metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,6-Bis(5-eth­­oxy-1,3-oxazol-2-yl)-4-meth­­oxy­phenyl-κ3N,C1,N′]bromidopalladium(II)

aKey Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: qlluo@swu.edu.cn

(Received 16 November 2012; accepted 30 November 2012; online 8 December 2012)

In the title compound, [PdBr(C17H17N2O5)], the PdII atom is coordinated by an N,C1,N′-tridentate pincer ligand and a Br atom in a distorted square-planar geometry. In the crystal, mol­ecules are connected by C—H⋯Br and C—H⋯O hydrogen bonds, and ππ inter­actions between the oxazole and benzene rings [centroid–centroid distance = 3.7344 (19) Å], resulting in a three-dimensional supra­molecular structure.

Related literature

For background to pincer palladium complexes, see: van Koten & Gebbink (2011[Koten, G. van & Gebbink, R. J. M. K. (2011). Dalton Trans. 40, 8731-8732.]); Moreno et al. (2010[Moreno, I., SanMartin, R., Inés, B., Churruca, F. & Domínguez, E. (2010). Inorg. Chim. Acta, 363, 1903-1911.]); Selander & Szabó (2011[Selander, N. & Szabó, K. J. (2011). Chem. Rev. 111, 2048-2076.]). For palladium complexes with NCN pincer ligands, see: Hao et al. (2010[Hao, X.-Q., Wang, Y.-N., Liu, J.-R., Wang, K.-L., Gong, J.-F. & Song, M.-P. (2010). J. Organomet. Chem. 695, 82-89.]); Young et al. (2011[Young, K. J. H., Bu, X. & Kaska, W. C. (2011). J. Organomet. Chem. 696, 3992-3997.]). For studies on the chemistry of bis­(oxazole) pincer palladium complexes, see: Luo et al. (2007[Luo, Q., Eibauer, S. & Reiser, O. (2007). J. Mol. Catal. A Chem. 268, 65-69.], 2011[Luo, Q.-L., Tan, J.-P., Li, Z.-F., Qin, Y., Ma, L. & Xiao, D.-R. (2011). Dalton Trans. 40, 3601-3609.]); Xu et al. (2011[Xu, G., Luo, Q., Eibauer, S., Rausch, A. F., Stempfhuber, S., Zabel, M., Yersin, H. & Reiser, O. (2011). Dalton Trans. 40, 8800-8806.]). For structures of related bis­(azole) pincer palladium complexes, see: Ghorai et al. (2012[Ghorai, D., Kumar, S. & Mani, G. (2012). Dalton Trans. 41, 9503-9512.]); Luo et al. (2012[Luo, Q.-L., Tan, J.-P., Li, Z.-F., Nan, W.-H. & Xiao, D.-R. (2012). J. Org. Chem. 77, 8332-8337.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr(C17H17N2O5)]

  • Mr = 515.64

  • Triclinic, [P \overline 1]

  • a = 9.0209 (3) Å

  • b = 9.6544 (3) Å

  • c = 10.9200 (3) Å

  • α = 87.093 (2)°

  • β = 86.974 (1)°

  • γ = 85.793 (2)°

  • V = 946.11 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 296 K

  • 0.43 × 0.41 × 0.37 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.347, Tmax = 0.391

  • 15776 measured reflections

  • 4311 independent reflections

  • 3770 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.113

  • S = 1.08

  • 4311 reflections

  • 235 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −1.25 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—C11 1.954 (3)
Pd1—N1 2.056 (3)
Pd1—N2 2.055 (3)
Pd1—Br1 2.4941 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Br1i 0.97 2.80 3.526 (5) 132
C16—H16A⋯O2ii 0.96 2.44 3.391 (5) 170
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x-1, y, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cross-coupling reactions catalyzed by palladium complexes are among the most important tools for C—C bond construction. Considerable attention has recently been devoted to pincer-Pd complexes due to their catalytic abilities (Ghorai et al., 2012; van Koten & Gebbink, 2011; Moreno et al., 2010; Selander & Szabó, 2011). We are interested in the NCN type of pincer-Pd complexes (Luo et al., 2007, 2011, 2012; Xu et al., 2011) as a variety of nonphosphine pincer catalytic system, that contains two nitrogen atoms as donating sites in the coordination sphere (Hao et al., 2010; Young et al., 2011)

The title compound was conveniently synthesized from the reaction of Pd(dba)2 (dba = dibenzylideneacetone) with 1-bromo-2,6-bis(5-ethoxyoxazol-2-yl)-4-methoxy benzene in dry benzene under reflux in an argon atmosphere. As a result, the title compound was isolated with 84% yield. Suitable single crystals were grown via vapor diffusion of hexane into a DMF solution of the soluble reaction product at room temperature for dozens of days.

The molecular structure is shown in Fig. 1 and selected bond lengths in Table 1. In the crystal, the molecules are linked by intermolecular C—H···Br and C—H···O hydrogen bonds (Table 2) and ππ interactions between the oxazole and benzene rings [centroid–centroid distance = 3.7344 (19) Å], resulting in a three-dimensional supramolecular structure.

Related literature top

For background to pincer palladium complexes, see: van Koten & Gebbink (2011); Moreno et al. (2010); Selander & Szabó (2011). For palladium complexes with NCN pincer ligands, see: Hao et al. (2010); Young et al. (2011). For studies on the chemistry of bis(oxazole) pincer palladium complexes, see: Luo et al. (2007, 2011); Xu et al. (2011). For structures of related bis(azole) pincer palladium complexes, see: Ghorai et al. (2012); Luo et al. (2012).

Experimental top

Under an argon atmosphere, a 25 ml Schlenk flask was charged with 1-bromo-2,6-bis(5-ethoxyoxazol-2-yl)-4-methoxybenzene (106 mg, 0.3 mmol), Pd(dba)2 (173 mg, 0.3 mmol) and dry benzene (15 ml). The reaction mixture was heated and refluxed for 2 h, and then cooled to room temperature and stirred for further 2 h. The resultant mixture was directly transferred on to a diatomite column and eluted first with hexane to remove dibenzylideneacetone and then with chloroform. The collected target compound was crystallized from CHCl3/MeOH as a slight yellow solid (yield: 84%). 1H NMR (300 MHz, CDCl3): δ 6.76 (s, 2H), 6.52 (s, 2H), 4.25 (q, 4H, 3J = 6.9 Hz), 3.83 (s, 3H), 1.49 (t, 6H, 3J = 7.0 Hz). 13C NMR (75 MHz, CDCl3): δ159.3, 158.5, 157.6, 154.7, 129.9, 107.3, 100.3, 55.8, 14.4. LRMS (ESI): m/z(%) 951 (100) (2M+–Br).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C–H = 0.93 (aromatic), 0.96 (CH3) and 0.97 (CH2) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

Cross-coupling reactions catalyzed by palladium complexes are among the most important tools for C—C bond construction. Considerable attention has recently been devoted to pincer-Pd complexes due to their catalytic abilities (Ghorai et al., 2012; van Koten & Gebbink, 2011; Moreno et al., 2010; Selander & Szabó, 2011). We are interested in the NCN type of pincer-Pd complexes (Luo et al., 2007, 2011, 2012; Xu et al., 2011) as a variety of nonphosphine pincer catalytic system, that contains two nitrogen atoms as donating sites in the coordination sphere (Hao et al., 2010; Young et al., 2011)

The title compound was conveniently synthesized from the reaction of Pd(dba)2 (dba = dibenzylideneacetone) with 1-bromo-2,6-bis(5-ethoxyoxazol-2-yl)-4-methoxy benzene in dry benzene under reflux in an argon atmosphere. As a result, the title compound was isolated with 84% yield. Suitable single crystals were grown via vapor diffusion of hexane into a DMF solution of the soluble reaction product at room temperature for dozens of days.

The molecular structure is shown in Fig. 1 and selected bond lengths in Table 1. In the crystal, the molecules are linked by intermolecular C—H···Br and C—H···O hydrogen bonds (Table 2) and ππ interactions between the oxazole and benzene rings [centroid–centroid distance = 3.7344 (19) Å], resulting in a three-dimensional supramolecular structure.

For background to pincer palladium complexes, see: van Koten & Gebbink (2011); Moreno et al. (2010); Selander & Szabó (2011). For palladium complexes with NCN pincer ligands, see: Hao et al. (2010); Young et al. (2011). For studies on the chemistry of bis(oxazole) pincer palladium complexes, see: Luo et al. (2007, 2011); Xu et al. (2011). For structures of related bis(azole) pincer palladium complexes, see: Ghorai et al. (2012); Luo et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[2,6-Bis(5-ethoxy-1,3-oxazol-2-yl)-4-methoxyphenyl- κ3N,C1,N']bromidopalladium(II) top
Crystal data top
[PdBr(C17H17N2O5)]Z = 2
Mr = 515.64F(000) = 508
Triclinic, P1Dx = 1.810 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0209 (3) ÅCell parameters from 15776 reflections
b = 9.6544 (3) Åθ = 1.9–27.5°
c = 10.9200 (3) ŵ = 3.12 mm1
α = 87.093 (2)°T = 296 K
β = 86.974 (1)°Block, yellow
γ = 85.793 (2)°0.43 × 0.41 × 0.37 mm
V = 946.11 (5) Å3
Data collection top
Bruker APEX CCD
diffractometer
4311 independent reflections
Radiation source: fine-focus sealed tube3770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 0.01 pixels mm-1θmax = 27.5°, θmin = 1.9°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.347, Tmax = 0.391l = 1413
15776 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
4311 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.72 e Å3
6 restraintsΔρmin = 1.25 e Å3
Crystal data top
[PdBr(C17H17N2O5)]γ = 85.793 (2)°
Mr = 515.64V = 946.11 (5) Å3
Triclinic, P1Z = 2
a = 9.0209 (3) ÅMo Kα radiation
b = 9.6544 (3) ŵ = 3.12 mm1
c = 10.9200 (3) ÅT = 296 K
α = 87.093 (2)°0.43 × 0.41 × 0.37 mm
β = 86.974 (1)°
Data collection top
Bruker APEX CCD
diffractometer
4311 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3770 reflections with I > 2σ(I)
Tmin = 0.347, Tmax = 0.391Rint = 0.034
15776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0366 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.08Δρmax = 0.72 e Å3
4311 reflectionsΔρmin = 1.25 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.75135 (2)0.11221 (2)0.04359 (2)0.03536 (11)
Br10.73062 (5)0.33747 (4)0.14750 (4)0.06338 (15)
O11.1647 (3)0.2444 (3)0.3330 (3)0.0641 (8)
O21.0326 (3)0.0693 (2)0.2594 (2)0.0427 (5)
O30.7890 (3)0.4275 (2)0.2212 (3)0.0579 (7)
O40.4921 (3)0.1921 (2)0.1850 (2)0.0442 (5)
O50.3381 (3)0.1541 (3)0.3498 (2)0.0668 (8)
N10.9050 (3)0.1515 (3)0.0974 (2)0.0396 (6)
N20.6019 (3)0.0043 (3)0.1522 (2)0.0400 (6)
C11.3044 (8)0.4175 (6)0.4370 (6)0.106 (2)
H1A1.32640.51340.43950.158*
H1B1.26340.39710.51280.158*
H1C1.39410.35950.42530.158*
C21.1945 (6)0.3901 (4)0.3332 (5)0.0810 (14)
H2A1.23460.41050.25600.097*
H2B1.10330.44830.34390.097*
C31.0668 (4)0.2043 (3)0.2459 (3)0.0447 (7)
C40.9916 (4)0.2562 (3)0.1487 (3)0.0426 (7)
H4A0.99570.34500.12030.051*
C50.9345 (3)0.0438 (3)0.1655 (3)0.0372 (6)
C60.8596 (3)0.0824 (3)0.1380 (3)0.0372 (6)
C70.8675 (4)0.2063 (3)0.1977 (3)0.0414 (7)
H7A0.93310.22010.26530.050*
C80.7764 (4)0.3086 (3)0.1552 (3)0.0436 (7)
C90.6796 (4)0.2931 (3)0.0517 (3)0.0412 (7)
H9A0.61960.36350.02330.049*
C100.6764 (3)0.1684 (3)0.0073 (3)0.0376 (7)
C110.7643 (3)0.0646 (3)0.0372 (3)0.0358 (6)
C120.5894 (3)0.1220 (3)0.1135 (3)0.0384 (6)
C130.5062 (4)0.0193 (4)0.2543 (3)0.0442 (7)
H13A0.49050.09730.30110.053*
C140.4399 (4)0.1014 (4)0.2730 (3)0.0464 (8)
C150.2843 (5)0.0696 (5)0.4494 (4)0.0643 (11)
H15A0.23210.01530.41830.077*
H15B0.36660.04500.49570.077*
C160.1823 (6)0.1520 (5)0.5285 (4)0.0837 (16)
H16A0.14400.09840.59630.126*
H16B0.23510.23560.55880.126*
H16C0.10130.17550.48170.126*
C170.6779 (5)0.5245 (4)0.1992 (4)0.0587 (10)
H17A0.69990.60180.25080.088*
H17B0.58240.48010.21740.088*
H17C0.67660.55710.11470.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03735 (16)0.03482 (16)0.03421 (16)0.00236 (10)0.00149 (10)0.00492 (10)
Br10.0765 (3)0.0515 (2)0.0634 (3)0.0026 (2)0.0009 (2)0.0195 (2)
O10.0782 (19)0.0491 (15)0.0652 (17)0.0235 (14)0.0259 (15)0.0074 (13)
O20.0477 (12)0.0354 (11)0.0450 (12)0.0084 (9)0.0083 (10)0.0061 (9)
O30.0664 (16)0.0390 (13)0.0692 (17)0.0145 (11)0.0214 (13)0.0205 (12)
O40.0478 (12)0.0430 (12)0.0422 (12)0.0101 (10)0.0083 (10)0.0052 (10)
O50.085 (2)0.0609 (17)0.0537 (16)0.0198 (15)0.0327 (14)0.0159 (13)
N10.0395 (14)0.0366 (14)0.0430 (15)0.0045 (11)0.0020 (11)0.0040 (11)
N20.0401 (14)0.0455 (15)0.0341 (13)0.0022 (11)0.0030 (11)0.0050 (11)
C10.137 (5)0.074 (3)0.105 (4)0.041 (3)0.041 (4)0.002 (3)
C20.099 (4)0.046 (2)0.097 (4)0.021 (2)0.031 (3)0.002 (2)
C30.0479 (17)0.0368 (16)0.0498 (19)0.0109 (13)0.0022 (15)0.0012 (14)
C40.0460 (17)0.0358 (16)0.0465 (18)0.0063 (13)0.0014 (14)0.0026 (13)
C50.0371 (15)0.0365 (15)0.0382 (16)0.0038 (12)0.0014 (12)0.0021 (12)
C60.0366 (15)0.0359 (15)0.0391 (16)0.0016 (12)0.0028 (13)0.0008 (12)
C70.0407 (16)0.0411 (17)0.0419 (17)0.0036 (13)0.0063 (13)0.0057 (13)
C80.0475 (18)0.0355 (16)0.0480 (19)0.0047 (13)0.0041 (15)0.0090 (14)
C90.0419 (16)0.0346 (15)0.0471 (18)0.0078 (13)0.0031 (14)0.0017 (13)
C100.0364 (15)0.0415 (16)0.0346 (16)0.0018 (12)0.0016 (12)0.0029 (13)
C110.0336 (14)0.0361 (15)0.0380 (16)0.0044 (11)0.0021 (12)0.0007 (12)
C120.0405 (16)0.0390 (16)0.0359 (16)0.0048 (12)0.0022 (13)0.0042 (12)
C130.0464 (18)0.053 (2)0.0333 (16)0.0022 (15)0.0019 (14)0.0073 (14)
C140.0500 (19)0.0526 (19)0.0363 (17)0.0082 (15)0.0096 (14)0.0059 (14)
C150.075 (3)0.076 (3)0.044 (2)0.017 (2)0.0166 (19)0.0172 (18)
C160.112 (4)0.081 (3)0.054 (3)0.005 (3)0.040 (3)0.011 (2)
C170.067 (2)0.047 (2)0.064 (2)0.0161 (18)0.003 (2)0.0165 (18)
Geometric parameters (Å, º) top
Pd1—C111.954 (3)C3—C41.328 (5)
Pd1—N12.056 (3)C4—H4A0.9300
Pd1—N22.055 (3)C5—C61.447 (4)
Pd1—Br12.4941 (4)C6—C111.371 (5)
O1—C31.326 (4)C6—C71.387 (4)
O1—C21.451 (5)C7—C81.378 (4)
O2—C51.344 (4)C7—H7A0.9300
O2—C31.378 (4)C8—C91.399 (5)
O3—C81.380 (4)C9—C101.392 (5)
O3—C171.425 (4)C9—H9A0.9300
O4—C121.342 (4)C10—C111.377 (4)
O4—C141.374 (4)C10—C121.438 (4)
O5—C141.323 (4)C13—C141.350 (5)
O5—C151.435 (5)C13—H13A0.9300
N1—C51.312 (4)C15—C161.475 (6)
N1—C41.400 (4)C15—H15A0.9700
N2—C121.325 (4)C15—H15B0.9700
N2—C131.380 (4)C16—H16A0.9600
C1—C21.492 (7)C16—H16B0.9600
C1—H1A0.9600C16—H16C0.9600
C1—H1B0.9600C17—H17A0.9600
C1—H1C0.9600C17—H17B0.9600
C2—H2A0.9700C17—H17C0.9600
C2—H2B0.9700
C11—Pd1—N279.26 (12)C8—C7—H7A120.6
C11—Pd1—N179.31 (11)C6—C7—H7A120.6
N2—Pd1—N1158.57 (11)C7—C8—O3115.2 (3)
C11—Pd1—Br1179.10 (9)C7—C8—C9122.1 (3)
N2—Pd1—Br1100.00 (8)O3—C8—C9122.7 (3)
N1—Pd1—Br1101.42 (7)C10—C9—C8117.5 (3)
C3—O1—C2114.6 (3)C10—C9—H9A121.3
C5—O2—C3104.3 (2)C8—C9—H9A121.3
C8—O3—C17118.0 (3)C11—C10—C9120.4 (3)
C12—O4—C14104.9 (2)C11—C10—C12109.2 (3)
C14—O5—C15116.3 (3)C9—C10—C12130.4 (3)
C5—N1—C4106.2 (3)C6—C11—C10121.2 (3)
C5—N1—Pd1112.1 (2)C6—C11—Pd1119.3 (2)
C4—N1—Pd1141.7 (2)C10—C11—Pd1119.5 (2)
C12—N2—C13107.0 (3)N2—C12—O4111.8 (3)
C12—N2—Pd1112.0 (2)N2—C12—C10120.0 (3)
C13—N2—Pd1141.0 (2)O4—C12—C10128.2 (3)
C2—C1—H1A109.5C14—C13—N2106.6 (3)
C2—C1—H1B109.5C14—C13—H13A126.7
H1A—C1—H1B109.5N2—C13—H13A126.7
C2—C1—H1C109.5O5—C14—C13137.7 (3)
H1A—C1—H1C109.5O5—C14—O4112.5 (3)
H1B—C1—H1C109.5C13—C14—O4109.7 (3)
O1—C2—C1107.5 (4)O5—C15—C16107.2 (4)
O1—C2—H2A110.2O5—C15—H15A110.3
C1—C2—H2A110.2C16—C15—H15A110.3
O1—C2—H2B110.2O5—C15—H15B110.3
C1—C2—H2B110.2C16—C15—H15B110.3
H2A—C2—H2B108.5H15A—C15—H15B108.5
O1—C3—C4138.5 (3)C15—C16—H16A109.5
O1—C3—O2111.2 (3)C15—C16—H16B109.5
C4—C3—O2110.2 (3)H16A—C16—H16B109.5
C3—C4—N1106.7 (3)C15—C16—H16C109.5
C3—C4—H4A126.6H16A—C16—H16C109.5
N1—C4—H4A126.6H16B—C16—H16C109.5
N1—C5—O2112.5 (3)O3—C17—H17A109.5
N1—C5—C6120.1 (3)O3—C17—H17B109.5
O2—C5—C6127.3 (3)H17A—C17—H17B109.5
C11—C6—C7119.9 (3)O3—C17—H17C109.5
C11—C6—C5109.2 (3)H17A—C17—H17C109.5
C7—C6—C5130.9 (3)H17B—C17—H17C109.5
C8—C7—C6118.9 (3)
C11—Pd1—N1—C51.0 (2)C17—O3—C8—C913.7 (5)
N2—Pd1—N1—C51.9 (4)C7—C8—C9—C100.8 (5)
Br1—Pd1—N1—C5179.6 (2)O3—C8—C9—C10179.9 (3)
C11—Pd1—N1—C4178.5 (4)C8—C9—C10—C111.1 (5)
N2—Pd1—N1—C4177.5 (3)C8—C9—C10—C12179.5 (3)
Br1—Pd1—N1—C41.0 (4)C7—C6—C11—C100.7 (5)
C11—Pd1—N2—C120.9 (2)C5—C6—C11—C10178.7 (3)
N1—Pd1—N2—C120.1 (4)C7—C6—C11—Pd1178.6 (2)
Br1—Pd1—N2—C12178.6 (2)C5—C6—C11—Pd10.6 (4)
C11—Pd1—N2—C13179.9 (4)C9—C10—C11—C61.9 (5)
N1—Pd1—N2—C13179.2 (3)C12—C10—C11—C6179.4 (3)
Br1—Pd1—N2—C130.6 (4)C9—C10—C11—Pd1177.5 (2)
C3—O1—C2—C1179.3 (4)C12—C10—C11—Pd11.3 (4)
C2—O1—C3—C46.5 (7)N2—Pd1—C11—C6179.4 (3)
C2—O1—C3—O2173.7 (4)N1—Pd1—C11—C60.9 (2)
C5—O2—C3—O1179.6 (3)N2—Pd1—C11—C101.2 (2)
C5—O2—C3—C40.3 (4)N1—Pd1—C11—C10178.5 (3)
O1—C3—C4—N1179.9 (4)C13—N2—C12—O40.7 (4)
O2—C3—C4—N10.2 (4)Pd1—N2—C12—O4179.8 (2)
C5—N1—C4—C30.6 (4)C13—N2—C12—C10180.0 (3)
Pd1—N1—C4—C3178.8 (3)Pd1—N2—C12—C100.5 (4)
C4—N1—C5—O20.9 (3)C14—O4—C12—N20.8 (4)
Pd1—N1—C5—O2178.8 (2)C14—O4—C12—C10180.0 (3)
C4—N1—C5—C6178.7 (3)C11—C10—C12—N20.5 (4)
Pd1—N1—C5—C61.0 (4)C9—C10—C12—N2178.1 (3)
C3—O2—C5—N10.7 (4)C11—C10—C12—O4178.8 (3)
C3—O2—C5—C6178.3 (3)C9—C10—C12—O42.7 (6)
N1—C5—C6—C110.3 (4)C12—N2—C13—C140.3 (4)
O2—C5—C6—C11177.7 (3)Pd1—N2—C13—C14179.6 (3)
N1—C5—C6—C7177.4 (3)C15—O5—C14—C135.6 (7)
O2—C5—C6—C70.0 (6)C15—O5—C14—O4176.2 (3)
C11—C6—C7—C81.2 (5)N2—C13—C14—O5178.1 (4)
C5—C6—C7—C8176.3 (3)N2—C13—C14—O40.1 (4)
C6—C7—C8—O3178.8 (3)C12—O4—C14—O5178.2 (3)
C6—C7—C8—C92.0 (5)C12—O4—C14—C130.5 (4)
C17—O3—C8—C7167.0 (3)C14—O5—C15—C16175.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Br1i0.972.803.526 (5)132
C16—H16A···O2ii0.962.443.391 (5)170
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[PdBr(C17H17N2O5)]
Mr515.64
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.0209 (3), 9.6544 (3), 10.9200 (3)
α, β, γ (°)87.093 (2), 86.974 (1), 85.793 (2)
V3)946.11 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.43 × 0.41 × 0.37
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.347, 0.391
No. of measured, independent and
observed [I > 2σ(I)] reflections
15776, 4311, 3770
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.113, 1.08
No. of reflections4311
No. of parameters235
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 1.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pd1—C111.954 (3)Pd1—N22.055 (3)
Pd1—N12.056 (3)Pd1—Br12.4941 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Br1i0.972.803.526 (5)132
C16—H16A···O2ii0.962.443.391 (5)170
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z+1.
 

Acknowledgements

The authors appreciate financial support from the National Natural Science Foundation of China (grant No. 20971105) and the Fundamental Research Funds for the Central Universities (grant No. XDJK2012B011).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhorai, D., Kumar, S. & Mani, G. (2012). Dalton Trans. 41, 9503–9512.  CSD CrossRef CAS PubMed Google Scholar
First citationHao, X.-Q., Wang, Y.-N., Liu, J.-R., Wang, K.-L., Gong, J.-F. & Song, M.-P. (2010). J. Organomet. Chem. 695, 82–89.  CSD CrossRef CAS Google Scholar
First citationKoten, G. van & Gebbink, R. J. M. K. (2011). Dalton Trans. 40, 8731–8732.  PubMed Google Scholar
First citationLuo, Q., Eibauer, S. & Reiser, O. (2007). J. Mol. Catal. A Chem. 268, 65–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, Q.-L., Tan, J.-P., Li, Z.-F., Nan, W.-H. & Xiao, D.-R. (2012). J. Org. Chem. 77, 8332–8337.  CSD CrossRef CAS PubMed Google Scholar
First citationLuo, Q.-L., Tan, J.-P., Li, Z.-F., Qin, Y., Ma, L. & Xiao, D.-R. (2011). Dalton Trans. 40, 3601–3609.  CSD CrossRef CAS PubMed Google Scholar
First citationMoreno, I., SanMartin, R., Inés, B., Churruca, F. & Domínguez, E. (2010). Inorg. Chim. Acta, 363, 1903–1911.  Web of Science CrossRef CAS Google Scholar
First citationSelander, N. & Szabó, K. J. (2011). Chem. Rev. 111, 2048–2076.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, G., Luo, Q., Eibauer, S., Rausch, A. F., Stempfhuber, S., Zabel, M., Yersin, H. & Reiser, O. (2011). Dalton Trans. 40, 8800–8806.  CSD CrossRef CAS PubMed Google Scholar
First citationYoung, K. J. H., Bu, X. & Kaska, W. C. (2011). J. Organomet. Chem. 696, 3992–3997.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds