Download citation
Download citation
link to html
In the title complex, tetraphenylphosphonium μ4-nitrato-κ4O-cyclo-tetrakis(μ-acetato-O:O′)tetra-μ-oxo-tetrakis[oxovana-dium(V)], the anion lies about a twofold axis and consists of the cyclic [V4O8] unit coordinated by four acetato ligands with interatomic V...V distances of 3.269 (1) and 3.273 (1) Å. The double-bonded O atom [N=O 1.102 (6) and N—O 1.268 (4) Å] of the nitrato ligand links the four V atoms with V—O bond distances of 2.613 (2) and 2.813 (2) Å. The negative charge of the complex is balanced by tetraphenyl­phosphonium cations occupying the Na positions in the NaCl-type ionic packing of the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199012214/jz1345sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199012214/jz1345Isup2.hkl
Contains datablock I

CCDC reference: 140929

Comment top

Our attempts to synthesize (PPh4)[VO2(NO3)2] resulted in the formation of the title compound, (PPh4)[VV4O8(CH3COO)4(NO3)], (I). Similar cyclic oxovanadium carboxylate complexes were previously described by Rehder (1994) and Priebsch et al. (1991) in [VV3VIVO7OH(t-BuCH2COO)4K][tBuCH2COO].2 t-BuCH2COOH and by Heinrich et al. (1989) in the compound (NEt4)2[VV3VIVO8(tca)4(NO3)]·H2O (tca = thiophene-2-carboxylate). Furthermore, the [V4O8] moiety was observed as a building unit in the oxovanadium phosphonates (NBu4)2[(VV4O8)2OVIV(H2O)4(PhPO3)8Cl2]. 2Et2O·2MeOH·4H2O (Chen & Zubieta, 1994), the [V5O9] group of compounds (NEt4)2[VVVIV4O9(tca)4Cl]·MeCN (Heinrich et al., 1989) and (Me2NH2)5(NH4)[(VVVIV4O9)VIV2O4(H2O)2(PhPO3)8 (2NH4Cl)]·5H2O·4DMF (Müller et al., 1992) and the isopolyvanadates Cs9[H4VIV18O42X].12H2O (X = Br or I) (Müller et al., 1990). The complex vanadate ion [VV4O8(CH3COO)4(NO3)] reported here is the first example of a non-reduced cyclic vanadyl carboxylate ion. Its partly reduced counterpart [VV3VIVO8(tca)4(NO3)]2−, investigated by Heinrich et al. (1989), indicates the capability of this type of compound to participate in reversible redox reactions.

The structure of (I) (Fig. 1) consists of two crystallographically different phosphonium cations, P6 and P7, occupying special positions with site symmetry 4 (Wyckoff b and a, respectively). The cyclic anions are placed in the resulting gaps with site symmetry 2 (Wyckoff e) with the twofold axis of the C2v symmetry of the anion coinciding with the fourfold screw axis of the crystal symmetry. Four V atoms in square pyramidal coordination are corner-connected to form a cyclic tetramer. The two lower basal O atoms of the [OVO4] pyramids belong to acetato ligands, each of them linking two metal centres. Bond distances and angles (Table 1) agree with the data of the compounds described by Heinrich et al. (1989), Priebsch et al. (1991) and Chen & Zubieta (1994) (VO 1.54–1.65, V—O 1.77–2.07 and V···O 2.02–2.79 Å). Mean plane calculations yield a mean distance of 0.37 (2) Å for the metal atoms above the basal plane of the square pyramids (atoms used for V1 were O21, O31, O23 and O24i and for V2 O21i, O31, O13 and O14). Valence sum calculations (Brese & O'Keeffe, 1991) clearly revealed the valence of +5 for both symmetry independent V atoms.

The two different V···O bond distances of 2.613 (2) (× 2) and 2.813 (2) Å (× 2) to the double-bonded O atom of the central nitrate anion [NO 1.102 (6) and N—O 1.268 (4) Å], which reflect the local C2v symmetry of the [V4O8(Ac)4(NO3)] anion, (Fig. 1) are remarkable. This low symmetry is in good agreement with the observations of Heinrich et al. (1989) for [V4O8(tca)4(NO3)]2− [V···O 2.564 (13)–2.793 (14) Å]. Calculations of the angles between the least-squares basal planes of opposing [OVO4] pyramids yielded 60.41 (5) and 78.31 (5)° for V1/V1i and V2/V2i, consistent with the C2v symmetry.

Experimental top

Compound (I) was obtained by reacting (Ph4P)[VO2Cl2] with AgNO3 in acetonitrile under anαerobic conditions. On slow evaporation of the filtered solution, red cube-shaped crystals up to 2 mm in diameter were obtained, which were stable in air (yield: 70% based on V). It is assumed that the acetato ligands are formed by acid hydrolysis of the acetonitrile solvent caused by traces of water.

Refinement top

The difference Fourier synthesis showed the methyl groups to be disordered. Therefore, the H atoms were placed in accordance with two methyl groups in a staggered orientation. The geometrically restrained refinement was performed with isotropic displacement parameters and free C—H bond distances.

Computing details top

Data collection: IPDS (Stoe & Cie, 1996); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1986); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ZORTEP (Zsolnai, 1994); software used to prepare material for publication: SHELXL93.

Figures top
[Figure 1] Fig. 1. The structure of the cyclic anion of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. Bonds between V and O atoms are shown by heavy lines.
tetraphenylphosphonium µ4-nitrato-κ4O-cyclo- tetrakis(µ-acetato-κO:κO')tetra-µ-oxo-tetrakis[oxovanadium(V)] top
Crystal data top
(C24H20P)[V4O8(C2H3O2)4(NO3)]Dx = 1.721 Mg m3
Mr = 969.32Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 5000 reflections
Hall symbol: -I 4adθ = 8.1–20.7°
a = 15.856 (2) ŵ = 1.10 mm1
c = 29.753 (5) ÅT = 200 K
V = 7480.3 (18) Å3Prism, dark red
Z = 80.23 × 0.23 × 0.15 mm
F(000) = 3920
Data collection top
Stoe IPDS
diffractometer
3685 independent reflections
Radiation source: fine-focus sealed tube2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 6.67 pixels mm-1θmax = 26.1°, θmin = 2.3°
oscillation scansh = 1313
Absorption correction: empirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
k = 019
Tmin = 0.547, Tmax = 0.867l = 036
32401 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.02Calculated w = 1/[σ2(Fo2) + (0.0636P)2 + 2.7778P]
where P = (Fo2 + 2Fc2)/3
3309 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
(C24H20P)[V4O8(C2H3O2)4(NO3)]Z = 8
Mr = 969.32Mo Kα radiation
Tetragonal, I41/aµ = 1.10 mm1
a = 15.856 (2) ÅT = 200 K
c = 29.753 (5) Å0.23 × 0.23 × 0.15 mm
V = 7480.3 (18) Å3
Data collection top
Stoe IPDS
diffractometer
3685 independent reflections
Absorption correction: empirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
2503 reflections with I > 2σ(I)
Tmin = 0.547, Tmax = 0.867Rint = 0.071
32401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.02Δρmax = 0.50 e Å3
3309 reflectionsΔρmin = 0.75 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 376 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.43804 (3)0.37781 (3)0.10358 (2)0.0271 (2)
O110.39943 (13)0.45712 (13)0.07856 (7)0.0317 (5)
O210.38597 (13)0.29100 (13)0.07629 (7)0.0297 (5)
O310.53999 (13)0.36437 (13)0.07606 (7)0.0302 (5)
V20.63420 (3)0.31484 (3)0.09685 (2)0.0314 (2)
O120.70589 (14)0.34932 (15)0.06478 (8)0.0423 (6)
C230.5777 (2)0.4455 (2)0.16236 (10)0.0290 (7)
O130.63637 (13)0.40452 (13)0.14377 (7)0.0347 (5)
O230.50058 (13)0.43955 (13)0.15293 (7)0.0325 (5)
C130.6027 (2)0.5050 (2)0.19885 (11)0.0421 (8)
H13A0.6648 (15)0.5034 (2)0.2028 (2)0.063*0.19 (3)
H13B0.5749 (7)0.4881 (4)0.2274 (7)0.063*0.19 (3)
H13C0.5849 (5)0.5630 (14)0.1907 (2)0.063*0.19 (3)
H13D0.5516 (12)0.5329 (7)0.2111 (3)0.063*0.81 (3)
H13E0.6415 (10)0.5483 (11)0.1865 (3)0.063*0.81 (3)
H13F0.6315 (7)0.4733 (8)0.2232 (6)0.063*0.81 (3)
C240.6978 (2)0.1888 (2)0.16351 (10)0.0295 (7)
O140.70448 (14)0.25896 (14)0.14434 (7)0.0357 (5)
O240.64552 (13)0.13147 (13)0.15352 (6)0.0309 (5)
C140.7567 (2)0.1700 (2)0.20183 (11)0.0408 (8)
H14A0.7453 (3)0.1156 (14)0.2132 (3)0.061*0.19 (3)
H14B0.7489 (3)0.2103 (10)0.2248 (6)0.061*0.19 (3)
H14C0.8130 (14)0.1723 (2)0.1915 (3)0.061*0.19 (3)
H14D0.7928 (9)0.2165 (11)0.2065 (2)0.061*0.81 (3)
H14E0.7892 (8)0.1218 (12)0.1949 (2)0.061*0.81 (3)
H14F0.7251 (8)0.1599 (3)0.2282 (7)0.061*0.81 (3)
N50.50000.25000.1852 (2)0.0517 (12)
O150.50000.25000.14813 (13)0.0341 (7)
O250.4388 (2)0.2209 (2)0.20781 (8)0.0580 (7)
P60.50000.75000.12500.0236 (3)
C160.4480 (2)0.8253 (2)0.08975 (9)0.0254 (6)
C260.3709 (2)0.8596 (2)0.10246 (10)0.0312 (7)
H260.3434 (11)0.8404 (8)0.1286 (10)0.037*
C360.3350 (2)0.9222 (2)0.07653 (11)0.0391 (8)
H360.289 (2)0.9433 (10)0.0840 (4)0.047*
C460.3753 (2)0.9496 (2)0.03808 (11)0.0385 (8)
H460.3541 (11)0.9882 (19)0.0231 (7)0.046*
C560.4496 (2)0.9142 (2)0.02427 (10)0.0364 (7)
H560.4760 (10)0.9326 (7)0.0037 (11)0.044*
C660.4871 (2)0.8522 (2)0.05013 (10)0.0309 (7)
H660.537 (2)0.8287 (9)0.0413 (4)0.037*
P70.00000.25000.12500.0240 (3)
C170.0764 (2)0.3030 (2)0.09078 (9)0.0251 (6)
C270.1156 (2)0.3750 (2)0.10787 (11)0.0296 (6)
H270.0997 (7)0.3959 (9)0.1332 (11)0.036*
C370.1800 (2)0.4126 (2)0.08392 (11)0.0362 (7)
H370.2058 (11)0.4582 (19)0.0950 (5)0.043*
C470.2044 (2)0.3802 (2)0.04315 (11)0.0395 (8)
H470.2498 (19)0.4061 (11)0.0270 (7)0.047*
C570.1646 (2)0.3114 (2)0.02531 (11)0.0413 (8)
H570.1802 (7)0.2915 (9)0.0028 (12)0.050*
C670.1012 (2)0.2712 (2)0.04904 (10)0.0352 (7)
H670.0772 (11)0.2271 (19)0.0382 (5)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0321 (3)0.0254 (3)0.0239 (3)0.0034 (2)0.0012 (2)0.0015 (2)
O110.0370 (12)0.0279 (11)0.0301 (11)0.0043 (9)0.0019 (9)0.0015 (9)
O210.0318 (11)0.0310 (11)0.0264 (10)0.0036 (9)0.0015 (8)0.0007 (8)
O310.0348 (12)0.0278 (11)0.0281 (11)0.0007 (9)0.0019 (8)0.0007 (8)
V20.0286 (3)0.0298 (3)0.0357 (3)0.0013 (2)0.0030 (2)0.0003 (2)
O120.0354 (13)0.0369 (13)0.0546 (14)0.0007 (10)0.0129 (11)0.0041 (11)
C230.033 (2)0.027 (2)0.0279 (15)0.0059 (13)0.0017 (12)0.0032 (12)
O130.0287 (12)0.0302 (12)0.0452 (12)0.0007 (9)0.0004 (10)0.0043 (10)
O230.0320 (12)0.0364 (12)0.0291 (11)0.0007 (9)0.0009 (9)0.0013 (9)
C130.044 (2)0.044 (2)0.039 (2)0.009 (2)0.0026 (15)0.008 (2)
C240.024 (2)0.037 (2)0.0273 (15)0.0008 (13)0.0025 (12)0.0047 (13)
O140.0305 (12)0.0324 (12)0.0442 (12)0.0017 (9)0.0019 (10)0.0002 (10)
O240.0328 (12)0.0319 (12)0.0279 (10)0.0035 (10)0.0014 (9)0.0006 (9)
C140.038 (2)0.052 (2)0.033 (2)0.004 (2)0.0047 (14)0.0017 (15)
N50.024 (2)0.028 (2)0.103 (4)0.002 (2)0.0000.000
O150.032 (2)0.019 (2)0.051 (2)0.0069 (12)0.0000.000
O250.059 (2)0.074 (2)0.0419 (14)0.0034 (15)0.0019 (12)0.0014 (13)
P60.0251 (5)0.0251 (5)0.0207 (7)0.0000.0000.000
C160.029 (2)0.0265 (15)0.0204 (13)0.0017 (12)0.0016 (11)0.0007 (11)
C260.029 (2)0.036 (2)0.029 (2)0.0009 (13)0.0001 (13)0.0009 (13)
C360.032 (2)0.041 (2)0.044 (2)0.0076 (15)0.0066 (14)0.0007 (15)
C460.048 (2)0.030 (2)0.037 (2)0.000 (2)0.020 (2)0.0036 (14)
C560.048 (2)0.035 (2)0.026 (2)0.008 (2)0.0068 (14)0.0054 (13)
C660.031 (2)0.036 (2)0.0263 (15)0.0004 (13)0.0003 (12)0.0027 (13)
P70.0247 (5)0.0247 (5)0.0228 (7)0.0000.0000.000
C170.0249 (15)0.0263 (15)0.0239 (14)0.0005 (12)0.0019 (11)0.0018 (11)
C270.032 (2)0.028 (2)0.0293 (14)0.0037 (13)0.0012 (12)0.0011 (12)
C370.033 (2)0.028 (2)0.048 (2)0.0058 (14)0.0006 (14)0.0030 (14)
C470.035 (2)0.038 (2)0.046 (2)0.0014 (15)0.0102 (15)0.010 (2)
C570.049 (2)0.044 (2)0.031 (2)0.002 (2)0.0139 (15)0.0008 (14)
C670.042 (2)0.032 (2)0.031 (2)0.0049 (14)0.0067 (14)0.0046 (13)
Geometric parameters (Å, º) top
V1—O111.584 (2)N5—O251.268 (4)
V1—O211.799 (2)O15—V1i2.613 (2)
V1—O311.825 (2)O15—V2i2.813 (2)
V1—O24i1.996 (2)P6—C16ii1.791 (3)
V1—O232.024 (2)P6—C16iii1.791 (3)
V1—O152.613 (2)P6—C161.791 (3)
O21—V2i1.815 (2)P6—C16iv1.791 (3)
V2—O121.582 (2)C16—C261.390 (4)
V2—O311.797 (2)C16—C661.399 (4)
V2—O21i1.815 (2)C26—C361.379 (5)
V2—O131.993 (2)C26—H260.94 (4)
V2—O142.006 (2)C36—C461.381 (5)
V2—O152.813 (2)C36—H360.83 (4)
C23—O231.258 (4)C46—C561.367 (5)
C23—O131.262 (4)C46—H460.83 (4)
C23—C131.492 (4)C56—C661.383 (4)
C13—H13A0.99 (2)C56—H560.98 (4)
C13—H13B0.99 (2)C66—H660.92 (3)
C13—H13C0.99 (2)P7—C17v1.792 (3)
C13—H13D0.99 (2)P7—C17vi1.792 (3)
C13—H13E0.99 (2)P7—C171.792 (3)
C13—H13F0.99 (2)P7—C17vii1.792 (3)
C24—O141.255 (4)C17—C271.396 (4)
C24—O241.265 (4)C17—C671.397 (4)
C24—C141.503 (4)C27—C371.380 (4)
O24—V1i1.996 (2)C27—H270.86 (4)
C14—H14A0.94 (2)C37—C471.373 (5)
C14—H14B0.94 (2)C37—H370.89 (4)
C14—H14C0.94 (2)C47—C571.368 (5)
C14—H14D0.94 (2)C47—H470.96 (4)
C14—H14E0.94 (2)C57—C671.383 (5)
C14—H14F0.94 (2)C57—H570.93 (4)
N5—O151.102 (6)C67—H670.86 (4)
N5—O25i1.268 (4)
O11—V1—O21102.58 (10)C24—C14—H14E109.5 (2)
O11—V1—O31102.95 (10)H14A—C14—H14E56.3
O21—V1—O3196.58 (9)H14B—C14—H14E141.1
O11—V1—O24i98.73 (10)H14C—C14—H14E56.3
O21—V1—O24i88.56 (9)H14D—C14—H14E109.5
O31—V1—O24i155.99 (9)C24—C14—H14F109.5 (2)
O11—V1—O2398.41 (10)H14A—C14—H14F56.3
O21—V1—O23157.27 (9)H14B—C14—H14F56.3
O31—V1—O2387.02 (9)H14C—C14—H14F141.1
O24i—V1—O2379.69 (8)H14D—C14—H14F109.5
O11—V1—O15177.55 (10)H14E—C14—H14F109.5
O21—V1—O1578.94 (8)O15—N5—O25i122.1 (3)
O31—V1—O1578.69 (8)O15—N5—O25122.1 (3)
O24i—V1—O1579.33 (8)O25i—N5—O25115.9 (6)
O23—V1—O1579.80 (8)N5—O15—V1i120.48 (7)
O12—V2—O31103.81 (11)N5—O15—V1120.48 (7)
O12—V2—O21i104.06 (11)V1i—O15—V1119.04 (14)
O31—V2—O21i98.14 (9)N5—O15—V2i122.85 (7)
O12—V2—O1399.41 (11)V1i—O15—V2i74.09 (7)
O31—V2—O1386.77 (9)V1—O15—V2i73.98 (7)
O21i—V2—O13154.03 (9)N5—O15—V2122.85 (7)
O12—V2—O14100.27 (11)V1i—O15—V273.98 (7)
O31—V2—O14153.78 (9)V1—O15—V274.09 (7)
O21i—V2—O1485.80 (9)V2i—O15—V2114.31 (13)
O13—V2—O1479.18 (9)C16ii—P6—C16iii110.06 (9)
O12—V2—O15175.74 (12)C16ii—P6—C16110.06 (9)
O31—V2—O1573.60 (8)C16iii—P6—C16108.3 (2)
O21i—V2—O1573.23 (8)C16ii—P6—C16iv108.3 (2)
O13—V2—O1583.91 (8)C16iii—P6—C16iv110.06 (9)
O14—V2—O1582.92 (8)C16—P6—C16iv110.06 (9)
V1—O21—V2i129.52 (11)C26—C16—C66120.0 (3)
V2—O31—V1129.27 (12)C26—C16—P6120.4 (2)
O23—C23—O13125.4 (3)C66—C16—P6119.5 (2)
O23—C23—C13117.9 (3)C36—C26—C16119.5 (3)
O13—C23—C13116.7 (3)C36—C26—H26120.3 (2)
C23—O13—V2131.4 (2)C16—C26—H26120.3 (2)
C23—O23—V1132.4 (2)C26—C36—C46119.9 (3)
C23—C13—H13A109.5 (2)C26—C36—H36120.0 (2)
C23—C13—H13B109.5 (2)C46—C36—H36120.0 (2)
H13A—C13—H13B109.5C56—C46—C36121.2 (3)
C23—C13—H13C109.5 (2)C56—C46—H46119.4 (2)
H13A—C13—H13C109.5C36—C46—H46119.4 (2)
H13B—C13—H13C109.5C46—C56—C66119.7 (3)
C23—C13—H13D109.5 (2)C46—C56—H56120.2 (2)
H13A—C13—H13D141.1C66—C56—H56120.2 (2)
H13B—C13—H13D56.3C56—C66—C16119.6 (3)
H13C—C13—H13D56.3C56—C66—H66120.2 (2)
C23—C13—H13E109.5 (2)C16—C66—H66120.2 (2)
H13A—C13—H13E56.3C17v—P7—C17vi108.84 (9)
H13B—C13—H13E141.1C17v—P7—C17108.84 (9)
H13C—C13—H13E56.3C17vi—P7—C17110.7 (2)
H13D—C13—H13E109.5C17v—P7—C17vii110.7 (2)
C23—C13—H13F109.5 (2)C17vi—P7—C17vii108.84 (9)
H13A—C13—H13F56.3C17—P7—C17vii108.84 (9)
H13B—C13—H13F56.3C27—C17—C67119.6 (3)
H13C—C13—H13F141.1C27—C17—P7118.5 (2)
H13D—C13—H13F109.5C67—C17—P7121.8 (2)
H13E—C13—H13F109.5C37—C27—C17119.6 (3)
O14—C24—O24125.8 (3)C37—C27—H27120.2 (2)
O14—C24—C14117.9 (3)C17—C27—H27120.2 (2)
O24—C24—C14116.3 (3)C47—C37—C27120.2 (3)
C24—O14—V2131.7 (2)C47—C37—H37119.9 (2)
C24—O24—V1i131.5 (2)C27—C37—H37119.9 (2)
C24—C14—H14A109.5 (2)C57—C47—C37120.7 (3)
C24—C14—H14B109.5 (2)C57—C47—H47119.6 (2)
H14A—C14—H14B109.5C37—C47—H47119.6 (2)
C24—C14—H14C109.5 (2)C47—C57—C67120.3 (3)
H14A—C14—H14C109.5C47—C57—H57119.9 (2)
H14B—C14—H14C109.5C67—C57—H57119.9 (2)
C24—C14—H14D109.5 (2)C57—C67—C17119.5 (3)
H14A—C14—H14D141.1C57—C67—H67120.3 (2)
H14B—C14—H14D56.3C17—C67—H67120.3 (2)
H14C—C14—H14D56.3
Symmetry codes: (i) x+1, y+1/2, z; (ii) y1/4, x+5/4, z+1/4; (iii) x+1, y+3/2, z; (iv) y+5/4, x+1/4, z+1/4; (v) y+1/4, x+1/4, z+1/4; (vi) x, y+1/2, z; (vii) y1/4, x+1/4, z+1/4.

Experimental details

Crystal data
Chemical formula(C24H20P)[V4O8(C2H3O2)4(NO3)]
Mr969.32
Crystal system, space groupTetragonal, I41/a
Temperature (K)200
a, c (Å)15.856 (2), 29.753 (5)
V3)7480.3 (18)
Z8
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.23 × 0.23 × 0.15
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
Tmin, Tmax0.547, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
32401, 3685, 2503
Rint0.071
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.02
No. of reflections3309
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.75

Computer programs: IPDS (Stoe & Cie, 1996), IPDS, SHELXS86 (Sheldrick, 1986), SHELXL93 (Sheldrick, 1993), ZORTEP (Zsolnai, 1994), SHELXL93.

Selected geometric parameters (Å, º) top
V1—O111.584 (2)V2—O21i1.815 (2)
V1—O211.799 (2)V2—O131.993 (2)
V1—O311.825 (2)V2—O142.006 (2)
V1—O24i1.996 (2)V2—O152.813 (2)
V1—O232.024 (2)N5—O151.102 (6)
V1—O152.613 (2)N5—O25i1.268 (4)
V2—O121.582 (2)N5—O251.268 (4)
V2—O311.797 (2)
O11—V1—O21102.58 (10)O21i—V2—O13154.03 (9)
O11—V1—O31102.95 (10)O12—V2—O14100.27 (11)
O21—V1—O3196.58 (9)O31—V2—O14153.78 (9)
O11—V1—O24i98.73 (10)O21i—V2—O1485.80 (9)
O21—V1—O24i88.56 (9)O13—V2—O1479.18 (9)
O31—V1—O24i155.99 (9)O12—V2—O15175.74 (12)
O11—V1—O2398.41 (10)O31—V2—O1573.60 (8)
O21—V1—O23157.27 (9)O21i—V2—O1573.23 (8)
O31—V1—O2387.02 (9)O13—V2—O1583.91 (8)
O24i—V1—O2379.69 (8)O14—V2—O1582.92 (8)
O11—V1—O15177.55 (10)V1—O21—V2i129.52 (11)
O21—V1—O1578.94 (8)V2—O31—V1129.27 (12)
O31—V1—O1578.69 (8)O15—N5—O25i122.1 (3)
O24i—V1—O1579.33 (8)O15—N5—O25122.1 (3)
O23—V1—O1579.80 (8)O25i—N5—O25115.9 (6)
O12—V2—O31103.81 (11)V1i—O15—V1119.04 (14)
O12—V2—O21i104.06 (11)V1i—O15—V2i74.09 (7)
O31—V2—O21i98.14 (9)V1—O15—V2i73.98 (7)
O12—V2—O1399.41 (11)V2i—O15—V2114.31 (13)
O31—V2—O1386.77 (9)
Symmetry code: (i) x+1, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds