 (10)N1—C1—C6—C751.24 (16)
O3—S1—N1—C115.67 (11)O1—C1—C6—C8170.24 (12)
O4—S1—N1—C1145.70 (10)N1—C1—C6—C871.10 (15)
C10—S1—N1—C1100.62 (10)O1—C1—C6—C953.54 (16)
C2—O1—C1—N126.05 (12)N1—C1—C6—C9172.21 (11)
C2—O1—C1—C699.60 (13)O3—S1—C10—C1125.11 (12)
C3—N1—C1—O16.38 (13)O4—S1—C10—C11104.45 (11)
S1—N1—C1—O1138.91 (9)N1—S1—C10—C11142.60 (10)
C3—N1—C1—C6117.56 (12)O3—S1—C10—C15159.94 (11)
S1—N1—C1—C697.15 (12)O4—S1—C10—C1570.50 (12)
C1—O1—C2—C335.94 (13)N1—S1—C10—C1542.45 (13)
C1—N1—C3—C5132.96 (11)C15—C10—C11—C120.8 (2)
S1—N1—C3—C580.82 (13)S1—C10—C11—C12174.14 (11)
C1—N1—C3—C499.05 (12)C10—C11—C12—C130.1 (2)
S1—N1—C3—C447.17 (14)C11—C12—C13—C141.2 (2)
C1—N1—C3—C213.39 (13)C11—C12—C13—C16179.00 (15)
S1—N1—C3—C2159.60 (9)C12—C13—C14—C151.8 (2)
O1—C2—C3—N128.83 (12)C16—C13—C14—C15178.37 (15)
O1—C2—C3—C5149.49 (11)C13—C14—C15—C101.1 (2)
O1—C2—C3—C487.67 (12)C11—C10—C15—C140.2 (2)
N1—C3—C4—O2156.80 (13)S1—C10—C15—C14174.57 (11)
C5—C3—C4—O227.80 (17)

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H23NO4SC16H23NO4S
Mr325.41325.41
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)100100
a, b, c (Å)8.5175 (6), 11.3011 (8), 17.0503 (13)8.5276 (6), 11.3090 (11), 17.0624 (12)
V3)1641.2 (2)1645.5 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.210.21
Crystal size (mm)0.30 × 0.20 × 0.100.35 × 0.30 × 0.20
Data collection
DiffractometerSTOE IPDS-II
diffractometer
STOE IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2004)
Integration
(X-RED; Stoe & Cie, 2004)
Tmin, Tmax0.923, 0.9800.941, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
9743, 3518, 3192 13910, 3772, 3554
Rint0.0290.043
(sin θ/λ)max1)0.6380.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 0.95 0.028, 0.076, 1.02
No. of reflections35183772
No. of parameters205205
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.270.19, 0.31
Absolute structureFlack (1983), 1486 Friedel pairsFlack (1983), 1617 Friedel pairs
Absolute structure parameter0.04 (5)0.04 (5)

Computer programs: X-AREA (Stoe & Cie, 2004), X-AREA, X-RED (Stoe & Cie, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds