Download citation
Download citation
link to html
The crystal structures of the two thermally equilibrated conformational isomers of the epoxide 1',5'-dimethyl­spiro[10,11-dihydro-5H-dibenzo[a,d]cyclo­heptene-5,8'-4'-oxatricyclo[5.1.0.03,5]octane]-2',6'-dione, C23H20O3, have been determined by X-ray diffraction. In the tricyclic dione skeleton, the oxirane and cyclo­propane rings adopt an anti structure with respect to the conjunct quinone frame. The spiro-linked 10,11-dihydro-5H-dibenzo[a,d]cyclo­heptene ring of the major isomer has a fairly twisted boat form, folding opposite to the adjoining cyclo­propane methyl substituent, whereas the seven-membered ring of the minor isomer has an almost ideal twist-boat form, inversely folding to the side of the relevant methyl group. The conformational structures of these isomers have been compared with those of the corresponding isomers of the unepoxidized homobenzoquinone.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106002800/hj1087sup1.cif
Contains datablocks global, IIa, IIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106002800/hj1087IIasup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106002800/hj1087IIbsup3.hkl
Contains datablock II

CCDC references: 603211; 603212

Comment top

Conformationally, 10,11-dihydro-5H-dibenzo[a,d]cycloheptene and its derivatives have received considerable pharmacological attention in view of their potential as a suitable subunit for drug-receptor concave–convex interaction (Burger, 1983). In our previous paper, we reported that the reaction of 5-diazo-10,11-dihydro-5H-dibenzo[a,d]cycloheptene and 2,5-dimethyl-1, 4-benzoquinone gave the corresponding spirohomobenzoquinone (Ia) via the conformationally locked nitrogen release of the primary adduct pyrazoline (Oshima & Nagai, 1994). Compound (Ia) was found to tranform to the more stable conformer (Ib) at 373 K by way of a complete one-way conformational inversion of the spiro-linked 10,11-dihydro-5H-dibenzo[a,d]cycloheptene moiety (Oshima et al. 1999). We also found that the epoxidation of these conformers (Ia) and (Ib) proceeded without any conformational inversion to give the corresponding epoxides (IIa) and (IIb), respectively, but that thermal equilibration was attained at 373 K in CDCl3 in preference of (IIb) (96%, by 1H NMR) (Asahara, Koizumi & Oshima, unpublished results).

In this paper, we describe the conformational details of these two isomers, (IIa) and (IIb), as determined by X-ray crystallography and compare them with the parent unepoxidized conformers (Ia) and (Ib).

As shown in Fig. 1(a), the dibenzo-fused cycloheptene ring in (IIa) adopts a fairly twisted boat conformation, folding opposite to the cyclopropane CH3 substituent in analogy with (Ia), but the dihedral angle [θ = 33.1 (4)°] of the –CH2—CH2– bridge and the intramolecular bond angle [ω =108.9 (2)°] centered at the spiro-C atom are larger than the corresponding values for (Ia) [27.3 (3) and 107.8 (2)°, respectively]. On the other hand, as shown in Fig. 1(b), the conformationally inverted (IIb) adopts a more highly twisted boat conformation, with θ = 63.6 (3)° and ω = 113 (2)°; the corresponding angles for (Ib) are 55.5 (9) and 111.3 (7)°. It was also found that ω is well correlated with θ, probably because of the constrained dibenzo fusion, i.e. ω = 0.133θ + 104 (n = 4 and R = 0.99, where n and R are the number of data points and the correlation coefficient, respectively).

We also compared these angles θ and ω with the corresponding crystalline values [57.9 (2) and 114.6 (2)°] for the least strained pristine 10,11-dihydro-5H-dibenzo[a,d]cycloheptene, (III) (Reboul & Cristau, 1981). The less stable conformers (Ia) and (IIa) possess the considerably smaller θ values than the ideal gauche angle, while the stable isomers (Ib) and (IIb) as well as (III) adopt substantially the gauche conformations for the –CH2—CH2– bridge.

A perusal of the X-ray structure of (IIa) indicates that several atoms of the dibenzo-fused seven-membered ring occupy crowded positions almost touching the underlying quinone component, as represented by the very short spatial distances between C8 and H20 (2.72 Å), O1 and H16 (2.75 Å), and O1 and H14 (2.87 Å). These unfavorable non-bonding interactions may be taken as a driving force for the conformational isomerization. However, such a van der Waals contact was also observed for the stable (IIb), in particular, between the ethano-bridge H14 atom and the facing carbonyl O2 atom (2.44 Å), appreciably raising the strain energy of (IIb).

With respect to the structure of the quinone frame, (IIb) is especially characterized by being almost planar, as shown by the dihedral angles of 177.8 (2) and −176.1 (2)° for the bond linkages O2—C4—C3—C2 and O1—C7—C2—C3, respectively, whereas the other conformers (Ia), (Ib) and (IIa) adopt slightly folded (12–22°) boat conformations, as indicated by the corresponding angles of 157.7 (3) and −163.5 (3)° for (Ia), 164.0 (14) and −168.2 (13)° for (Ib), and 163.8 (3) and −164.4 (3)° for (IIa), respectively. Of further interest is the fact that the C atoms of the oxirane rings of (IIa) and (IIb) are almost planar, as indicated by the angles of 355° or more when we add the three angles made by the substituents of the oxirane ring and another carbon center. Such a geometrical planarity of oxirane C atoms is commonly known for most of the oxirane derivatives compiled in the Cambridge Structural Database (Version 5.22 of January 2002; Allen, 2002) (Oki et al., 2003).

Experimental top

Samples of (IIa) and (IIb) were synthesized by epoxidation of the parent compounds (Ia) and (Ib), respectively, and were recrystallized from a mixture of pentane and tert-butyl methyl ether (10:1). Compound (IIa): m.p. 456.3–457.9 K; 1H (CDCl3): δ 0.77 (3H, s), 1.60 (3H, s), 2.44 (1H, s), 2.73–2.97 (2H, m), 3.00 (1H, s), 3.30–3.40 (1H, m), 4.08–4.17(1H, m), 6.95–6.99 (2H, m), 7.00–7.26 (6H, m); 13C (CDCl3): δ 13.4, 18.5, 29.8, 31.6, 38.0, 44.9, 48.1, 59.7, 60.6, 125.8, 126.3, 126.5, 126.9, 128.1, 128.1, 130.2, 132.2, 134.9, 138.6, 139.2, 140.4, 197.4, 201.0. Compound (IIb): m.p. 425.4–426.3 K; 1H (CDCl3): δ 1.21 (3H, s), 1.34 (3H, s), 2.71–2.95 (2H, m), 2.73 (1H, s), 2.97 (1H, s), 3.41–3.67 (2H, m), 7.0–7.37 (8H, m); 13C (CDCl3): δ 14.6, 16.3, 30.3, 32.2, 37.9, 39.5, 48.8, 60.1, 61.0, 126.1, 126.2, 126.8, 127.2, 128.2, 128.7, 130.2, 131.7, 135.5, 136.9, 138.4, 141.0, 199.0, 199.4.

Refinement top

H atoms bonded to C atoms were placed in geometrically idealized positions, with C—H distances of 0.95–0.98 Å, and refined as riding atoms, with Uiso(H) values of 1.2Ueq(C).

Computing details top

For both compounds, data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO. Data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2000) for (IIa); TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2000 for (IIb). For both compounds, program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of isomer (IIa), with the atomic numbering scheme. Displacement ellipsoids are plotted at the 35% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of isomer (IIb), with the atomic numbering scheme. Displacement ellipsoids are plotted at the 35% probability level. H atoms are drawn as spheres of arbitrary radii.
(IIa) 1',5'-dimethylspiro[10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5,8'- 4'-oxatricyclo[5.1.0.03,5]octane]-2',6'-dione top
Crystal data top
C23H20O3Dx = 1.311 Mg m3
Mr = 344.41Melting point = 183.1–184.7 K
Monoclinic, P21/aMo Kα radiation, λ = 0.7107 Å
a = 12.517 (1) ÅCell parameters from 15836 reflections
b = 10.206 (1) Åθ = 2.7–27.5°
c = 14.704 (2) ŵ = 0.09 mm1
β = 111.747 (7)°T = 223 K
V = 1744.7 (4) Å3Platelet, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
2584 reflections with F2 > 2σ(F2)
Detector resolution: 8.00 pixels mm-1Rint = 0.081
ω scansθmax = 27.5°
Absorption correction: multi-scan
(Higashi, 1995)
h = 1616
Tmin = 0.974, Tmax = 0.991k = 1313
13852 measured reflectionsl = 1919
3922 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.086 w = 1/(σ2(Fo2) + {0.05[Max(Fo2,0) + 2Fc2]/3}2)
wR(F2) = 0.188(Δ/σ)max = 0.007
S = 1.96Δρmax = 0.60 e Å3
3922 reflectionsΔρmin = 0.46 e Å3
235 parameters
Crystal data top
C23H20O3V = 1744.7 (4) Å3
Mr = 344.41Z = 4
Monoclinic, P21/aMo Kα radiation
a = 12.517 (1) ŵ = 0.09 mm1
b = 10.206 (1) ÅT = 223 K
c = 14.704 (2) Å0.30 × 0.20 × 0.10 mm
β = 111.747 (7)°
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
3922 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
2584 reflections with F2 > 2σ(F2)
Tmin = 0.974, Tmax = 0.991Rint = 0.081
13852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.086235 parameters
wR(F2) = 0.188H-atom parameters constrained
S = 1.96Δρmax = 0.60 e Å3
3922 reflectionsΔρmin = 0.46 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2400 (2)0.4268 (2)0.5602 (2)0.0620 (8)
O20.3936 (2)0.5743 (2)0.9365 (2)0.0448 (7)
O30.2593 (2)0.6545 (2)0.7128 (2)0.0459 (7)
C10.3681 (3)0.6727 (3)0.6012 (2)0.049 (1)
C20.3369 (2)0.5921 (3)0.6732 (2)0.0338 (8)
C30.3773 (2)0.6275 (3)0.7771 (2)0.0335 (8)
C40.3842 (2)0.5312 (3)0.8560 (2)0.0322 (8)
C50.3721 (2)0.3884 (3)0.8334 (2)0.0295 (7)
C60.3228 (2)0.3541 (3)0.7235 (2)0.0317 (7)
C70.2963 (2)0.4533 (3)0.6453 (2)0.0387 (8)
C80.3285 (2)0.3082 (3)0.8990 (2)0.0409 (9)
C90.4498 (2)0.3263 (3)0.7858 (2)0.0267 (7)
C100.5424 (2)0.4046 (2)0.7675 (2)0.0264 (7)
C110.6123 (2)0.4896 (3)0.8400 (2)0.0317 (7)
C120.7003 (2)0.5597 (3)0.8267 (3)0.0408 (9)
C130.7214 (3)0.5423 (3)0.7423 (3)0.047 (1)
C140.6556 (3)0.4545 (3)0.6719 (3)0.0416 (9)
C150.5666 (2)0.3825 (3)0.6826 (2)0.0325 (8)
C160.5057 (3)0.2854 (3)0.6012 (2)0.0434 (9)
C170.4396 (3)0.1678 (3)0.6215 (2)0.0443 (9)
C180.4885 (2)0.1111 (3)0.7233 (2)0.0357 (8)
C190.5367 (2)0.0144 (3)0.7406 (3)0.0466 (10)
C200.5802 (3)0.0676 (3)0.8330 (3)0.051 (1)
C210.5789 (2)0.0046 (3)0.9135 (3)0.0465 (10)
C220.5340 (2)0.1318 (3)0.8979 (2)0.0371 (8)
C230.4880 (2)0.1846 (3)0.8041 (2)0.0294 (7)
H10.41990.62390.57940.0597*
H20.30120.69310.54630.0597*
H30.40540.75120.63130.0597*
H40.42760.70150.79650.0398*
H50.27430.27800.70760.0381*
H60.37970.31630.96600.0512*
H70.32310.21780.88150.0512*
H80.25410.33820.89410.0512*
H90.59850.49930.90050.0386*
H100.74810.61960.87710.0492*
H110.78340.59110.73370.0552*
H120.67130.44370.61270.0524*
H130.56110.24920.57820.0524*
H140.45060.33420.54820.0524*
H150.43540.09980.57510.0514*
H160.36180.19600.60910.0514*
H170.53810.06480.68520.0566*
H180.61220.15450.84280.0601*
H190.61040.03150.98030.0567*
H200.53530.18480.95320.0455*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.075 (2)0.049 (1)0.036 (1)0.001 (1)0.010 (1)0.005 (1)
O20.058 (1)0.043 (1)0.038 (1)0.004 (1)0.023 (1)0.005 (1)
O30.043 (1)0.039 (1)0.054 (2)0.0074 (9)0.016 (1)0.002 (1)
C10.065 (2)0.044 (2)0.037 (2)0.001 (2)0.017 (2)0.011 (2)
C20.035 (1)0.030 (2)0.032 (2)0.005 (1)0.008 (1)0.002 (1)
C30.032 (1)0.026 (1)0.042 (2)0.002 (1)0.013 (1)0.000 (1)
C40.031 (1)0.033 (2)0.034 (2)0.001 (1)0.012 (1)0.002 (1)
C50.027 (1)0.030 (1)0.033 (2)0.000 (1)0.012 (1)0.003 (1)
C60.024 (1)0.023 (1)0.045 (2)0.003 (1)0.010 (1)0.003 (1)
C70.034 (1)0.037 (2)0.037 (2)0.003 (1)0.004 (1)0.005 (1)
C80.038 (2)0.039 (2)0.055 (2)0.002 (1)0.029 (1)0.004 (2)
C90.025 (1)0.024 (1)0.030 (2)0.0010 (10)0.009 (1)0.001 (1)
C100.028 (1)0.021 (1)0.030 (2)0.0045 (10)0.010 (1)0.006 (1)
C110.030 (1)0.031 (2)0.032 (2)0.000 (1)0.010 (1)0.000 (1)
C120.036 (2)0.029 (2)0.059 (2)0.004 (1)0.019 (1)0.003 (2)
C130.044 (2)0.032 (2)0.077 (3)0.003 (1)0.036 (2)0.005 (2)
C140.054 (2)0.034 (2)0.052 (2)0.006 (1)0.037 (2)0.010 (2)
C150.036 (1)0.029 (1)0.032 (2)0.007 (1)0.013 (1)0.003 (1)
C160.052 (2)0.048 (2)0.032 (2)0.007 (2)0.017 (1)0.001 (2)
C170.048 (2)0.043 (2)0.041 (2)0.003 (1)0.015 (1)0.020 (2)
C180.030 (1)0.027 (2)0.050 (2)0.004 (1)0.015 (1)0.006 (1)
C190.043 (2)0.028 (2)0.073 (3)0.004 (1)0.026 (2)0.010 (2)
C200.041 (2)0.027 (2)0.091 (3)0.004 (1)0.032 (2)0.008 (2)
C210.035 (2)0.040 (2)0.067 (3)0.006 (1)0.021 (2)0.024 (2)
C220.030 (1)0.035 (2)0.048 (2)0.000 (1)0.017 (1)0.008 (2)
C230.023 (1)0.025 (1)0.041 (2)0.002 (1)0.014 (1)0.002 (1)
Geometric parameters (Å, º) top
O1—C71.218 (4)C11—C121.388 (4)
O2—C41.227 (4)C11—H90.971
O3—C21.451 (4)C12—C131.372 (6)
O3—C31.454 (3)C12—H100.976
C1—C21.503 (5)C13—C141.386 (4)
C1—H10.962C13—H110.969
C1—H20.945C14—C151.391 (5)
C1—H30.950C14—H120.966
C2—C31.465 (4)C15—C161.524 (4)
C2—C71.510 (4)C16—C171.548 (5)
C3—C41.497 (4)C16—H130.951
C3—H40.957C16—H140.965
C4—C51.490 (4)C17—C181.507 (4)
C5—C61.541 (4)C17—H150.961
C5—C81.513 (5)C17—H160.966
C5—C91.531 (4)C18—C191.399 (4)
C6—C71.475 (4)C18—C231.408 (5)
C6—C91.539 (3)C19—C201.375 (6)
C6—H50.960C19—H170.970
C8—H60.960C20—C211.399 (6)
C8—H70.953C20—H180.961
C8—H80.957C21—C221.400 (4)
C9—C101.512 (4)C21—H190.984
C9—C231.516 (4)C22—C231.391 (4)
C10—C111.401 (4)C22—H200.971
C10—C151.408 (5)
O1···C1i3.436 (4)O3···C13iii3.184 (4)
O2···O2ii3.032 (4)O3···C19iv3.290 (4)
O2···C11ii3.377 (4)O3···C20iv3.446 (5)
O2···C4ii3.452 (3)O3···C12iii3.574 (4)
O2···C5ii3.583 (3)
C2—O3—C360.6 (2)C9—C10—C11119.7 (3)
C2—C1—H1109.6C9—C10—C15120.3 (2)
C2—C1—H2110.0C11—C10—C15119.7 (3)
C2—C1—H3110.1C10—C11—C12121.1 (3)
H1—C1—H2108.9C10—C11—H9119.2
H1—C1—H3108.4C12—C11—H9119.7
H2—C1—H3109.8C11—C12—C13119.3 (3)
O3—C2—C1115.4 (2)C11—C12—H10120.8
O3—C2—C359.8 (2)C13—C12—H10119.9
O3—C2—C7108.3 (2)C12—C13—C14119.9 (3)
C1—C2—C3121.4 (2)C12—C13—H11118.9
C1—C2—C7118.1 (3)C14—C13—H11121.2
C3—C2—C7117.8 (3)C13—C14—C15122.4 (4)
O3—C3—C259.6 (2)C13—C14—H12118.9
O3—C3—C4112.5 (2)C15—C14—H12118.7
O3—C3—H4116.2C10—C15—C14117.4 (3)
C2—C3—C4123.0 (2)C10—C15—C16126.2 (3)
C2—C3—H4116.0C14—C15—C16116.4 (3)
C4—C3—H4116.4C15—C16—C17120.1 (3)
O2—C4—C3118.0 (3)C15—C16—H13108.2
O2—C4—C5122.1 (3)C15—C16—H14107.4
C3—C4—C5119.8 (3)C17—C16—H13106.3
C4—C5—C6115.1 (2)C17—C16—H14106.4
C4—C5—C8114.7 (3)H13—C16—H14108.1
C4—C5—C9118.5 (3)C16—C17—C18116.1 (2)
C6—C5—C8116.5 (2)C16—C17—H15108.4
C6—C5—C960.1 (2)C16—C17—H16107.8
C8—C5—C9120.5 (2)C18—C17—H15108.8
C5—C6—C7123.3 (2)C18—C17—H16108.2
C5—C6—C959.6 (2)H15—C17—H16107.2
C5—C6—H5114.3C17—C18—C19121.5 (3)
C7—C6—C9118.4 (2)C17—C18—C23120.5 (3)
C7—C6—H5115.2C19—C18—C23118.0 (3)
C9—C6—H5114.6C18—C19—C20121.9 (4)
O1—C7—C2119.7 (3)C18—C19—H17118.3
O1—C7—C6121.8 (3)C20—C19—H17119.8
C2—C7—C6118.4 (2)C19—C20—C21120.2 (3)
C5—C8—H6110.3C19—C20—H18120.2
C5—C8—H7111.0C21—C20—H18119.6
C5—C8—H8110.4C20—C21—C22118.7 (3)
H6—C8—H7108.4C20—C21—H19121.4
H6—C8—H8108.1C22—C21—H19119.9
H7—C8—H8108.6C21—C22—C23121.0 (3)
C5—C9—C660.3 (2)C21—C22—H20119.9
C5—C9—C10121.4 (2)C23—C22—H20119.1
C5—C9—C23121.8 (3)C9—C23—C18117.3 (3)
C6—C9—C10119.2 (2)C9—C23—C22122.2 (3)
C6—C9—C23118.0 (2)C18—C23—C22120.1 (3)
C10—C9—C23108.9 (2)
O1—C7—C2—O399.5 (4)C6—C9—C10—C11114.4 (3)
O1—C7—C2—C134.0 (4)C6—C9—C10—C1572.2 (3)
O1—C7—C2—C3164.4 (3)C6—C9—C23—C1868.1 (4)
O1—C7—C6—C5167.4 (3)C6—C9—C23—C22119.5 (3)
O1—C7—C6—C9122.1 (3)C7—C6—C5—C8142.6 (3)
O2—C4—C3—O396.4 (3)C7—C6—C5—C9105.9 (3)
O2—C4—C3—C2163.8 (3)C7—C6—C9—C102.3 (4)
O2—C4—C5—C6161.0 (3)C7—C6—C9—C23133.5 (3)
O2—C4—C5—C821.7 (3)C8—C5—C6—C9111.6 (3)
O2—C4—C5—C9130.7 (3)C8—C5—C9—C10147.0 (2)
O3—C2—C3—C498.5 (3)C8—C5—C9—C231.4 (3)
O3—C2—C7—C678.2 (3)C9—C10—C11—C12177.9 (2)
O3—C3—C2—C1103.1 (3)C9—C10—C15—C14177.8 (2)
O3—C3—C2—C795.9 (3)C9—C10—C15—C161.3 (4)
O3—C3—C4—C579.6 (3)C9—C23—C18—C177.0 (4)
C1—C2—O3—C3113.0 (3)C9—C23—C18—C19172.2 (3)
C1—C2—C3—C4158.4 (3)C9—C23—C22—C21173.7 (3)
C1—C2—C7—C6148.2 (3)C10—C9—C23—C1871.9 (3)
C2—O3—C3—C4116.1 (3)C10—C9—C23—C22100.5 (3)
C2—C3—C4—C512.3 (4)C10—C11—C12—C131.9 (4)
C2—C7—C6—C510.3 (4)C10—C15—C14—C131.9 (4)
C2—C7—C6—C960.2 (4)C10—C15—C16—C1721.6 (4)
C3—O3—C2—C7112.1 (3)C11—C10—C9—C23106.2 (3)
C3—C2—C7—C613.4 (4)C11—C10—C15—C144.4 (4)
C3—C4—C5—C614.9 (4)C11—C10—C15—C16174.7 (3)
C3—C4—C5—C8154.2 (2)C11—C12—C13—C140.6 (4)
C3—C4—C5—C953.3 (3)C12—C11—C10—C154.5 (4)
C4—C3—C2—C72.5 (4)C12—C13—C14—C150.6 (4)
C4—C5—C6—C74.0 (4)C13—C14—C15—C16177.3 (3)
C4—C5—C6—C9109.8 (3)C14—C15—C16—C17157.5 (3)
C4—C5—C9—C6104.2 (3)C15—C10—C9—C2367.2 (3)
C4—C5—C9—C103.8 (3)C15—C16—C17—C1833.1 (4)
C4—C5—C9—C23149.4 (2)C16—C17—C18—C19112.2 (3)
C5—C6—C9—C10111.7 (3)C16—C17—C18—C2367.0 (4)
C5—C6—C9—C23112.5 (3)C17—C18—C19—C20179.1 (3)
C5—C9—C6—C7114.0 (3)C17—C18—C23—C22179.6 (3)
C5—C9—C10—C1143.3 (3)C18—C19—C20—C211.0 (5)
C5—C9—C10—C15143.3 (2)C18—C23—C22—C211.6 (4)
C5—C9—C23—C18138.8 (3)C19—C18—C23—C220.3 (4)
C5—C9—C23—C2248.9 (3)C19—C20—C21—C220.8 (5)
C6—C5—C9—C10108.0 (3)C20—C19—C18—C231.6 (5)
C6—C5—C9—C23106.4 (2)C20—C21—C22—C232.1 (4)
C6—C9—C5—C8105.0 (2)C20—C21—C22—C232.1 (4)
Symmetry codes: (i) x1/2, y+1/2, z1; (ii) x1, y1, z2; (iii) x+1/2, y3/2, z; (iv) x+1/2, y1/2, z.
(IIb) top
Crystal data top
C23H20O3Melting point = 152.2–153.1 K
Mr = 344.41Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, PbcaCell parameters from 38732 reflections
a = 9.4653 (3) Åθ = 1.6–27.5°
b = 14.6974 (4) ŵ = 0.09 mm1
c = 25.3890 (9) ÅT = 213 K
V = 3532.0 (2) Å3Platelet, colorless
Z = 80.30 × 0.30 × 0.10 mm
Dx = 1.295 Mg m3
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
2670 reflections with F2 > 2.0σ(F2)
Detector resolution: 8.00 pixels mm-1Rint = 0.085
ω scansθmax = 27.4°
Absorption correction: multi-scan
(Higashi, 1995)
h = 1212
Tmin = 0.974, Tmax = 0.992k = 1916
26252 measured reflectionsl = 3232
3955 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.077 w = 1/[σ2(Fo2) + (0.05000(Max(Fo2,0) + 2Fc2)/3)2]
wR(F2) = 0.176(Δ/σ)max = 0.008
S = 1.90Δρmax = 0.54 e Å3
3955 reflectionsΔρmin = 0.45 e Å3
235 parameters
Crystal data top
C23H20O3V = 3532.0 (2) Å3
Mr = 344.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.4653 (3) ŵ = 0.09 mm1
b = 14.6974 (4) ÅT = 213 K
c = 25.3890 (9) Å0.30 × 0.30 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
3955 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
2670 reflections with F2 > 2.0σ(F2)
Tmin = 0.974, Tmax = 0.992Rint = 0.085
26252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.077235 parameters
wR(F2) = 0.176H-atom parameters constrained
S = 1.90Δρmax = 0.54 e Å3
3955 reflectionsΔρmin = 0.45 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6459 (2)0.0325 (1)0.04870 (8)0.0353 (6)
O20.3140 (2)0.0376 (1)0.21843 (8)0.0312 (5)
O30.6056 (2)0.0913 (1)0.15553 (8)0.0319 (5)
C10.7844 (3)0.0335 (2)0.1481 (1)0.0372 (9)
C20.6357 (3)0.0025 (2)0.1403 (1)0.0246 (7)
C30.5413 (3)0.0170 (2)0.1847 (1)0.0246 (7)
C40.3845 (3)0.0178 (2)0.1799 (1)0.0224 (7)
C50.3176 (3)0.0019 (1)0.1273 (1)0.0200 (6)
C60.4138 (3)0.0210 (2)0.0821 (1)0.0198 (6)
C70.5697 (3)0.0209 (2)0.0868 (1)0.0243 (7)
C80.1849 (3)0.0564 (2)0.1168 (1)0.0302 (8)
C90.3270 (2)0.0978 (2)0.1068 (1)0.0176 (6)
C100.4003 (3)0.1686 (1)0.1406 (1)0.0178 (6)
C110.5259 (3)0.2098 (2)0.1254 (1)0.0226 (7)
C120.5885 (3)0.2760 (2)0.1563 (1)0.0277 (7)
C130.5242 (3)0.3032 (2)0.2025 (1)0.0311 (8)
C140.3967 (3)0.2648 (2)0.2172 (1)0.0268 (7)
C150.3327 (3)0.1977 (2)0.1867 (1)0.0216 (6)
C160.1862 (3)0.1642 (2)0.1985 (1)0.0253 (7)
C170.0798 (3)0.2058 (2)0.1608 (1)0.0262 (7)
C180.0918 (3)0.1841 (2)0.1023 (1)0.0237 (7)
C190.0192 (3)0.2169 (2)0.0709 (1)0.0365 (9)
C200.0256 (3)0.2029 (2)0.0175 (1)0.0426 (9)
C210.0826 (4)0.1559 (2)0.0072 (1)0.0377 (9)
C220.1952 (3)0.1237 (2)0.0223 (1)0.0264 (7)
C230.2013 (3)0.1354 (2)0.0770 (1)0.0204 (6)
H10.79370.09550.13720.0469*
H20.80980.02900.18430.0469*
H30.84770.00280.12780.0469*
H40.57890.00510.21940.0297*
H50.37960.00110.04840.0231*
H60.11510.04150.14260.0374*
H70.14930.04280.08290.0374*
H80.20500.11980.11910.0374*
H90.56950.19140.09250.0275*
H100.67680.30320.14560.0337*
H110.56720.34840.22440.0380*
H120.35060.28490.24950.0344*
H130.16190.18070.23400.0305*
H140.18310.09960.19560.0305*
H150.08630.27030.16430.0304*
H160.01230.18700.17190.0304*
H170.09480.24930.08810.0438*
H180.10420.22590.00290.0500*
H190.07870.14520.04410.0435*
H200.27080.09220.00450.0321*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.027 (1)0.045 (1)0.033 (1)0.0003 (9)0.009 (1)0.0073 (10)
O20.033 (1)0.0295 (10)0.031 (1)0.0044 (8)0.004 (1)0.0102 (9)
O30.0249 (10)0.0199 (8)0.051 (1)0.0030 (7)0.001 (1)0.0028 (9)
C10.024 (1)0.038 (2)0.050 (2)0.003 (1)0.009 (2)0.006 (1)
C20.020 (1)0.016 (1)0.038 (2)0.0022 (10)0.005 (1)0.001 (1)
C30.026 (1)0.022 (1)0.025 (2)0.001 (1)0.004 (1)0.004 (1)
C40.027 (1)0.015 (1)0.025 (2)0.0009 (10)0.000 (1)0.002 (1)
C50.019 (1)0.016 (1)0.026 (2)0.0012 (9)0.001 (1)0.000 (1)
C60.021 (1)0.020 (1)0.018 (1)0.0009 (10)0.002 (1)0.002 (1)
C70.024 (1)0.022 (1)0.027 (2)0.004 (1)0.003 (1)0.004 (1)
C80.026 (1)0.022 (1)0.043 (2)0.005 (1)0.006 (1)0.002 (1)
C90.016 (1)0.019 (1)0.017 (1)0.0006 (9)0.002 (1)0.001 (1)
C100.018 (1)0.016 (1)0.020 (1)0.0022 (9)0.003 (1)0.0019 (10)
C110.022 (1)0.020 (1)0.026 (2)0.0032 (10)0.000 (1)0.003 (1)
C120.024 (1)0.019 (1)0.041 (2)0.003 (1)0.008 (1)0.002 (1)
C130.037 (2)0.019 (1)0.037 (2)0.003 (1)0.020 (2)0.006 (1)
C140.035 (2)0.022 (1)0.023 (1)0.010 (1)0.006 (1)0.003 (1)
C150.023 (1)0.020 (1)0.021 (1)0.0075 (10)0.003 (1)0.000 (1)
C160.028 (1)0.022 (1)0.025 (2)0.006 (1)0.006 (1)0.004 (1)
C170.019 (1)0.026 (1)0.034 (2)0.002 (1)0.003 (1)0.005 (1)
C180.020 (1)0.020 (1)0.032 (2)0.0015 (10)0.001 (1)0.002 (1)
C190.027 (1)0.034 (1)0.048 (2)0.010 (1)0.000 (2)0.003 (1)
C200.036 (2)0.045 (2)0.047 (2)0.012 (1)0.013 (2)0.010 (2)
C210.045 (2)0.040 (2)0.028 (2)0.006 (1)0.011 (2)0.005 (1)
C220.025 (1)0.027 (1)0.027 (2)0.004 (1)0.002 (1)0.001 (1)
C230.021 (1)0.016 (1)0.025 (2)0.0012 (9)0.003 (1)0.001 (1)
Geometric parameters (Å, º) top
O1—C71.218 (4)C11—C121.384 (4)
O2—C41.220 (3)C11—H90.970
O3—C21.460 (3)C12—C131.379 (4)
O3—C31.452 (3)C12—H100.966
C1—C21.492 (4)C13—C141.384 (4)
C1—H10.957C13—H110.958
C1—H20.952C14—C151.393 (4)
C1—H30.954C14—H120.975
C2—C31.466 (4)C15—C161.502 (4)
C2—C71.521 (4)C16—C171.518 (4)
C3—C41.490 (4)C16—H130.961
C3—H40.967C16—H140.952
C4—C51.495 (4)C17—C181.524 (4)
C5—C61.503 (4)C17—H150.954
C5—C81.514 (4)C17—H160.957
C5—C91.557 (3)C18—C191.404 (4)
C6—C71.480 (4)C18—C231.413 (4)
C6—C91.530 (3)C19—C201.374 (5)
C6—H50.961C19—H170.963
C8—H60.956C20—C211.385 (5)
C8—H70.946C20—H180.966
C8—H80.954C21—C221.385 (4)
C9—C101.517 (3)C21—H190.950
C9—C231.515 (4)C22—C231.401 (4)
C10—C111.390 (4)C22—H200.965
C10—C151.400 (4)
O3···C17i3.462 (3)O2···C14i3.523 (3)
O3···C12ii3.491 (3)O2···C1v3.557 (4)
O1···C22iii3.284 (3)O2···C3v3.578 (3)
O1···C6iii3.460 (3)C8···C13i3.593 (4)
O2···C13iv3.444 (3)C13···C16vi3.585 (4)
C2—O3—C360.4 (2)C9—C10—C11122.1 (2)
C2—C1—H1109.8C9—C10—C15118.3 (2)
C2—C1—H2110.2C11—C10—C15119.4 (2)
C2—C1—H3110.5C10—C11—C12120.9 (2)
H1—C1—H2108.7C10—C11—H9118.9
H1—C1—H3108.5C12—C11—H9120.1
H2—C1—H3109.0C11—C12—C13119.8 (2)
O3—C2—C1115.9 (2)C11—C12—H10120.1
O3—C2—C359.5 (2)C13—C12—H10120.1
O3—C2—C7108.9 (2)C12—C13—C14119.8 (3)
C1—C2—C3122.2 (3)C12—C13—H11120.6
C1—C2—C7116.9 (2)C14—C13—H11119.7
C3—C2—C7118.1 (2)C13—C14—C15121.2 (3)
O3—C3—C260.1 (2)C13—C14—H12119.6
O3—C3—C4111.7 (2)C15—C14—H12119.2
O3—C3—H4116.5C10—C15—C14118.8 (2)
C2—C3—C4123.1 (2)C10—C15—C16119.2 (2)
C2—C3—H4116.1C14—C15—C16121.6 (2)
C4—C3—H4116.3C15—C16—C17110.8 (2)
O2—C4—C3118.8 (2)C15—C16—H13108.9
O2—C4—C5121.5 (2)C15—C16—H14109.9
C3—C4—C5119.6 (2)C17—C16—H13109.3
C4—C5—C6117.4 (2)C17—C16—H14109.5
C4—C5—C8115.2 (2)H13—C16—H14108.4
C4—C5—C9114.9 (2)C16—C17—C18118.7 (2)
C6—C5—C8119.1 (2)C16—C17—H15107.4
C6—C5—C960.0 (2)C16—C17—H16107.6
C8—C5—C9119.1 (2)C18—C17—H15107.2
C5—C6—C7122.9 (2)C18—C17—H16107.1
C5—C6—C961.8 (2)H15—C17—H16108.5
C5—C6—H5114.1C17—C18—C19115.2 (2)
C7—C6—C9120.2 (2)C17—C18—C23127.1 (2)
C7—C6—H5114.0C19—C18—C23117.7 (3)
C9—C6—H5114.1C18—C19—C20122.8 (3)
O1—C7—C2119.4 (2)C18—C19—H17118.0
O1—C7—C6121.8 (3)C20—C19—H17119.2
C2—C7—C6118.8 (2)C19—C20—C21119.2 (3)
C5—C8—H6109.4C19—C20—H18120.7
C5—C8—H7110.1C21—C20—H18120.1
C5—C8—H8109.9C20—C21—C22119.7 (3)
H6—C8—H7109.3C20—C21—H19120.0
H6—C8—H8108.6C22—C21—H19120.3
H7—C8—H8109.5C21—C22—C23121.7 (3)
C5—C9—C658.2 (2)C21—C22—H20118.8
C5—C9—C10118.8 (2)C23—C22—H20119.6
C5—C9—C23117.7 (2)C9—C23—C18122.3 (2)
C6—C9—C10119.5 (2)C9—C23—C22118.8 (2)
C6—C9—C23119.1 (2)C18—C23—C22118.8 (2)
C10—C9—C23113.0 (2)
O3—C2—C3—C497.7 (3)C6—C9—C10—C1145.7 (3)
O3—C2—C7—O1111.3 (3)C6—C9—C10—C15139.1 (2)
O3—C2—C7—C666.7 (3)C6—C9—C23—C18159.8 (2)
O3—C3—C2—C1103.2 (3)C6—C9—C23—C2221.9 (3)
O3—C3—C2—C796.4 (2)C7—C6—C5—C8141.8 (2)
O3—C3—C4—O2110.2 (3)C7—C6—C5—C9109.5 (2)
O3—C3—C4—C565.0 (3)C7—C6—C9—C106.0 (3)
O1—C7—C2—C122.4 (3)C7—C6—C9—C23140.1 (2)
O1—C7—C2—C3176.1 (2)C8—C5—C6—C9108.7 (2)
O1—C7—C6—C5174.1 (2)C8—C5—C9—C10142.5 (2)
O1—C7—C6—C9111.9 (3)C8—C5—C9—C230.1 (4)
O2—C4—C3—C2177.8 (2)C9—C10—C11—C12178.2 (2)
O2—C4—C5—C6179.3 (2)C9—C10—C15—C14178.0 (2)
O2—C4—C5—C831.1 (3)C9—C10—C15—C165.2 (3)
O2—C4—C5—C9113.1 (3)C9—C23—C18—C170.5 (4)
C1—C2—O3—C3113.7 (3)C9—C23—C18—C19179.3 (2)
C1—C2—C3—C4159.1 (2)C9—C23—C22—C21179.5 (2)
C1—C2—C7—C6159.6 (2)C10—C9—C23—C1852.1 (3)
C2—O3—C3—C4116.7 (3)C10—C9—C23—C22126.2 (2)
C2—C3—C4—C52.6 (3)C10—C11—C12—C131.3 (4)
C2—C7—C6—C53.9 (3)C10—C15—C14—C130.6 (4)
C2—C7—C6—C970.1 (3)C10—C15—C16—C1770.4 (3)
C3—O3—C2—C7112.1 (2)C11—C10—C9—C23102.3 (3)
C3—C2—C7—C61.9 (3)C11—C10—C15—C142.7 (4)
C3—C4—C5—C64.3 (3)C11—C10—C15—C16170.1 (2)
C3—C4—C5—C8143.9 (2)C11—C12—C13—C140.8 (4)
C3—C4—C5—C971.9 (3)C12—C11—C10—C153.1 (4)
C4—C3—C2—C71.3 (3)C12—C13—C14—C151.1 (4)
C4—C5—C6—C75.1 (3)C13—C14—C15—C16172.0 (2)
C4—C5—C6—C9104.4 (2)C14—C15—C16—C17102.2 (3)
C4—C5—C9—C6108.5 (2)C15—C10—C9—C2372.9 (3)
C4—C5—C9—C100.2 (3)C15—C16—C17—C1863.6 (3)
C4—C5—C9—C23142.8 (2)C16—C17—C18—C19173.3 (2)
C5—C6—C9—C10107.6 (2)C16—C17—C18—C236.9 (4)
C5—C6—C9—C23106.4 (2)C17—C18—C19—C20179.6 (3)
C5—C9—C6—C7113.6 (3)C17—C18—C23—C22178.8 (2)
C5—C9—C10—C11113.4 (3)C18—C19—C20—C211.2 (5)
C5—C9—C10—C1571.4 (3)C18—C23—C22—C212.2 (4)
C5—C9—C23—C1892.6 (3)C19—C18—C23—C221.0 (3)
C5—C9—C23—C2289.1 (3)C19—C20—C21—C220.1 (4)
C6—C5—C9—C10108.7 (2)C20—C19—C18—C230.6 (4)
C6—C5—C9—C23108.7 (2)C20—C21—C22—C231.6 (4)
C6—C9—C5—C8108.8 (3)C20—C21—C22—C231.6 (4)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y1/2, z; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2; (v) x1/2, y, z+1/2; (vi) x+1/2, y, z+1/2.

Experimental details

(IIa)(IIb)
Crystal data
Chemical formulaC23H20O3C23H20O3
Mr344.41344.41
Crystal system, space groupMonoclinic, P21/aOrthorhombic, Pbca
Temperature (K)223213
a, b, c (Å)12.517 (1), 10.206 (1), 14.704 (2)9.4653 (3), 14.6974 (4), 25.3890 (9)
α, β, γ (°)90, 111.747 (7), 9090, 90, 90
V3)1744.7 (4)3532.0 (2)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.30 × 0.20 × 0.100.30 × 0.30 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID imaging-plate
diffractometer
Rigaku R-AXIS RAPID imaging-plate
diffractometer
Absorption correctionMulti-scan
(Higashi, 1995)
Multi-scan
(Higashi, 1995)
Tmin, Tmax0.974, 0.9910.974, 0.992
No. of measured, independent and
observed reflections
13852, 3922, 2584 [F2 > 2σ(F2)]26252, 3955, 2670 [F2 > 2.0σ(F2)]
Rint0.0810.085
(sin θ/λ)max1)0.6490.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.188, 1.96 0.077, 0.176, 1.90
No. of reflections39223955
No. of parameters235235
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.460.54, 0.45

Computer programs: PROCESS-AUTO (Rigaku Corporation, 1998), PROCESS-AUTO, TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2000), TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2000, SIR92 (Altomare et al., 1994), TEXSAN.

Selected geometric parameters (Å, º) for (IIa) top
O1—C71.218 (4)C9—C101.512 (4)
O2—C41.227 (4)C9—C231.516 (4)
O3—C21.451 (4)C10—C151.408 (5)
O3—C31.454 (3)C15—C161.524 (4)
C2—C31.465 (4)C16—C171.548 (5)
C5—C61.541 (4)C17—C181.507 (4)
C5—C91.531 (4)C18—C231.408 (5)
C6—C91.539 (3)
C10—C9—C23108.9 (2)
O1—C7—C2—O399.5 (4)C15—C16—C17—C1833.1 (4)
O2—C4—C3—C2163.8 (3)
Selected geometric parameters (Å, º) for (IIb) top
O1—C71.218 (4)C9—C101.517 (3)
O2—C41.220 (3)C9—C231.515 (4)
O3—C21.460 (3)C10—C151.400 (4)
O3—C31.452 (3)C15—C161.502 (4)
C2—C31.466 (4)C16—C171.518 (4)
C5—C61.503 (4)C17—C181.524 (4)
C5—C91.557 (3)C18—C231.413 (4)
C6—C91.530 (3)
C10—C9—C23113.0 (2)
O1—C7—C2—C3176.1 (2)C15—C16—C17—C1863.6 (3)
O2—C4—C3—C2177.8 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds