Download citation
Download citation
link to html
The structural information gained from the study of the chiral building block (R)-(-)-4-(3,4-di­chloro­phenyl)-4-(2-pyridyl)­butanoic acid-L-(-)-ephedrine [methyl(1-hydroxy-1-phenyl­prop-2-yl)ammon­ium 4-(3,4-di­chloro­phenyl)-4-(2-pyrid­yl)but­an­oate], C10H16NO+·C15H12Cl2NO2-, can be used to deduce the absolute configuration of highly potent arpromidine-type hist­amine H2 receptor agonists, as the chiral butanoic acid can be converted to (R)-(-)-3-(3,4-di­chloro­phenyl)-3-(2-pyridyl)­propyl­amine and to the corresponding R-configured arpromidine analogue.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199014699/ka1342sup1.cif
Contains datablocks global, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014699/ka1342IVsup2.hkl
Contains datablock I

CCDC reference: 142781

Comment top

Arpromidine, N-[3-(4-fluorophenyl)-3-(2-pyridyl)propyl]-N'-[3-(1H- imidazol-4-yl)propyl]guanidine, and related guanidines (III) are the most potent histamine H2 receptor agonists described in the literature (Buschauer, 1989a). Moreover, these chiral compounds are very promising new cardiovascular agents which may be useful for the treatment of severe congestive heart failure (Felix et al., 1995). A small number of optical antipodes could be synthesized from enantiomeric phenyl(pyridyl)propylamines prepared via diastereomeric salts or from enantiomers of alkyl guanidine-N-carboxylic acid esters which were separated by means of high pressure liquid chromatography (Schuster, Bernhardt et al., 1998). The pharmacological investigation for histamine H2 agonism in the isolated guinea pig right atrium revealed an eudismic (Lehmann et al., 1976) ratio in the range of 5–10 (to be published elsewhere), but the absolute configurations of the eutomers (Lehmann et al., 1976) were unknown.

Information on the stereochemical features is necessary with respect to the potential therapeutic use as well as for theoretical considerations, e.g. for molecular modelling and for the development of a three-dimensional model for the interaction with the histamine H2 receptor. In case of the phenyl(pyridyl)alkyl guanidines owing to poor crystal quality X-ray analyses of the optical antipodes could not yet be performed. Therefore, our pronounced interest was focused on the synthesis and elucidation of the absolute configuration of key chiral building blocks such as halogen-substituted 4-phenyl-4-(2-pyridyl)butanoic acids, (I), or 3-phenyl-3-(2-pyridyl)propylamines, (II), which can be converted to the corresponding H2 agonists, (III), according to the scheme below.

The crystal structure of (-)-4-(3,4-dichlorophenyl)-4-(2-pyridyl)butanoic acid. L-(-)-ephedrine (IV) gives proof of the (R)-configuration of the (-)-enantiomer. Consequently, (-)-3-(3,4-dichlorophenyl)-3-(2-pyridyl)propyl amine prepared from the (R)-(-)-butanoic acid by the Schmidt reaction and the corresponding guanidine are also (R)-configurated. This allows us to deduce the absolute configuration of close structural analogues in these series of compounds by interpretation of CD correlation spectra (Schuster, Bollwein et al., 1998). According to such investigations the eutomers of the pharmacologically tested arpromidine-type histamine H2 receptor agonists are (S)-configurated. Additionally, the structural information gained from this study turned out to be useful for the determination of the absolute configuration of several neuropeptide Y Y1 receptor antagonists (Schuster, Bollwein et al., 1998), which were prepared from the title compound or from chemically derived phenyl(pyridyl)alkylamines (Aiglstorfer et al., 1998; Uffrecht, 1996).

Experimental top

Preparation of (R)-(-)-4-(3,4-dichlorophenyl)-4-(2-pyridyl)butanoic acid. L-(-)-ephedrine (IV): (±)-4-(3,4-dichlorophenyl)-4-(2-pyridyl)butanoic acid was prepared from (3,4-dichlorophenyl)(2-pyridyl)acetonitril by analogy with the method described for the synthesis of (±)-4-(4-fluorophenyl)-4-(4-pyridyl)butanoic acid (Buschauer, 1989b). Yield 65% colourless crystals; m.p. 393 K (ether); 1H NMR [Bruker WM-250 (250 MHz], [D6]DMSO; TMS as internal standard): δ(p.p.m.) = 12.08 (br s, 1H, COOH), 8.53 (ddd, 3J = 4.8 Hz, 4J = 1.9 Hz, 5J = 0.9 Hz, 1H, py-6-H), 7.69 (ddd, 3J(py-4-H, py-3-H) = 3J(py-4-H, py-5-H) = 7.7 Hz, 4J = 1.9 Hz, 1H, py-4-H), 7.60 (m, 1H, Cl2Ph-2-H) 7.51 (m, 3J = 8.3 Hz, 1H, Cl2Ph-5-H), 7.37 − 7.29 (m, 2H, py—H and Cl2Ph-6-H), 7.24 − 7.16 (m, 1H, py—H), 4.13 (t, 3J = 7.7 Hz, 1H, CH), 2.53–2.29 (m, 1H, CH-CHH-CH2), 2.29–2.14 (m, 1H, CH-CHH-CH2), 2.14–2.00 (m, 2H, CH2—COOH); C15H13Cl2NO2 (310.2), analysis calculated C 58.09, H 4.22, N 4.52°; found C 58.12, H 4.26, N 4.66).

From a concentrated ethanolic solution of equimolar amounts of (±)-4-(3,4- dichlorophenyl)-4-(2-pyridyl)butanoic acid and L-(-)-ephedrine a mixture of the diastereomeric salts precipitated after adding ten times the volume of diethyl ether. Pure (IV) was obtained after fivefold recrystallization from mixtures of ether and ethanol [starting with ether/ethanol 7:1 (v/v), then 5:1 (v/v), and three times 3.5:1 (v/v)]. Ether was always added after dissolving the salt in ethanol at 303–313 K. The solution was stored at room temperature to allow very slow crystallization of colourless needles suitable for the single-crystal X-ray experiment (m.p. 126 K; C10H16NO C15H12Cl2NO2 (475.4), analysis calculated C 63.16, H 5.94, N 5.89, Cl 14.91; found C 63.19, H 5.96, N 5.92, Cl 14.87%; [α]20D = −37° (c = 1, methanol) [% '[%' %] ee = 95.8 (ee refers to the (R) configurated butanoic acid and was determined by capillary zone electrophoresis (Schuster, Bollwein et al., 1998)].

Refinement top

The data were collected at 150 K using an Oxford Cryosystems Cooler (Cosier and Glazer, 1986). H atoms were generated and refined as riding groups, all C–H– and N–H-distances were allowed to refine, the O–H-distance was fixed at idealized value.

Computing details top

Data collection: IPDS Software (Stoe, 1997); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SIR97 (Altomare, 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. A view of (IV) with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
'(R)-(-)-4-(3,4-dichlorophenyl)-4-(2-pyridyl)butanoic acid L-(-)-ephedrine' top
Crystal data top
C10H16NO+·C15H12Cl2NO2F(000) = 500
Mr = 475.39Cell parameters were determined by indexing 4193 reflections with I/sigma limit 6.0.
Monoclinic, P21Dx = 1.328 Mg m3
Hall symbol: P 2y1Mo Kα radiation, λ = 0.71069 Å
a = 13.2380 (11) ÅCell parameters from 4193 reflections
b = 5.9089 (4) Åθ = 2.6–25.6°
c = 16.3148 (15) ŵ = 0.30 mm1
β = 111.335 (9)°T = 150 K
V = 1188.72 (17) Å3Needle, translucent colourless
Z = 20.44 × 0.08 × 0.04 mm
Data collection top
STOE-IPDS
diffractometer
2388 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 25.6°, θmin = 2.6°
rotation scansh = 1616
6243 measured reflectionsk = 76
4233 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.072Calculated w = 1/[σ2(Fo2) + (0.0193P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.72(Δ/σ)max = 0.001
4233 reflectionsΔρmax = 0.19 e Å3
309 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (7)
Crystal data top
C10H16NO+·C15H12Cl2NO2V = 1188.72 (17) Å3
Mr = 475.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.2380 (11) ŵ = 0.30 mm1
b = 5.9089 (4) ÅT = 150 K
c = 16.3148 (15) Å0.44 × 0.08 × 0.04 mm
β = 111.335 (9)°
Data collection top
STOE-IPDS
diffractometer
2388 reflections with I > 2σ(I)
6243 measured reflectionsRint = 0.047
4233 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.19 e Å3
S = 0.72Δρmin = 0.20 e Å3
4233 reflectionsAbsolute structure: Flack (1983)
309 parametersAbsolute structure parameter: 0.04 (7)
1 restraint
Special details top

Experimental. Data were collected applying an imaging plate system (Stoe) with the following measurement parameters:

Detector distance [mm] 70 Phi movement mode Oscillation Phi incr. [degrees] 1.0 Number of exposures 140 Irradiation / exposure [min] 25.00

For a detailed description of the method see: Sheldrick, G·M., Paulus, E. Vertesy, L. & Hahn, F. (1995) Acta Cryst. B51, 89–98.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The structure was solved by direct methods and refined by full-matrix anisotropic least squares.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.08340 (7)0.2067 (2)0.03262 (7)0.0470 (3)
Cl20.17587 (7)0.66628 (19)0.07399 (7)0.0485 (3)
O10.53029 (17)0.7213 (4)0.14011 (15)0.0324 (6)
O20.4403 (2)1.0127 (5)0.1677 (2)0.0431 (7)
C30.4480 (3)0.8083 (7)0.1526 (3)0.0333 (10)
C40.3595 (3)0.6478 (7)0.1535 (2)0.0333 (10)
H4A0.3628 (3)0.513 (4)0.1232 (9)0.050*
H4B0.2907 (18)0.7151 (18)0.1248 (8)0.050*
C50.3755 (3)0.5940 (6)0.2496 (2)0.0312 (10)
H5A0.4437 (19)0.5436 (14)0.2770 (8)0.047*
H5B0.3687 (3)0.723 (4)0.2762 (8)0.047*
C60.2972 (3)0.4193 (7)0.2621 (2)0.0283 (9)
H60.3096 (5)0.274 (5)0.2360 (10)0.042*
C70.1778 (3)0.4853 (6)0.2142 (2)0.0285 (9)
C80.1084 (3)0.3378 (7)0.1514 (2)0.0293 (9)
H80.1369 (12)0.193 (6)0.1373 (6)0.044*
C90.0000 (3)0.3934 (7)0.1091 (2)0.0287 (9)
C100.0394 (3)0.5958 (7)0.1286 (3)0.0328 (10)
C110.0270 (3)0.7413 (7)0.1885 (2)0.0366 (11)
H110.0009 (13)0.872 (6)0.2003 (6)0.055*
C120.1364 (3)0.6864 (8)0.2318 (2)0.0319 (9)
H120.179 (2)0.780 (4)0.2703 (18)0.048*
C130.3262 (3)0.3801 (7)0.3601 (3)0.0293 (9)
N140.3068 (2)0.5526 (5)0.4051 (2)0.0334 (8)
C150.3296 (3)0.5219 (8)0.4904 (3)0.0411 (11)
H150.3115 (8)0.660 (5)0.5269 (14)0.062*
C160.3745 (3)0.3290 (8)0.5362 (3)0.0408 (11)
H160.3905 (7)0.3155 (9)0.604 (3)0.061*
C170.3973 (3)0.1560 (8)0.4906 (3)0.0422 (11)
H170.4249 (17)0.043 (7)0.5152 (15)0.063*
C180.3714 (2)0.1798 (8)0.3999 (2)0.0372 (10)
H180.3837 (6)0.069 (5)0.3690 (15)0.056*
N190.3970 (2)0.2836 (5)0.15979 (19)0.0301 (8)
H19A0.4456 (12)0.170 (3)0.1727 (4)0.045*
H19B0.4313 (9)0.437 (4)0.1569 (2)0.045*
C200.2893 (3)0.2840 (6)0.2360 (2)0.0288 (10)
H200.2481 (19)0.390 (5)0.2266 (5)0.043*
C210.2323 (3)0.0590 (7)0.2434 (3)0.0330 (9)
H210.2266 (4)0.0246 (14)0.184 (2)0.050*
O220.2926 (2)0.1181 (5)0.2630 (2)0.0482 (8)
H220.34950.06480.26690.072*
C230.1183 (3)0.0595 (7)0.3124 (3)0.0316 (9)
C240.0817 (3)0.1143 (8)0.3716 (3)0.0416 (11)
H240.130 (2)0.232 (5)0.3717 (3)0.062*
C250.0240 (3)0.1225 (8)0.4312 (3)0.0478 (12)
H250.0460 (12)0.237 (6)0.4688 (19)0.072*
C260.0950 (3)0.0489 (8)0.4315 (3)0.0468 (12)
H260.169 (4)0.0444 (9)0.473 (2)0.070*
C270.0604 (3)0.2257 (9)0.3735 (3)0.0459 (12)
H270.102 (2)0.325 (6)0.3738 (3)0.069*
C280.0459 (3)0.2325 (7)0.3143 (3)0.0386 (11)
H280.0648 (12)0.332 (6)0.2824 (19)0.058*
C290.3936 (3)0.2322 (7)0.0725 (2)0.0419 (12)
H29A0.4598 (15)0.2359 (7)0.0328 (9)0.063*
H29B0.3658 (7)0.096 (3)0.0733 (2)0.063*
H29C0.3532 (9)0.333 (2)0.0592 (4)0.063*
C300.3111 (3)0.3446 (7)0.3181 (2)0.0383 (11)
H30A0.3486 (8)0.493 (3)0.3097 (3)0.057*
H30B0.2413 (14)0.3539 (7)0.3689 (11)0.057*
H30C0.3576 (10)0.227 (2)0.3297 (4)0.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0376 (5)0.0405 (7)0.0489 (6)0.0073 (6)0.0012 (5)0.0110 (6)
Cl20.0297 (5)0.0428 (8)0.0657 (8)0.0000 (5)0.0085 (5)0.0021 (6)
O10.0294 (13)0.0248 (17)0.0407 (15)0.0036 (13)0.0100 (12)0.0023 (14)
O20.0362 (15)0.0264 (19)0.069 (2)0.0017 (13)0.0221 (15)0.0025 (16)
C30.030 (2)0.036 (3)0.029 (2)0.0056 (18)0.0050 (18)0.0042 (19)
C40.0260 (18)0.033 (3)0.036 (2)0.0026 (17)0.0060 (17)0.0064 (19)
C50.0215 (18)0.033 (3)0.034 (2)0.0055 (16)0.0042 (17)0.0066 (18)
C60.026 (2)0.029 (2)0.028 (2)0.0033 (17)0.0085 (18)0.0010 (19)
C70.030 (2)0.024 (2)0.032 (2)0.0042 (17)0.0127 (19)0.0004 (18)
C80.031 (2)0.024 (2)0.036 (2)0.0021 (17)0.0151 (19)0.0006 (18)
C90.032 (2)0.022 (2)0.030 (2)0.0047 (18)0.0092 (18)0.0045 (18)
C100.0244 (18)0.036 (3)0.035 (2)0.0050 (17)0.0073 (18)0.0074 (19)
C110.037 (2)0.032 (3)0.043 (2)0.0008 (19)0.017 (2)0.002 (2)
C120.0363 (19)0.025 (2)0.030 (2)0.008 (2)0.0068 (16)0.003 (2)
C130.0198 (18)0.028 (3)0.038 (2)0.0050 (17)0.0086 (18)0.000 (2)
N140.0329 (17)0.038 (2)0.026 (2)0.0021 (15)0.0069 (15)0.0069 (18)
C150.038 (2)0.042 (3)0.041 (3)0.006 (2)0.011 (2)0.001 (2)
C160.036 (2)0.048 (3)0.036 (3)0.008 (2)0.010 (2)0.005 (2)
C170.034 (2)0.031 (3)0.049 (3)0.000 (2)0.0007 (19)0.009 (2)
C180.0330 (19)0.032 (3)0.042 (2)0.001 (2)0.0080 (17)0.006 (2)
N190.0298 (16)0.028 (2)0.0288 (18)0.0034 (13)0.0059 (14)0.0009 (14)
C200.029 (2)0.024 (2)0.033 (2)0.0058 (16)0.0115 (19)0.0004 (17)
C210.035 (2)0.028 (3)0.033 (2)0.0040 (19)0.0081 (19)0.0015 (19)
O220.0374 (15)0.0308 (18)0.068 (2)0.0024 (14)0.0094 (16)0.0110 (16)
C230.029 (2)0.029 (3)0.035 (2)0.0019 (18)0.0100 (18)0.001 (2)
C240.034 (2)0.030 (3)0.055 (3)0.000 (2)0.008 (2)0.006 (2)
C250.037 (2)0.042 (3)0.056 (3)0.003 (2)0.007 (2)0.007 (2)
C260.028 (2)0.059 (3)0.051 (3)0.003 (2)0.011 (2)0.002 (3)
C270.031 (2)0.058 (3)0.051 (3)0.010 (2)0.018 (2)0.001 (3)
C280.040 (2)0.034 (3)0.046 (3)0.007 (2)0.020 (2)0.002 (2)
C290.045 (2)0.044 (3)0.036 (2)0.010 (2)0.0139 (19)0.000 (2)
C300.032 (2)0.052 (3)0.026 (2)0.0048 (19)0.0057 (19)0.004 (2)
Geometric parameters (Å, º) top
Cl1—C91.729 (4)C6—H61.00 (3)
Cl2—C101.749 (5)C8—H81.00 (3)
O1—C31.286 (5)C11—H110.90 (3)
O2—C31.244 (5)C12—H120.87 (3)
O22—C211.421 (5)C15—H151.09 (3)
O22—H220.8399C16—H161.05 (5)
N14—C151.325 (5)C17—H170.80 (4)
N14—C131.335 (5)C18—H180.88 (3)
N19—C291.473 (4)C20—C211.512 (6)
N19—C201.513 (5)C20—C301.512 (5)
N19—H19A1.004 (17)C21—C231.519 (6)
N19—H19B1.01 (2)C23—C281.394 (6)
C3—C41.512 (6)C23—C241.372 (6)
C4—C51.537 (4)C24—C251.384 (6)
C5—C61.528 (6)C25—C261.381 (6)
C6—C131.520 (6)C26—C271.372 (7)
C6—C71.537 (6)C27—C281.388 (6)
C7—C81.403 (5)C20—H200.88 (3)
C7—C121.382 (6)C21—H211.02 (3)
C8—C91.387 (6)C24—H240.95 (3)
C9—C101.387 (6)C25—H250.89 (3)
C10—C111.357 (6)C26—H260.97 (5)
C11—C121.399 (6)C27—H270.80 (3)
C13—C181.378 (6)C28—H280.76 (3)
C15—C161.374 (7)C29—H29A0.880 (18)
C16—C171.361 (7)C29—H29B0.883 (17)
C17—C181.399 (5)C29—H29C0.879 (12)
C4—H4B0.95 (2)C30—H30A0.992 (17)
C4—H4A0.95 (2)C30—H30B0.993 (18)
C5—H5A0.90 (2)C30—H30C0.991 (13)
C5—H5B0.90 (2)
Cl1···Cl2i3.5710 (16)C30···H222.5494
Cl1···Cl23.1511 (16)C30···H15x2.76 (2)
Cl1···C8ii3.627 (4)H4B···C72.79 (2)
Cl1···C9ii3.442 (4)H4B···Cl1vi3.000 (18)
Cl1···C10ii3.620 (5)H5B···O22.861 (16)
Cl2···Cl13.1511 (16)H5B···H122.50 (3)
Cl2···Cl1iii3.5710 (16)H5B···H18iii2.51 (3)
Cl1···H4Bii3.000 (18)H5B···N142.713 (13)
Cl2···H21iii3.005 (19)H5B···C122.900 (8)
Cl2···H29C3.006 (12)H6···O2i2.832 (19)
O1···O22iv2.645 (4)H6···H82.32 (2)
O1···N19v2.737 (4)H6···H182.36 (3)
O1···C29v3.375 (5)H8···H62.32 (2)
O1···C29vi3.278 (4)H11···C28iii3.04 (3)
O2···N19iv2.724 (4)H11···C23iii3.03 (2)
O2···C29iv3.379 (5)H12···N142.61 (3)
O22···C3vii3.275 (5)H12···C52.95 (3)
O22···N192.947 (4)H12···C133.07 (3)
O22···C30i3.333 (5)H12···H5B2.50 (3)
O22···O1vii2.645 (4)H15···C30ix2.76 (2)
O1···H22iv2.4522H15···H30Cix2.23 (2)
O1···H19Bv1.75 (2)H15···H30Bix2.49 (3)
O1···H19Aiv2.700 (18)H16···H22ix2.4623
O1···H29Avi2.631 (14)H16···H30Ax2.55 (3)
O2···H5B2.861 (16)H18···H62.36 (3)
O2···H19Aiv1.750 (17)H18···H5Bi2.51 (3)
O2···H22iv2.7009H19A···O1vii2.700 (18)
O2···H6iii2.832 (19)H19A···O2vii1.750 (17)
O22···H30Ai2.612 (16)H19A···O222.646 (15)
O22···H19A2.646 (15)H19A···C3vii2.515 (18)
O22···H242.34 (2)H19A···H222.1172
O22···H30C2.601 (12)H19A···H30C2.421 (9)
N14···C123.011 (5)H19B···O1viii1.75 (2)
N19···O1viii2.737 (4)H19B···C3viii2.70 (2)
N19···O2vii2.724 (4)H19B···C4viii3.019 (15)
N19···O222.947 (4)H19B···H30A2.353 (7)
N14···H272.90 (3)H20···C282.70 (2)
N14···H5B2.713 (13)H20···H282.29 (3)
N14···H122.61 (3)H20···H29C2.597 (11)
N19···H222.6244H21···Cl2i3.005 (19)
C3···O22iv3.275 (5)H21···C292.60 (2)
C3···C29vi3.505 (6)H21···H29B2.10 (3)
C8···Cl1vi3.627 (4)H22···O1vii2.4522
C9···Cl1vi3.442 (4)H22···O2vii2.7009
C10···Cl1vi3.620 (5)H22···N192.6244
C12···N143.011 (5)H22···C3vii2.7547
C28···C303.595 (6)H22···C302.5494
C29···O1viii3.375 (5)H22···H19A2.1172
C29···O2vii3.379 (5)H22···H30C2.0283
C29···C3ii3.505 (6)H22···H16x2.4623
C29···O1ii3.278 (4)H24···O222.34 (2)
C30···C283.595 (6)H26···C163.04 (4)
C30···O22iii3.333 (5)H26···C173.00 (5)
C3···H19Bv2.70 (2)H27···N142.90 (3)
C3···H22iv2.7547H27···C133.07 (3)
C3···H19Aiv2.515 (18)H28···C103.07 (3)
C4···H19Bv3.019 (15)H28···C202.80 (2)
C5···H122.95 (3)H28···H202.29 (3)
C7···H4B2.79 (2)H29A···O1ii2.631 (14)
C10···H283.07 (3)H29B···C212.703 (6)
C12···H5B2.900 (8)H29B···H212.10 (3)
C13···H273.07 (3)H29C···Cl23.006 (12)
C13···H123.07 (3)H29C···H202.597 (11)
C15···H30Cix3.071 (9)H30A···O22iii2.612 (16)
C16···H263.04 (4)H30A···H19B2.353 (7)
C17···H263.00 (5)H30A···H16ix2.55 (3)
C20···H282.80 (2)H30B···C232.760 (16)
C21···H29B2.703 (6)H30B···H15x2.49 (3)
C23···H30B2.760 (16)H30C···O222.601 (12)
C23···H11i3.03 (2)H30C···H19A2.421 (9)
C28···H202.70 (2)H30C···H222.0283
C28···H11i3.04 (3)H30C···C15x3.071 (9)
C29···H212.60 (2)H30C···H15x2.23 (2)
C21—O22—H22109.48C11—C12—H12119.7 (18)
C13—N14—C15117.2 (4)C7—C12—H12119.6 (18)
C20—N19—C29116.3 (3)C16—C15—H15117.6 (13)
C29—N19—H19A108.2 (6)N14—C15—H15117.5 (13)
C20—N19—H19A108.2 (6)C17—C16—H16121.2 (7)
H19A—N19—H19B107.4 (13)C15—C16—H16121.1 (7)
C29—N19—H19B108.2 (4)C16—C17—H17120 (2)
C20—N19—H19B108.1 (6)C18—C17—H17121 (2)
O1—C3—C4117.1 (3)C17—C18—H18120.5 (17)
O1—C3—O2123.7 (4)C13—C18—H18120.7 (17)
O2—C3—C4119.2 (4)N19—C20—C21111.0 (3)
C3—C4—C5108.7 (3)N19—C20—C30107.6 (3)
C4—C5—C6115.3 (3)C21—C20—C30112.8 (3)
C5—C6—C7112.5 (3)C20—C21—C23112.9 (3)
C5—C6—C13108.6 (3)O22—C21—C23108.8 (3)
C7—C6—C13113.1 (3)O22—C21—C20111.1 (3)
C8—C7—C12118.8 (4)C21—C23—C24121.4 (4)
C6—C7—C12121.7 (3)C21—C23—C28120.5 (4)
C6—C7—C8119.5 (3)C24—C23—C28118.0 (4)
C7—C8—C9120.0 (4)C23—C24—C25121.9 (4)
C8—C9—C10119.8 (4)C24—C25—C26119.3 (4)
Cl1—C9—C10121.4 (3)C25—C26—C27120.0 (4)
Cl1—C9—C8118.8 (3)C26—C27—C28120.1 (4)
C9—C10—C11120.8 (4)C23—C28—C27120.6 (4)
Cl2—C10—C11119.6 (3)N19—C20—H20108.4 (10)
Cl2—C10—C9119.6 (3)C21—C20—H20108.5 (18)
C10—C11—C12119.8 (4)C30—C20—H20108.4 (12)
C7—C12—C11120.7 (4)O22—C21—H21108.0 (7)
N14—C13—C6115.9 (4)C20—C21—H21107.9 (9)
C6—C13—C18121.8 (4)C23—C21—H21107.9 (11)
N14—C13—C18122.3 (4)C23—C24—H24119.1 (12)
N14—C15—C16125.0 (4)C25—C24—H24119.0 (12)
C15—C16—C17117.6 (4)C24—C25—H25120.4 (16)
C16—C17—C18119.0 (4)C26—C25—H25120.3 (16)
C13—C18—C17118.8 (4)C25—C26—H26119.8 (14)
C5—C4—H4A110.1 (11)C27—C26—H26120.2 (14)
C5—C4—H4B110.0 (11)C26—C27—H27119.7 (16)
C3—C4—H4A109.9 (8)C28—C27—H27120.2 (16)
C3—C4—H4B109.9 (10)C23—C28—H28119.8 (19)
H4A—C4—H4B108.3 (10)C27—C28—H28119.6 (19)
C4—C5—H5A108.4 (11)N19—C29—H29A109.5 (12)
H5A—C5—H5B107.4 (9)N19—C29—H29B109.4 (4)
C6—C5—H5A108.5 (10)N19—C29—H29C109.5 (6)
C6—C5—H5B108.5 (8)H29A—C29—H29B109.4 (8)
C4—C5—H5B108.5 (11)H29A—C29—H29C109.5 (11)
C5—C6—H6107.4 (10)H29B—C29—H29C109.5 (11)
C13—C6—H6107.4 (11)C20—C30—H30A109.5 (5)
C7—C6—H6107.4 (7)C20—C30—H30B109.4 (11)
C9—C8—H8120.0 (10)C20—C30—H30C109.6 (6)
C7—C8—H8120.0 (10)H30A—C30—H30B109.5 (8)
C10—C11—H11120.1 (11)H30A—C30—H30C109.4 (11)
C12—C11—H11120.1 (11)H30B—C30—H30C109.5 (9)
C13—N14—C15—C162.0 (6)Cl1—C9—C10—Cl20.8 (5)
C15—N14—C13—C6178.9 (4)C8—C9—C10—C110.3 (6)
C15—N14—C13—C182.1 (6)Cl2—C10—C11—C12179.5 (3)
C29—N19—C20—C2157.2 (4)C9—C10—C11—C120.5 (6)
C29—N19—C20—C30178.9 (3)C10—C11—C12—C70.1 (6)
O2—C3—C4—C578.4 (5)C6—C13—C18—C17179.3 (4)
O1—C3—C4—C598.4 (4)N14—C13—C18—C170.4 (6)
C3—C4—C5—C6175.7 (3)N14—C15—C16—C170.0 (7)
C4—C5—C6—C755.8 (4)C15—C16—C17—C181.8 (6)
C4—C5—C6—C13178.1 (3)C16—C17—C18—C131.7 (6)
C13—C6—C7—C1265.4 (5)C30—C20—C21—C2365.7 (5)
C5—C6—C13—N1468.9 (5)C30—C20—C21—O2257.0 (4)
C7—C6—C13—C18124.3 (4)N19—C20—C21—O2263.8 (4)
C13—C6—C7—C8114.2 (4)N19—C20—C21—C23173.5 (3)
C5—C6—C7—C8122.3 (4)C20—C21—C23—C2848.9 (6)
C5—C6—C13—C18110.0 (4)C20—C21—C23—C24134.4 (4)
C5—C6—C7—C1258.2 (4)O22—C21—C23—C2410.5 (6)
C7—C6—C13—N1456.7 (5)O22—C21—C23—C28172.8 (4)
C6—C7—C8—C9178.7 (3)C21—C23—C24—C25176.0 (4)
C12—C7—C8—C90.9 (5)C24—C23—C28—C271.1 (7)
C8—C7—C12—C110.6 (5)C21—C23—C28—C27175.7 (4)
C6—C7—C12—C11178.9 (3)C28—C23—C24—C250.8 (7)
C7—C8—C9—C100.4 (5)C23—C24—C25—C260.1 (7)
C7—C8—C9—Cl1179.6 (3)C24—C25—C26—C270.4 (7)
Cl1—C9—C10—C11179.7 (3)C25—C26—C27—C280.1 (7)
C8—C9—C10—Cl2179.2 (3)C26—C27—C28—C230.6 (7)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x, y+1/2, z; (vii) x1, y1, z; (viii) x1, y, z; (ix) x, y+1/2, z+1; (x) x, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19A···O2vii1.00 (2)1.75 (2)2.724 (4)163 (1)
N19—H19B···O1viii1.01 (2)1.75 (2)2.737 (4)167 (1)
O22—H22···N190.842.622.947 (4)104
C12—H12···N140.87 (3)2.61 (3)3.011 (5)109 (2)
C24—H24···O220.95 (3)2.34 (2)2.708 (5)103 (2)
Symmetry codes: (vii) x1, y1, z; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H16NO+·C15H12Cl2NO2
Mr475.39
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)13.2380 (11), 5.9089 (4), 16.3148 (15)
β (°) 111.335 (9)
V3)1188.72 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.44 × 0.08 × 0.04
Data collection
DiffractometerSTOE-IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6243, 4233, 2388
Rint0.047
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.072, 0.72
No. of reflections4233
No. of parameters309
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20
Absolute structureFlack (1983)
Absolute structure parameter0.04 (7)

Computer programs: IPDS Software (Stoe, 1997), IPDS Software, SIR97 (Altomare, 1993), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990), PLATON.

Selected bond lengths (Å) top
Cl1—C91.729 (4)N14—C151.325 (5)
Cl2—C101.749 (5)N14—C131.335 (5)
O1—C31.286 (5)N19—C291.473 (4)
O2—C31.244 (5)N19—C201.513 (5)
O22—C211.421 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19A···O2i1.004 (17)1.750 (17)2.724 (4)162.5 (10)
N19—H19B···O1ii1.01 (2)1.75 (2)2.737 (4)166.6 (11)
O22—H22···N190.83992.62442.947 (4)104.35
C24—H24···O220.95 (3)2.34 (2)2.708 (5)102.9 (15)
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds