organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[2-(5-tert-Butyl-1,2-oxazol-3-yl)hydrazinyl­­idene]chroman-2,4-dione

aGroup of Physics & Chemistry, Faculty of Natural Sciences & Mathematics, State University of Tetovo, 1200 Tetovo, Macedonia, bInstitute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, Macedonia, cInstitute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. build. 9, 1113 Sofia, Bulgaria, and dInstitute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad G. Bonchev Str. build. 107, 1113 Sofia, Bulgaria
*Correspondence e-mail: popovski.emil@gmail.com

(Received 21 December 2012; accepted 9 January 2013; online 19 January 2013)

In the title compound, C16H15N3O4, the dihedral angle between the chromane and isoxazole rings [r.m.s. deviations = 0.042 and 0.007 Å, respectively] is 20.33 (12)°. The mol­ecular geometry is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds generate chains along the c-axis direction. The crystal studied was a non-morohedral twin.

Related literature

For general background to the use of coumarin derivatives in organic synthesis and as biologically active compounds see: Adavi et al. (2004[Adavi, H. H., Kusanur, R. A. & Kulkarni, M. V. (2004). J. Indian Chem. Soc. 81, 981-986.]); Shi & Zhou (2011[Shi, Y. & Zhou, C.-H. (2011). Bioorg. Med. Chem. Lett. 21, 956—960.]); Toshihiro et al. (2005[Toshihiro, O., Tadashi, K. & Shinichi, Y. (2005). Curr. Med. Chem. Anticancer Agents, 5, 47-52.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3O4

  • Mr = 313.31

  • Monoclinic, P 21 /c

  • a = 13.431 (14) Å

  • b = 9.1803 (9) Å

  • c = 12.638 (4) Å

  • β = 100.49 (8)°

  • V = 1532.3 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 290 K

  • 0.28 × 0.26 × 0.21 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.584, Tmax = 1.000

  • 13050 measured reflections

  • 3010 independent reflections

  • 2148 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.181

  • S = 1.09

  • 3010 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.89 (4) 1.86 (4) 2.581 (3) 137 (4)
N2—H2⋯O9i 0.89 (4) 2.70 (4) 3.249 (4) 121 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Synthesis of novel coumarin derivatives is rapid ongoing process in the world due to the remarkable broad spectrum of pharmacological activities, especially anticancer (Toshihiro, et al., 2005; Shi & Zhou, 2011; Adavi, et al., 2004). Our interest is to develop novel coumarin compounds as efficient antitumor agents. Herein, we report the crystal structure of the title compound.

The title compound (Fig. 1) possesses two distinct functional groups: 3-iminochroman-2,4-dione, and 5-(tert-butyl)isoxazole. The chromane and isoxazole moieties are nearly planar (with respective r.m.s. of 0.042 and 0.007 Å).

The interplanar angle between the chromane and isoxazole is 20.33 (12)°. The molecular geometry is stabilised by the intramolecular hydrogen bond N2—H2···O2 (Table 1). In the crystal structure the molecules are connected by the N—H···O hydrogen bond forming chains along c (Fig. 2).

Related literature top

For general background to the use of coumarin derivatives in organic synthesis and as biologically active compounds see: Adavi et al. (2004); Shi & Zhou (2011); Toshihiro et al. (2005).

Experimental top

Suitable crystals of the title compound were obtained by slow evaporation from ethanol at room temperature.

Refinement top

All H atoms bonded to C were placed in idealized positions (C—Haromatic = 0.93 Å and C—Hmethyl = 0.96 Å) while the N2 hydrogen atom coordinates were located from the difference Fourier map. All H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C or N) and 1.5Ueq(Cmethyl). The observed non-morohedral twinning affected quality of data.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the structure and the atom-numbering scheme of the title compound showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of the molecules in the unit cell, showing the hydrogen-bonding interactions as dotted lines. [symmetry code: (i) x, 1/2 - y, 1/2 + z].
3-[2-(5-tert-Butyl-1,2-oxazol-3-yl)hydrazinylidene]chroman-2,4-dione top
Crystal data top
C16H15N3O4F(000) = 656
Mr = 313.31Dx = 1.358 Mg m3
Monoclinic, P21/cMelting point: 419 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.7107 Å
a = 13.431 (14) ÅCell parameters from 4079 reflections
b = 9.1803 (9) Åθ = 3.0–29.4°
c = 12.638 (4) ŵ = 0.10 mm1
β = 100.49 (8)°T = 290 K
V = 1532.3 (17) Å3Prism, yellow
Z = 40.28 × 0.26 × 0.21 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3010 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2148 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.085
Detector resolution: 10.3974 pixels mm-1θmax = 29.4°, θmin = 3.0°
ω scansh = 1618
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1112
Tmin = 0.584, Tmax = 1.000l = 1516
13050 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0555P)2 + 1.4334P]
where P = (Fo2 + 2Fc2)/3
3010 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H15N3O4V = 1532.3 (17) Å3
Mr = 313.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.431 (14) ŵ = 0.10 mm1
b = 9.1803 (9) ÅT = 290 K
c = 12.638 (4) Å0.28 × 0.26 × 0.21 mm
β = 100.49 (8)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3010 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2148 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 1.000Rint = 0.085
13050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.23 e Å3
3010 reflectionsΔρmin = 0.16 e Å3
215 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.20 (release 27-06-2012 CrysAlis171 .NET) (compiled Jul 11 2012,15:38:31)

FTIR (KBr): 1377 cm-1 (CH3 δs), 1467.5 cm-1 (N=N), 1740 cm-1 (C=O).

NMR atom numbering is according to IUPAC

13C NMR (62.9 MHz, DMSO-d6): δ 28.2 (CH3), 32.1 (C t-but), 91.2 (NCCH), 117.4 (C8 of the coumarin ring), 120.4 (C4a of the coumarin ring), 124.9 (C6 of the coumarin ring), 125.7 (C3 of the coumarin ring), 126.8 (C5 of the coumarin ring), 137.0 (C7 of the coumarin ring), 154.1(C8a of the coumarin ring), 157.6 (C2 of the coumarin ring), 162.4 (NCCH), 178.3 (C4 of the coumarin ring), 182.8 (NC).

1H NMR (250 MHz, DMSO-d6): δ 1.35 (s, 9H, t-but.), 6.57 (s,1H of the isoxazol ring), 7.37 (dd, J = 8.0, 1.5 Hz, 1H, H8 of the coumarin ring), 7.39 (ddd, J = 8.0, 8.0, 1.5 Hz, 1H, H6 of the coumarin ring), 7.80 (ddd, J = 8.0, 8.0, 1.5 Hz, 1H, C7 of the coumarin ring), 8.00 (dd,1H, dd, J = 8.0, 1.5 Hz, C5 of the coumarin ring).

Elemental analysis: C, 61.34; H, 4.83; N, 13.41. TOF MS ES+: m/e: 336[M+Na]+.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1628 (2)0.3116 (3)0.0511 (2)0.0362 (6)
C20.1605 (2)0.4578 (3)0.0958 (2)0.0384 (6)
C30.1281 (2)0.5746 (3)0.0182 (2)0.0369 (6)
C40.1307 (2)0.7207 (3)0.0498 (3)0.0467 (7)
H40.15110.74480.12190.056*
C50.1035 (3)0.8282 (3)0.0247 (3)0.0571 (9)
H50.10740.92540.00350.068*
C60.0701 (3)0.7922 (4)0.1321 (3)0.0580 (9)
H60.05090.86570.18230.070*
C70.0651 (3)0.6488 (4)0.1651 (3)0.0508 (8)
H70.04210.62500.23690.061*
C80.0948 (2)0.5405 (3)0.0893 (2)0.0389 (6)
C90.1240 (2)0.2823 (3)0.0636 (2)0.0402 (6)
C100.2869 (2)0.0916 (3)0.2637 (2)0.0408 (6)
C110.3172 (2)0.0401 (3)0.2229 (2)0.0421 (7)
H110.30600.07190.15190.051*
C120.3667 (2)0.1101 (3)0.3116 (2)0.0432 (7)
C130.4211 (3)0.2535 (3)0.3317 (3)0.0494 (8)
C140.5276 (3)0.2268 (4)0.3960 (3)0.0741 (12)
H14A0.56370.16270.35630.111*
H14B0.56300.31780.40800.111*
H14C0.52290.18310.46390.111*
C150.3615 (4)0.3513 (5)0.3961 (4)0.0790 (12)
H15A0.35500.30360.46210.118*
H15B0.39670.44190.41190.118*
H15C0.29540.36960.35460.118*
C160.4268 (4)0.3246 (5)0.2235 (3)0.0769 (12)
H16A0.35970.33630.18270.115*
H16B0.45860.41830.23560.115*
H16C0.46570.26400.18440.115*
N10.20237 (19)0.1960 (3)0.10479 (18)0.0390 (5)
N20.2352 (2)0.2092 (3)0.20786 (19)0.0429 (6)
N30.3136 (2)0.1048 (3)0.3673 (2)0.0549 (7)
O10.08744 (16)0.3990 (2)0.12688 (14)0.0433 (5)
O20.18801 (19)0.4820 (2)0.19257 (15)0.0562 (6)
O30.36552 (18)0.0258 (3)0.39890 (16)0.0558 (6)
O90.1194 (2)0.1661 (2)0.10662 (17)0.0594 (7)
H20.231 (3)0.296 (5)0.238 (3)0.076 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (15)0.0349 (14)0.0353 (14)0.0036 (11)0.0082 (11)0.0027 (10)
C20.0438 (16)0.0395 (15)0.0313 (13)0.0033 (12)0.0057 (11)0.0029 (11)
C30.0358 (14)0.0379 (14)0.0372 (13)0.0038 (11)0.0071 (11)0.0043 (11)
C40.0489 (18)0.0393 (16)0.0515 (17)0.0027 (13)0.0079 (14)0.0030 (13)
C50.064 (2)0.0336 (16)0.076 (2)0.0014 (14)0.0165 (19)0.0061 (14)
C60.055 (2)0.0499 (19)0.067 (2)0.0043 (15)0.0054 (17)0.0252 (16)
C70.0509 (19)0.0549 (19)0.0435 (16)0.0002 (15)0.0000 (14)0.0131 (14)
C80.0362 (14)0.0378 (14)0.0420 (14)0.0032 (11)0.0047 (12)0.0046 (11)
C90.0434 (16)0.0399 (15)0.0374 (14)0.0035 (12)0.0072 (12)0.0014 (12)
C100.0366 (14)0.0439 (16)0.0408 (14)0.0000 (12)0.0043 (11)0.0022 (12)
C110.0395 (15)0.0507 (17)0.0341 (13)0.0037 (13)0.0011 (11)0.0016 (12)
C120.0389 (16)0.0498 (18)0.0394 (15)0.0017 (12)0.0034 (12)0.0018 (12)
C130.0468 (18)0.0475 (18)0.0500 (17)0.0080 (14)0.0015 (14)0.0013 (13)
C140.048 (2)0.070 (2)0.091 (3)0.0149 (18)0.0216 (19)0.004 (2)
C150.088 (3)0.060 (2)0.087 (3)0.002 (2)0.011 (2)0.016 (2)
C160.082 (3)0.072 (3)0.073 (3)0.025 (2)0.006 (2)0.018 (2)
N10.0403 (13)0.0437 (13)0.0329 (11)0.0042 (10)0.0064 (10)0.0017 (9)
N20.0500 (15)0.0410 (14)0.0355 (12)0.0030 (11)0.0022 (11)0.0009 (10)
N30.0614 (18)0.0571 (17)0.0414 (14)0.0205 (13)0.0029 (12)0.0005 (12)
O10.0517 (12)0.0418 (11)0.0336 (10)0.0026 (9)0.0000 (9)0.0015 (8)
O20.0862 (18)0.0425 (12)0.0360 (11)0.0027 (11)0.0010 (11)0.0033 (9)
O30.0627 (15)0.0603 (14)0.0393 (11)0.0232 (11)0.0041 (10)0.0009 (10)
O90.0917 (19)0.0402 (12)0.0429 (12)0.0031 (11)0.0028 (12)0.0056 (9)
Geometric parameters (Å, º) top
C1—N11.319 (4)C10—N21.403 (4)
C1—C21.459 (4)C11—C121.356 (4)
C1—C91.473 (4)C11—H110.9300
C2—O21.231 (3)C12—O31.350 (4)
C2—C31.465 (4)C12—C131.505 (4)
C3—C81.386 (4)C13—C161.530 (5)
C3—C41.397 (4)C13—C141.531 (5)
C4—C51.367 (5)C13—C151.531 (6)
C4—H40.9300C14—H14A0.9600
C5—C61.390 (5)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—C71.379 (5)C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—C81.388 (4)C15—H15C0.9600
C7—H70.9300C16—H16A0.9600
C8—O11.381 (3)C16—H16B0.9600
C9—O91.194 (3)C16—H16C0.9600
C9—O11.373 (3)N1—N21.303 (3)
C10—N31.299 (4)N2—H20.89 (4)
C10—C111.404 (4)N3—O31.408 (3)
N1—C1—C2125.2 (2)O3—C12—C13116.1 (2)
N1—C1—C9113.4 (2)C11—C12—C13134.8 (3)
C2—C1—C9121.4 (2)C12—C13—C16108.9 (3)
O2—C2—C1121.8 (2)C12—C13—C14109.1 (3)
O2—C2—C3122.1 (3)C16—C13—C14110.4 (3)
C1—C2—C3116.0 (2)C12—C13—C15108.6 (3)
C8—C3—C4118.9 (3)C16—C13—C15109.9 (3)
C8—C3—C2119.6 (2)C14—C13—C15109.9 (3)
C4—C3—C2121.5 (3)C13—C14—H14A109.5
C5—C4—C3120.5 (3)C13—C14—H14B109.5
C5—C4—H4119.8H14A—C14—H14B109.5
C3—C4—H4119.8C13—C14—H14C109.5
C4—C5—C6119.9 (3)H14A—C14—H14C109.5
C4—C5—H5120.0H14B—C14—H14C109.5
C6—C5—H5120.0C13—C15—H15A109.5
C7—C6—C5120.8 (3)C13—C15—H15B109.5
C7—C6—H6119.6H15A—C15—H15B109.5
C5—C6—H6119.6C13—C15—H15C109.5
C6—C7—C8118.9 (3)H15A—C15—H15C109.5
C6—C7—H7120.5H15B—C15—H15C109.5
C8—C7—H7120.5C13—C16—H16A109.5
O1—C8—C3122.7 (2)C13—C16—H16B109.5
O1—C8—C7116.3 (3)H16A—C16—H16B109.5
C3—C8—C7121.0 (3)C13—C16—H16C109.5
O9—C9—O1116.7 (3)H16A—C16—H16C109.5
O9—C9—C1126.2 (3)H16B—C16—H16C109.5
O1—C9—C1117.1 (2)N2—N1—C1118.1 (2)
N3—C10—C11113.9 (3)N1—N2—C10118.5 (3)
N3—C10—N2117.1 (3)N1—N2—H2118 (3)
C11—C10—N2129.0 (3)C10—N2—H2123 (3)
C12—C11—C10103.6 (2)C10—N3—O3103.7 (2)
C12—C11—H11128.2C9—O1—C8122.6 (2)
C10—C11—H11128.2C12—O3—N3109.6 (2)
O3—C12—C11109.1 (3)
N1—C1—C2—O27.1 (5)N2—C10—C11—C12177.9 (3)
C9—C1—C2—O2176.2 (3)C10—C11—C12—O30.2 (3)
N1—C1—C2—C3170.3 (3)C10—C11—C12—C13178.8 (4)
C9—C1—C2—C36.4 (4)O3—C12—C13—C16172.7 (3)
O2—C2—C3—C8177.9 (3)C11—C12—C13—C166.2 (5)
C1—C2—C3—C84.8 (4)O3—C12—C13—C1452.1 (4)
O2—C2—C3—C42.7 (4)C11—C12—C13—C14126.8 (4)
C1—C2—C3—C4174.7 (3)O3—C12—C13—C1567.7 (4)
C8—C3—C4—C51.8 (5)C11—C12—C13—C15113.4 (4)
C2—C3—C4—C5177.7 (3)C2—C1—N1—N25.7 (4)
C3—C4—C5—C61.9 (5)C9—C1—N1—N2177.3 (3)
C4—C5—C6—C70.7 (6)C1—N1—N2—C10173.5 (3)
C5—C6—C7—C80.6 (5)N3—C10—N2—N1176.1 (3)
C4—C3—C8—O1178.3 (3)C11—C10—N2—N15.8 (5)
C2—C3—C8—O12.2 (4)C11—C10—N3—O30.2 (4)
C4—C3—C8—C70.5 (4)N2—C10—N3—O3178.2 (2)
C2—C3—C8—C7179.0 (3)O9—C9—O1—C8175.2 (3)
C6—C7—C8—O1179.6 (3)C1—C9—O1—C86.2 (4)
C6—C7—C8—C30.7 (5)C3—C8—O1—C98.2 (4)
N1—C1—C9—O95.7 (5)C7—C8—O1—C9173.0 (3)
C2—C1—C9—O9177.3 (3)C11—C12—O3—N30.1 (4)
N1—C1—C9—O1175.9 (2)C13—C12—O3—N3179.1 (3)
C2—C1—C9—O11.2 (4)C10—N3—O3—C120.1 (4)
N3—C10—C11—C120.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.89 (4)1.86 (4)2.581 (3)137 (4)
N2—H2···O9i0.89 (4)2.70 (4)3.249 (4)121 (3)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15N3O4
Mr313.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)13.431 (14), 9.1803 (9), 12.638 (4)
β (°) 100.49 (8)
V3)1532.3 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.26 × 0.21
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.584, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13050, 3010, 2148
Rint0.085
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.181, 1.09
No. of reflections3010
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.89 (4)1.86 (4)2.581 (3)137 (4)
N2—H2···O9i0.89 (4)2.70 (4)3.249 (4)121 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

Thanks are due to Bulgarian National Science Fund of the Ministry of Education, Youth and Science for financial support (grants/contracts DRNF02/1 and DRNF02/13).

References

First citationAdavi, H. H., Kusanur, R. A. & Kulkarni, M. V. (2004). J. Indian Chem. Soc. 81, 981–986.  CAS Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. & Zhou, C.-H. (2011). Bioorg. Med. Chem. Lett. 21, 956—960.  Google Scholar
First citationToshihiro, O., Tadashi, K. & Shinichi, Y. (2005). Curr. Med. Chem. Anticancer Agents, 5, 47–52.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds