Download citation
Download citation
link to html
The title compound, [Co(NCS)2(C11H26N4)]2[Zn(NCS)4]·C2H5OH, has two similar cations with the CoIII atom coordinated in a planar fashion by the 13-membered cyclic tetra­amine, in the 1R,4S,7R,10S configuration, and with trans isothio­cyanate ligands. The six-membered chelate ring is in a chair conformation, with one axially and one equatorially oriented methyl substituent [mean Co-N = 1.948 (2) Å]. The `opposite' chelate ring (N4 and N7) is in an eclipsed conformation [mean Co-N = 1.928 (2) Å], and the `side' chelate rings have gauche conformations. The mean Co-NNCS distance is 1.928 (2) Å. Both cations have one Co-N-C group nearly linear and the other appreciably bent, with mean Co-N-C angles of 178.7 (1) and 160.4 (1)°, respectively. The [Zn(NCS)4]2- anion is approximately tetra­hedral, with Zn-N = 1.951 (1)-1.986 (1) Å, N-Zn-N = 104.5 (1)-111.9 (1)° and Zn-N-C = 152.5 (1)-179.4 (1)°. One NH group is hydrogen bonded to the ethanol O atom and the other NH groups are bonded to thio­cyanate S atoms, forming a network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105042940/hj1078sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105042940/hj1078Isup2.hkl
Contains datablock I

CCDC reference: 299629

Comment top

12,12-Dimethyl-1,4,7,10-tetraazacyclotetradecane (L) was prepared by the sequence of reactions shown in the scheme. Reaction of [Ni2(trien)3]Cl2 (trien = 2,6-diazaoctan-1,8-diamine) with 2-methylpropanal (isobutyraldehyde) plus zinc chloride in methanol in a sealed tube at 413 K yields 12,12-dimethyl-1,4,7,10-tetraazacyclotrideca-13-ene)nickel(II) tetrachlorozincate, instead of the anticipated 3,3-dimethyl-4-(isopropyl) compound, apparently by elimination of 2-methylpropene (Curtis & Reader, 1971). The structures of [H(L)]ClO4·H2O (Gladkikh et al., 1997) and [Ni(L)](ClO4)2 (Waters & Whittle, 1972) have been reported.

Reactions of cobalt(II) with L in air yield cobalt(III) compounds of L, isolated with a variety of additional ligands, in cis or trans configurations, depending upon the ligand and conditions (Curtis & Reader, 1972). Compounds were assigned one of three N-atom configurations from PMR [Please define] spectra. Reaction with thiocyanate forms the trans-[Co(L)(NCS)2]+ cation, isolated as the perchlorate and tetrathiocyanatozinc(II) salts; the structure of the title compound, (I), an ethanol solvate of the latter, is now reported. There are currently no structures of cobalt compounds of 13-membered tetraazamacrocycles in the Cambridge Structural Database (Version?; Allen, 2002).

The asymmetric unit of (I) has two trans-[Co(L)(NCS)2]+ cations, including Co1 (L with atoms N1–C13) and Co2 (L with atoms N21–C33), a [Zn(NCS)4]2− anion and an ethanol molecule (Fig. 1). The cations have very similar azamacrocycle conformations but slightly differing orientations of the iso-thiocyanato ligands (see below). The cations have the same 1R,4S,7R,10S configuration (the inversion centre present effects chiral balance). For Co1, this has the NH groups N1—H and N10—H associated with the six-membered chelate ring on the same side of the CoN4 plane as the axial methyl substituent C121, and the groups N4—H and N7—H on the opposite side, with an analogous arrangement for Co2.

For both cations, the Co—Namine distances are longer for the N atoms of the six-membered chelate ring, which has an axially oriented methyl substituent [mean value 1.948 (2) Å], than for the opposite five-membered chelate ring, which has a strained eclipsed conformation [mean value 1.928 (2) Å], with mean Co—NNCS = 1.896 (2) Å (Table 1). For both cations, one iso-thiocyanato group is close to linear and the other is appreciably bent; for Co1, atom S45 (on the side opposite to the axial methyl group C122) is angled towards N1, while for Co2, atom S56 (on the same side as the axial methyl group C222) is angled towards C26.

The N4 groups of both macrocycles are coplanar to within 0.006 (1) Å, with the N4 planes of the two cations inclined at 59.2 (4)°. The six-membered chelate rings have chair conformations (N—Co—N ~97°), with methyl groups C121 and C321 equatorially and C122 and C322 axially oriented. The adjacent five-membered chelate rings have gauche conformations (N—Co—N \sim 89°) and the `opposite' rings have eclipsed conformations (N—Co—N \sim 84°). The same configuration and similar conformations are present for [Ni(L)](ClO4)2 and a similar arrangement is present for [H(L)]ClO4·H2O. The displacements in Å (s.u. 0.002 Å, unless shown) of atoms from the respective N4 planes (the first value is for Co1 and the second is the equivalent value for Co2) are: C1 − 0.015 (1) and −0.022 (1); C2 − 0.302 and −0.380; C3 0.426 and 0.347; C5 0.783 and 0.903; C6 0.810 and 0.792; C8 0.435 and 0.418; C9 − 0.327 and −0.314; C11 − 0.846 and −0.834; C12 − 0.516 and −0.493; C13 − 0.835 and −0.827; C121 − 1.438 (3) and −1.408 (3); C122 0.951 and 0.977.

The tetra(isothiocyanato)zinc(II) anion is approximately tetrahedral, with Zn—N distances in the range 1.951 (1)–1.986 (1) Å, N—Zn—N angles in the range 104.5 (1)–111.9 (1)° and C—N—C angles in the range 152.5 (1)–179.3 (1)°.

An extensive hydrogen-bonding network is present (Table 2). The ethanol atom O40 forms hydrogen bonds with N24—H, while all other N—H groups form hydrogen bonds with thiocyanate S atoms.

Dimensions for related compounds are shown in Table 3. The Co—Namine distances for [Co(L)(NCS)2][Zn(NCS)4]·EtOH are significantly shorter than for the related compounds, which have acyclic or 14-membered tetraazamacrocycle ligands. This shortening can be attributed to the `hole size' effect, with the smaller strain-free cavity of the 13-membered cyclic amine effectively constricting the Co—N distances. Alternatively, and more plausibly, the lower number of metal–ligand and intra–ligand repulsive interactions for the 13-membered cyclic amine permit the Co—N distances to approach more closely their hypothetical strain-free values.

The isothiocyanate groups of these compounds have Co—NNCS—C angles either approximately linear or appreciably bent, although this angle does not correlate with any significant variation in the Co—NNCS distance. Several of the related compounds (including the title compound), have thiocyanate groups of both types. For the title compound, bending of the NCS ion does not correlate with the location of the axial methyl substituent.

Experimental top

The cyclic amine L was prepared as reported by House & Curtis (1964) and Curtis & Reader (1971). [Co(L)(NCS)2]2[Zn(NCS)4]·EtOH was prepared from this and crystallized as reported by Curtis & Reader (1972).

Refinement top

All H atoms were included in calculated positions, using the riding model, with C—H bond lengths ranging from 0.96 to 0.97 Å, N—H bond lengths of 0.91 Å and O—H bond lengths of 0.82 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O). [Please check added text]

Computing details top

Data collection: SMART (Bruker, 1997 or Siemens, 1995?); cell refinement: SMART; data reduction: SAINT (Bruker, 1997 or Siemens, 1995?); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3.2 (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms bonded to C atoms have been omitted for clarity, and H atoms bonded to N or O atoms are shown as circles of arbitrary radii.
trans-(12,12-dimethyl-1,4,7,10- tetraazacyclotetradecane)diisothiocyanatocobalt(III) tetraisothiocyanatozinc(II) ethanol solvate top
Crystal data top
[Co(C11H26N4)(NCS)2]2[Zn(NCS)4]·C2H6OZ = 2
Mr = 1122.66F(000) = 1164
Triclinic, P1Dx = 1.523 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9776 (6) ÅCell parameters from 9916 reflections
b = 14.0647 (8) Åθ = 1.1–32.3°
c = 19.586 (1) ŵ = 1.54 mm1
α = 70.511 (2)°T = 273 K
β = 82.199 (2)°Block, orange
γ = 71.989 (2)°0.6 × 0.4 × 0.4 mm
V = 2462.5 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
14587 independent reflections
Radiation source: fine-focus sealed tube13265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 32.3°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS, Version 2.03; Blessing, 1995)
h = 1214
Tmin = 0.396, Tmax = 0.540k = 1820
51668 measured reflectionsl = 1928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0375P)2 + 1.5995P]
where P = (Fo2 + 2Fc2)/3
14587 reflections(Δ/σ)max = 0.002
547 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Co(C11H26N4)(NCS)2]2[Zn(NCS)4]·C2H6Oγ = 71.989 (2)°
Mr = 1122.66V = 2462.5 (2) Å3
Triclinic, P1Z = 2
a = 9.9776 (6) ÅMo Kα radiation
b = 14.0647 (8) ŵ = 1.54 mm1
c = 19.586 (1) ÅT = 273 K
α = 70.511 (2)°0.6 × 0.4 × 0.4 mm
β = 82.199 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
14587 independent reflections
Absorption correction: multi-scan
(SADABS, Version 2.03; Blessing, 1995)
13265 reflections with I > 2σ(I)
Tmin = 0.396, Tmax = 0.540Rint = 0.024
51668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 0.88Δρmax = 0.82 e Å3
14587 reflectionsΔρmin = 0.61 e Å3
547 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Refinement on F2, with anisotropic parameters for all heavy atoms, with all H-atoms in calculated positions and riding.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.137912 (16)0.014247 (12)0.162938 (8)0.01155 (3)
N10.28379 (10)0.08613 (7)0.14652 (5)0.01282 (17)
H10.29640.09170.19000.015*
C20.41729 (12)0.01227 (9)0.12796 (6)0.0159 (2)
H2A0.49860.03030.13630.019*
H2B0.41980.01640.07740.019*
C30.41910 (12)0.09836 (9)0.17662 (7)0.0168 (2)
H3A0.49870.15010.16340.020*
H3B0.42590.10480.22700.020*
N40.28347 (10)0.11403 (8)0.16524 (5)0.01506 (18)
H40.28990.12220.12060.018*
C50.24140 (14)0.20540 (10)0.21848 (7)0.0208 (2)
H5A0.28310.22280.26460.025*
H5B0.27680.26610.20120.025*
C60.07878 (14)0.17962 (10)0.22916 (7)0.0215 (2)
H6A0.04630.23030.21730.026*
H6B0.05240.18460.27950.026*
N70.00995 (11)0.07103 (8)0.18166 (5)0.01648 (18)
H70.00530.07640.13850.020*
C80.12632 (13)0.01098 (11)0.20814 (7)0.0204 (2)
H8A0.12070.01540.25820.025*
H8B0.20240.03840.20470.025*
C90.15066 (13)0.10247 (10)0.15897 (7)0.0201 (2)
H9A0.16200.10710.10950.024*
H9B0.23510.14760.17500.024*
N100.02356 (10)0.13572 (8)0.16339 (5)0.01527 (18)
H100.02870.14420.20780.018*
C110.01749 (13)0.23785 (9)0.10898 (6)0.0178 (2)
H11A0.10050.29250.11590.021*
H11B0.01980.23330.06080.021*
C120.11520 (13)0.26958 (9)0.11354 (6)0.0159 (2)
C130.25294 (12)0.19439 (9)0.09428 (6)0.0153 (2)
H13A0.24650.19090.04630.018*
H13B0.33070.22280.09280.018*
C1210.12295 (13)0.27975 (9)0.18882 (6)0.0173 (2)
H12A0.12760.21330.22530.026*
H12B0.04050.33190.19800.026*
H12C0.20550.30030.19010.026*
C1220.10087 (16)0.37791 (10)0.05583 (7)0.0249 (3)
H12D0.17970.40240.05770.037*
H12E0.01510.42710.06530.037*
H12F0.09890.37170.00860.037*
N450.12660 (11)0.04410 (8)0.06144 (5)0.01628 (18)
N460.15049 (11)0.01505 (8)0.26437 (5)0.01660 (18)
C450.15770 (12)0.07063 (9)0.00041 (6)0.0149 (2)
C460.15564 (12)0.03257 (9)0.32681 (6)0.0150 (2)
S450.20352 (3)0.11156 (3)0.085760 (16)0.02169 (6)
S460.16002 (4)0.05738 (3)0.413814 (16)0.02376 (7)
Co20.296522 (15)0.337372 (11)0.397686 (8)0.01056 (3)
N210.12868 (10)0.28950 (7)0.43213 (5)0.01266 (17)
H210.08030.32490.46330.015*
C220.04082 (12)0.32705 (9)0.36702 (6)0.0163 (2)
H22A0.05600.32700.38190.020*
H22B0.07710.28120.33710.020*
C230.04763 (13)0.43835 (10)0.32462 (7)0.0186 (2)
H23A0.00070.46300.27910.022*
H23B0.00190.48610.35240.022*
N240.19998 (11)0.43327 (8)0.31113 (5)0.01495 (18)
H240.23300.40500.27440.018*
C250.23736 (13)0.53429 (9)0.29197 (7)0.0185 (2)
H25A0.17460.57910.31830.022*
H25B0.22630.57080.24050.022*
C260.39223 (14)0.51155 (9)0.31151 (7)0.0197 (2)
H26A0.44950.52840.26750.024*
H26B0.39620.55550.33980.024*
N270.44963 (10)0.39765 (8)0.35417 (5)0.01433 (17)
H270.49720.36340.32220.017*
C280.54732 (12)0.37138 (9)0.41344 (6)0.0162 (2)
H28A0.51040.41790.44290.019*
H28B0.63950.37830.39340.019*
C290.55723 (12)0.25774 (9)0.45862 (6)0.0155 (2)
H29A0.60250.21100.43010.019*
H29B0.61270.23770.50080.019*
N300.41043 (10)0.24993 (7)0.48175 (5)0.01254 (17)
H300.38050.28180.51680.015*
C310.40015 (12)0.14024 (9)0.51409 (6)0.0149 (2)
H31A0.45800.10540.55630.018*
H31B0.43770.10240.47920.018*
C320.24780 (12)0.13462 (9)0.53671 (6)0.0149 (2)
C3210.25496 (14)0.01742 (10)0.57083 (7)0.0217 (2)
H32A0.29190.01860.53540.033*
H32B0.16210.01080.58690.033*
H32C0.31540.01300.61140.033*
C3220.18412 (13)0.19230 (10)0.59315 (6)0.0196 (2)
H32D0.24260.16230.63450.029*
H32E0.09110.18510.60800.029*
H32F0.17900.26550.57210.029*
C330.15208 (12)0.17550 (9)0.47137 (6)0.0146 (2)
H33A0.19420.13610.43780.018*
H33B0.06150.16240.48830.018*
N550.36832 (10)0.23319 (8)0.34989 (5)0.01418 (17)
N560.22494 (11)0.44073 (8)0.44627 (5)0.01590 (18)
C550.41383 (12)0.17157 (9)0.31867 (6)0.0147 (2)
C560.20282 (12)0.51747 (10)0.46198 (7)0.0170 (2)
S550.47870 (3)0.08309 (3)0.277086 (19)0.02362 (7)
S560.17434 (4)0.62796 (3)0.47860 (2)0.03133 (8)
Zn10.753466 (16)0.588683 (12)0.185449 (8)0.02118 (4)
N600.94374 (13)0.59221 (10)0.14636 (6)0.0257 (2)
N610.75972 (13)0.43808 (10)0.23129 (7)0.0272 (2)
N620.60976 (14)0.66130 (10)0.11261 (7)0.0300 (3)
N630.70109 (15)0.64938 (11)0.26598 (7)0.0357 (3)
C601.04277 (14)0.61963 (11)0.12046 (7)0.0226 (2)
C610.76892 (13)0.34935 (10)0.25926 (7)0.0189 (2)
C620.52796 (13)0.72468 (10)0.07159 (7)0.0203 (2)
C630.62371 (15)0.67266 (11)0.31172 (7)0.0250 (3)
S601.18153 (4)0.65892 (3)0.084525 (19)0.03035 (8)
S610.78142 (4)0.22520 (3)0.299802 (19)0.02701 (7)
S620.41271 (3)0.81427 (3)0.014892 (17)0.02238 (6)
S630.51070 (4)0.70663 (4)0.37349 (2)0.03402 (9)
C400.4782 (2)0.36503 (16)0.13849 (14)0.0534 (5)
H40A0.42270.34960.10870.064*
H40B0.53180.29850.17030.064*
O400.38396 (13)0.42323 (9)0.18211 (7)0.0372 (3)
H400.34000.48050.15590.056*
C410.5781 (2)0.41914 (17)0.09076 (9)0.0452 (4)
H41A0.52660.48670.06060.068*
H41B0.63220.37770.06090.068*
H41C0.64050.42820.11990.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01231 (7)0.01286 (7)0.00946 (6)0.00265 (5)0.00063 (5)0.00418 (5)
N10.0131 (4)0.0117 (4)0.0122 (4)0.0010 (3)0.0001 (3)0.0043 (3)
C20.0122 (5)0.0149 (5)0.0197 (5)0.0014 (4)0.0016 (4)0.0071 (4)
C30.0146 (5)0.0137 (5)0.0207 (5)0.0012 (4)0.0032 (4)0.0050 (4)
N40.0168 (4)0.0126 (4)0.0151 (4)0.0033 (3)0.0013 (3)0.0038 (3)
C50.0236 (6)0.0139 (5)0.0233 (6)0.0068 (4)0.0017 (5)0.0020 (4)
C60.0250 (6)0.0188 (6)0.0206 (6)0.0100 (5)0.0015 (5)0.0036 (4)
N70.0175 (5)0.0200 (5)0.0143 (4)0.0073 (4)0.0011 (3)0.0072 (4)
C80.0161 (5)0.0281 (6)0.0221 (6)0.0088 (5)0.0044 (4)0.0138 (5)
C90.0134 (5)0.0267 (6)0.0230 (6)0.0036 (4)0.0011 (4)0.0131 (5)
N100.0137 (4)0.0188 (5)0.0141 (4)0.0025 (4)0.0010 (3)0.0079 (4)
C110.0182 (5)0.0160 (5)0.0159 (5)0.0015 (4)0.0042 (4)0.0051 (4)
C120.0190 (5)0.0124 (5)0.0136 (5)0.0003 (4)0.0017 (4)0.0041 (4)
C130.0191 (5)0.0115 (5)0.0131 (5)0.0031 (4)0.0013 (4)0.0029 (4)
C1210.0185 (5)0.0167 (5)0.0172 (5)0.0025 (4)0.0003 (4)0.0084 (4)
C1220.0342 (7)0.0130 (5)0.0206 (6)0.0010 (5)0.0027 (5)0.0010 (4)
N450.0172 (5)0.0173 (5)0.0139 (4)0.0023 (4)0.0017 (3)0.0062 (4)
N460.0181 (5)0.0181 (5)0.0140 (4)0.0056 (4)0.0010 (4)0.0049 (4)
C450.0148 (5)0.0153 (5)0.0156 (5)0.0022 (4)0.0028 (4)0.0070 (4)
C460.0148 (5)0.0142 (5)0.0161 (5)0.0040 (4)0.0020 (4)0.0042 (4)
S450.02402 (15)0.03023 (16)0.01178 (12)0.01061 (12)0.00063 (10)0.00551 (11)
S460.03023 (16)0.02997 (17)0.01116 (12)0.00895 (13)0.00328 (11)0.00507 (11)
Co20.01142 (7)0.01008 (7)0.01016 (6)0.00199 (5)0.00118 (5)0.00378 (5)
N210.0128 (4)0.0120 (4)0.0123 (4)0.0019 (3)0.0017 (3)0.0038 (3)
C220.0142 (5)0.0191 (5)0.0157 (5)0.0048 (4)0.0051 (4)0.0035 (4)
C230.0157 (5)0.0173 (5)0.0191 (5)0.0022 (4)0.0060 (4)0.0013 (4)
N240.0175 (4)0.0130 (4)0.0136 (4)0.0040 (3)0.0033 (3)0.0024 (3)
C250.0234 (6)0.0123 (5)0.0179 (5)0.0052 (4)0.0043 (4)0.0007 (4)
C260.0235 (6)0.0139 (5)0.0208 (5)0.0084 (4)0.0037 (4)0.0002 (4)
N270.0163 (4)0.0134 (4)0.0137 (4)0.0046 (3)0.0008 (3)0.0043 (3)
C280.0144 (5)0.0187 (5)0.0177 (5)0.0057 (4)0.0013 (4)0.0071 (4)
C290.0116 (5)0.0184 (5)0.0158 (5)0.0033 (4)0.0005 (4)0.0053 (4)
N300.0114 (4)0.0136 (4)0.0121 (4)0.0021 (3)0.0007 (3)0.0044 (3)
C310.0144 (5)0.0129 (5)0.0146 (5)0.0021 (4)0.0014 (4)0.0019 (4)
C320.0147 (5)0.0142 (5)0.0134 (5)0.0038 (4)0.0009 (4)0.0013 (4)
C3210.0214 (6)0.0152 (5)0.0231 (6)0.0060 (4)0.0035 (5)0.0028 (4)
C3220.0193 (5)0.0247 (6)0.0133 (5)0.0063 (5)0.0021 (4)0.0049 (4)
C330.0154 (5)0.0125 (5)0.0152 (5)0.0046 (4)0.0015 (4)0.0023 (4)
N550.0151 (4)0.0149 (4)0.0129 (4)0.0042 (3)0.0002 (3)0.0049 (3)
N560.0153 (4)0.0161 (4)0.0163 (4)0.0022 (4)0.0012 (3)0.0067 (4)
C550.0134 (5)0.0156 (5)0.0147 (5)0.0026 (4)0.0034 (4)0.0044 (4)
C560.0121 (5)0.0203 (5)0.0206 (5)0.0027 (4)0.0002 (4)0.0109 (4)
S550.02042 (14)0.02360 (15)0.03072 (16)0.00374 (12)0.00774 (12)0.01986 (13)
S560.02029 (15)0.02921 (17)0.0570 (2)0.00660 (13)0.00660 (15)0.03284 (17)
Zn10.01836 (7)0.01919 (7)0.01954 (7)0.00083 (5)0.00011 (5)0.00370 (5)
N600.0249 (6)0.0247 (6)0.0222 (5)0.0044 (4)0.0010 (4)0.0035 (4)
N610.0216 (5)0.0250 (6)0.0277 (6)0.0029 (4)0.0005 (4)0.0027 (5)
N620.0286 (6)0.0226 (6)0.0335 (6)0.0008 (5)0.0072 (5)0.0056 (5)
N630.0366 (7)0.0366 (7)0.0300 (6)0.0022 (6)0.0026 (5)0.0143 (5)
C600.0248 (6)0.0243 (6)0.0151 (5)0.0040 (5)0.0024 (4)0.0034 (4)
C610.0145 (5)0.0254 (6)0.0175 (5)0.0061 (4)0.0026 (4)0.0084 (4)
C620.0199 (6)0.0187 (5)0.0214 (6)0.0050 (4)0.0020 (4)0.0065 (4)
C630.0279 (7)0.0262 (6)0.0227 (6)0.0076 (5)0.0029 (5)0.0092 (5)
S600.02620 (17)0.0437 (2)0.01888 (14)0.01522 (15)0.00012 (12)0.00229 (14)
S610.03645 (18)0.02224 (15)0.02691 (16)0.01573 (14)0.01550 (14)0.01305 (13)
S620.01883 (14)0.02456 (15)0.01750 (13)0.00178 (11)0.00004 (11)0.00276 (11)
S630.02759 (17)0.0596 (3)0.02604 (17)0.01451 (17)0.00249 (14)0.02692 (17)
C400.0417 (10)0.0445 (10)0.0865 (16)0.0178 (8)0.0258 (10)0.0420 (11)
O400.0364 (6)0.0284 (6)0.0405 (6)0.0050 (5)0.0130 (5)0.0121 (5)
C410.0366 (9)0.0627 (12)0.0295 (8)0.0033 (8)0.0028 (7)0.0171 (8)
Geometric parameters (Å, º) top
Co1—N451.901 (1)C22—H22A0.9700
Co1—N461.903 (1)C22—H22B0.9700
Co1—N41.926 (1)C23—N241.4906 (16)
Co1—N71.931 (1)C23—H23A0.9700
Co1—N11.952 (1)C23—H23B0.9700
Co1—N101.954 (1)N24—C251.4941 (15)
N1—C131.4887 (14)N24—H240.9100
N1—C21.5001 (14)C25—C261.5523 (17)
N1—H10.9100C25—H25A0.9700
C2—C31.5256 (16)C25—H25B0.9700
C2—H2A0.9700C26—N271.5039 (15)
C2—H2B0.9700C26—H26A0.9700
C3—N41.4928 (15)C26—H26B0.9700
C3—H3A0.9700N27—C281.4940 (14)
C3—H3B0.9700N27—H270.9100
N4—C51.4952 (16)C28—C291.5264 (16)
N4—H40.9100C28—H28A0.9700
C5—C61.5500 (18)C28—H28B0.9700
C5—H5A0.9700C29—N301.4996 (15)
C5—H5B0.9700C29—H29A0.9700
C6—N71.4988 (16)C29—H29B0.9700
C6—H6A0.9700N30—C311.4900 (15)
C6—H6B0.9700N30—H300.9100
N7—C81.4905 (16)C31—C321.5431 (16)
N7—H70.9100C31—H31A0.9700
C8—C91.5268 (19)C31—H31B0.9700
C8—H8A0.9700C32—C3221.5405 (17)
C8—H8B0.9700C32—C3211.5408 (16)
C9—N101.5027 (15)C32—C331.5434 (15)
C9—H9A0.9700C321—H32A0.9600
C9—H9B0.9700C321—H32B0.9600
N10—C111.4892 (16)C321—H32C0.9600
N10—H100.9100C322—H32D0.9600
C11—C121.5439 (17)C322—H32E0.9600
C11—H11A0.9700C322—H32F0.9600
C11—H11B0.9700C33—H33A0.9700
C12—C131.5414 (16)C33—H33B0.9700
C12—C1211.5425 (16)N55—C551.169 (2)
C12—C1221.5426 (17)N56—C561.168 (2)
C13—H13A0.9700C55—S551.633 (1)
C13—H13B0.9700C56—S561.625 (1)
C121—H12A0.9600Zn1—N621.952 (1)
C121—H12B0.9600Zn1—N601.957 (1)
C121—H12C0.9600Zn1—N631.972 (1)
C122—H12D0.9600Zn1—N611.990 (1)
C122—H12E0.9600N60—C601.163 (2)
C122—H12F0.9600N61—C611.163 (2)
N45—C451.171 (2)N62—C621.165 (2)
N46—C461.169 (2)N63—C631.165 (2)
C45—S451.627 (1)C60—S601.633 (2)
C46—S461.625 (1)C61—S611.632 (1)
Co2—N551.903 (1)C62—S621.631 (1)
Co2—N561.904 (1)C63—S631.627 (2)
Co2—N241.933 (1)C40—O401.434 (2)
Co2—N271.935 (1)C40—C411.479 (3)
Co2—N211.950 (1)C40—H40A0.9700
Co2—N301.951 (1)C40—H40B0.9700
N21—C331.4870 (14)O40—H400.8200
N21—C221.4971 (14)C41—H41A0.9600
N21—H210.9100C41—H41B0.9600
C22—C231.5257 (17)C41—H41C0.9600
N45—Co1—N46179.51 (5)N21—Co2—N3097.27 (4)
N45—Co1—N489.21 (4)C33—N21—C22113.09 (9)
N46—Co1—N490.77 (4)C33—N21—Co2116.69 (7)
N45—Co1—N790.42 (4)C22—N21—Co2105.42 (7)
N46—Co1—N790.07 (4)C33—N21—H21107.0
N4—Co1—N784.98 (4)C22—N21—H21107.0
N45—Co1—N190.78 (4)Co2—N21—H21107.0
N46—Co1—N188.73 (4)N21—C22—C23107.52 (9)
N4—Co1—N188.91 (4)N21—C22—H22A110.2
N7—Co1—N1173.75 (4)C23—C22—H22A110.2
N45—Co1—N1091.31 (4)N21—C22—H22B110.2
N46—Co1—N1088.77 (4)C23—C22—H22B110.2
N4—Co1—N10174.08 (4)H22A—C22—H22B108.5
N7—Co1—N1089.12 (4)N24—C23—C22106.69 (9)
N1—Co1—N1096.98 (4)N24—C23—H23A110.4
C13—N1—C2113.59 (9)C22—C23—H23A110.4
C13—N1—Co1116.85 (7)N24—C23—H23B110.4
C2—N1—Co1106.12 (7)C22—C23—H23B110.4
C13—N1—H1106.5H23A—C23—H23B108.6
C2—N1—H1106.5C23—N24—C25117.17 (9)
Co1—N1—H1106.5C23—N24—Co2107.18 (7)
N1—C2—C3107.21 (9)C25—N24—Co2108.51 (7)
N1—C2—H2A110.3C23—N24—H24107.9
C3—C2—H2A110.3C25—N24—H24107.9
N1—C2—H2B110.3Co2—N24—H24107.9
C3—C2—H2B110.3N24—C25—C26109.71 (9)
H2A—C2—H2B108.5N24—C25—H25A109.7
N4—C3—C2105.95 (9)C26—C25—H25A109.7
N4—C3—H3A110.5N24—C25—H25B109.7
C2—C3—H3A110.5C26—C25—H25B109.7
N4—C3—H3B110.5H25A—C25—H25B108.2
C2—C3—H3B110.5N27—C26—C25110.21 (9)
H3A—C3—H3B108.7N27—C26—H26A109.6
C3—N4—C5117.34 (9)C25—C26—H26A109.6
C3—N4—Co1107.06 (7)N27—C26—H26B109.6
C5—N4—Co1109.66 (8)C25—C26—H26B109.6
C3—N4—H4107.5H26A—C26—H26B108.1
C5—N4—H4107.5C28—N27—C26117.84 (9)
Co1—N4—H4107.5C28—N27—Co2106.66 (7)
N4—C5—C6110.88 (10)C26—N27—Co2110.16 (7)
N4—C5—H5A109.5C28—N27—H27107.2
C6—C5—H5A109.5C26—N27—H27107.2
N4—C5—H5B109.5Co2—N27—H27107.2
C6—C5—H5B109.5N27—C28—C29105.93 (9)
H5A—C5—H5B108.1N27—C28—H28A110.5
N7—C6—C5110.40 (10)C29—C28—H28A110.5
N7—C6—H6A109.6N27—C28—H28B110.5
C5—C6—H6A109.6C29—C28—H28B110.5
N7—C6—H6B109.6H28A—C28—H28B108.7
C5—C6—H6B109.6N30—C29—C28108.02 (9)
H6A—C6—H6B108.1N30—C29—H29A110.1
C8—N7—C6117.90 (10)C28—C29—H29A110.1
C8—N7—Co1106.60 (7)N30—C29—H29B110.1
C6—N7—Co1109.33 (8)C28—C29—H29B110.1
C8—N7—H7107.5H29A—C29—H29B108.4
C6—N7—H7107.5C31—N30—C29114.32 (9)
Co1—N7—H7107.5C31—N30—Co2116.29 (7)
N7—C8—C9105.54 (10)C29—N30—Co2105.24 (7)
N7—C8—H8A110.6C31—N30—H30106.8
C9—C8—H8A110.6C29—N30—H30106.8
N7—C8—H8B110.6Co2—N30—H30106.8
C9—C8—H8B110.6N30—C31—C32113.17 (9)
H8A—C8—H8B108.8N30—C31—H31A108.9
N10—C9—C8107.05 (10)C32—C31—H31A108.9
N10—C9—H9A110.3N30—C31—H31B108.9
C8—C9—H9A110.3C32—C31—H31B108.9
N10—C9—H9B110.3H31A—C31—H31B107.8
C8—C9—H9B110.3C322—C32—C321109.09 (10)
H9A—C9—H9B108.6C322—C32—C31110.95 (10)
C11—N10—C9114.30 (9)C321—C32—C31107.02 (9)
C11—N10—Co1116.39 (7)C322—C32—C33111.24 (9)
C9—N10—Co1105.26 (7)C321—C32—C33105.58 (9)
C11—N10—H10106.8C31—C32—C33112.67 (9)
C9—N10—H10106.8C32—C321—H32A109.5
Co1—N10—H10106.8C32—C321—H32B109.5
N10—C11—C12113.47 (9)H32A—C321—H32B109.5
N10—C11—H11A108.9C32—C321—H32C109.5
C12—C11—H11A108.9H32A—C321—H32C109.5
N10—C11—H11B108.9H32B—C321—H32C109.5
C12—C11—H11B108.9C32—C322—H32D109.5
H11A—C11—H11B107.7C32—C322—H32E109.5
C13—C12—C121110.51 (9)H32D—C322—H32E109.5
C13—C12—C122106.71 (10)C32—C322—H32F109.5
C121—C12—C122108.99 (10)H32D—C322—H32F109.5
C13—C12—C11113.05 (9)H32E—C322—H32F109.5
C121—C12—C11111.09 (10)N21—C33—C32113.68 (9)
C122—C12—C11106.24 (10)N21—C33—H33A108.8
N1—C13—C12113.24 (9)C32—C33—H33A108.8
N1—C13—H13A108.9N21—C33—H33B108.8
C12—C13—H13A108.9C32—C33—H33B108.8
N1—C13—H13B108.9H33A—C33—H33B107.7
C12—C13—H13B108.9C55—N55—Co2177.8 (1)
H13A—C13—H13B107.7C56—N56—Co2162.0 (1)
C12—C121—H12A109.5N55—C55—S55178.5 (1)
C12—C121—H12B109.5N56—C56—S56176.4 (1)
H12A—C121—H12B109.5N62—Zn1—N60113.19 (5)
C12—C121—H12C109.5N62—Zn1—N63108.90 (6)
H12A—C121—H12C109.5N60—Zn1—N63111.19 (6)
H12B—C121—H12C109.5N62—Zn1—N61111.87 (5)
C12—C122—H12D109.5N60—Zn1—N61106.95 (5)
C12—C122—H12E109.5N63—Zn1—N61104.39 (6)
H12D—C122—H12E109.5C60—N60—Zn1163.8 (1)
C12—C122—H12F109.5C61—N61—Zn1177.1 (1)
H12D—C122—H12F109.5C62—N62—Zn1164.42 (12)
H12E—C122—H12F109.5C63—N63—Zn1152.5 (2)
C45—N45—Co1158.7 (1)N60—C60—S60179.5 (2)
C46—N46—Co1178.8 (1)N61—C61—S61179.1 (1)
N45—C45—S45177.4 (1)N62—C62—S62179.3 (1)
N46—C46—S46179.0 (1)N63—C63—S63177.8 (2)
N55—Co2—N56179.53 (4)O40—C40—C41114.7 (2)
N55—Co2—N2489.68 (4)O40—C40—H40A108.6
N56—Co2—N2490.77 (4)C41—C40—H40A108.6
N55—Co2—N2789.68 (4)O40—C40—H40B108.6
N56—Co2—N2790.54 (4)C41—C40—H40B108.6
N24—Co2—N2783.89 (4)H40A—C40—H40B107.6
N55—Co2—N2191.18 (4)C40—O40—H40109.5
N56—Co2—N2188.66 (4)C40—C41—H41A109.5
N24—Co2—N2189.31 (4)C40—C41—H41B109.5
N27—Co2—N21173.14 (4)H41A—C41—H41B109.5
N55—Co2—N3091.81 (4)C40—C41—H41C109.5
N56—Co2—N3087.77 (4)H41A—C41—H41C109.5
N24—Co2—N30173.22 (4)H41B—C41—H41C109.5
N27—Co2—N3089.50 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S550.912.613.398 (1)146
N4—H4···S62i0.912.543.391 (1)156
N7—H7···S45ii0.912.593.308 (1)136
N10—H10···S61iii0.912.693.439 (1)140
N21—H21···S56iv0.912.623.361 (1)139
N24—H24···O400.912.192.932 (2)138
N27—H27···S610.912.973.712 (1)140
N30—H30···S63v0.912.613.330 (1)137
O40—H40···S60iii0.822.563.377 (1)174
Symmetry codes: (i) x, y1, z; (ii) x, y, z; (iii) x1, y, z; (iv) x, y+1, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C11H26N4)(NCS)2]2[Zn(NCS)4]·C2H6O
Mr1122.66
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)9.9776 (6), 14.0647 (8), 19.586 (1)
α, β, γ (°)70.511 (2), 82.199 (2), 71.989 (2)
V3)2462.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.6 × 0.4 × 0.4
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS, Version 2.03; Blessing, 1995)
Tmin, Tmax0.396, 0.540
No. of measured, independent and
observed [I > 2σ(I)] reflections
51668, 14587, 13265
Rint0.024
(sin θ/λ)max1)0.752
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 0.88
No. of reflections14587
No. of parameters547
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.61

Computer programs: SMART (Bruker, 1997 or Siemens, 1995?), SMART, SAINT (Bruker, 1997 or Siemens, 1995?), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3.2 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Co1—N451.901 (1)Co2—N271.935 (1)
Co1—N461.903 (1)Co2—N211.950 (1)
Co1—N41.926 (1)Co2—N301.951 (1)
Co1—N71.931 (1)N21—C331.4870 (14)
Co1—N11.952 (1)N55—C551.169 (2)
Co1—N101.954 (1)N56—C561.168 (2)
N45—C451.171 (2)C55—S551.633 (1)
N46—C461.169 (2)C56—S561.625 (1)
C45—S451.627 (1)Zn1—N621.952 (1)
C46—S461.625 (1)Zn1—N601.957 (1)
Co2—N551.903 (1)Zn1—N631.972 (1)
Co2—N561.904 (1)Zn1—N611.990 (1)
Co2—N241.933 (1)
N45—Co1—N46179.51 (5)N55—Co2—N56179.53 (4)
N45—Co1—N489.21 (4)N55—Co2—N2489.68 (4)
N46—Co1—N490.77 (4)N56—Co2—N2490.77 (4)
N45—Co1—N790.42 (4)N55—Co2—N2789.68 (4)
N46—Co1—N790.07 (4)N56—Co2—N2790.54 (4)
N4—Co1—N784.98 (4)N24—Co2—N2783.89 (4)
N45—Co1—N190.78 (4)N55—Co2—N2191.18 (4)
N46—Co1—N188.73 (4)N56—Co2—N2188.66 (4)
N4—Co1—N188.91 (4)N24—Co2—N2189.31 (4)
N7—Co1—N1173.75 (4)N27—Co2—N21173.14 (4)
N45—Co1—N1091.31 (4)N55—Co2—N3091.81 (4)
N46—Co1—N1088.77 (4)N56—Co2—N3087.77 (4)
N4—Co1—N10174.08 (4)N24—Co2—N30173.22 (4)
N7—Co1—N1089.12 (4)N27—Co2—N3089.50 (4)
N1—Co1—N1096.98 (4)N21—Co2—N3097.27 (4)
C45—N45—Co1158.7 (1)C55—N55—Co2177.8 (1)
C46—N46—Co1178.8 (1)C56—N56—Co2162.0 (1)
N45—C45—S45177.4 (1)N55—C55—S55178.5 (1)
N46—C46—S46179.0 (1)N56—C56—S56176.4 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S550.912.613.398 (1)146
N4—H4···S62i0.912.543.391 (1)156
N7—H7···S45ii0.912.593.308 (1)136
N10—H10···S61iii0.912.693.439 (1)140
N21—H21···S56iv0.912.623.361 (1)139
N24—H24···O400.912.192.932 (2)138
N27—H27···S610.912.973.712 (1)140
N30—H30···S63v0.912.613.330 (1)137
O40—H40···S60iii0.822.563.377 (1)174
Symmetry codes: (i) x, y1, z; (ii) x, y, z; (iii) x1, y, z; (iv) x, y+1, z+1; (v) x+1, y+1, z+1.
Selected dimensions (Å, °) for analogous compounds top
CompoundMean Co—N(amine)Mean Co—N(NCS)Co—N(NCS)—CaCo-NNCS-Cb
(I)1.938 (3)1.928 (2)178.7 (1)160.4 (1)
(II)1.946 (1)1.896 (1)175.9 (1)c168.3 (1)d
(III)1.981 (3)1.975 (3)167.0 (3)
(IV)1.976 (4)1.883 (3)167 (3)
(V)1.970 (6)1.905 (6)176.3 (5)141.7 (3)
Notes: (a) Near linear Co—N—C. (b) Appreciably bent Co—N—C. (I) trans-(12,12-dimethyl-1,4,7,10- tetraazacyclotetradecane)diisothiocyanatocobalt(III) tetraisothiocyanatozinc(II) ethanol solvate (this work). (II) trans-bis(ethane-1,2-diamine)di(isothiocyanato)cobalt(III) thiocyanate (two cations, one centrosymmetric and the other with twofold symmetry, both with similar Co—N distances; Liu et al., 1995). (c) Centrosymmetric cation. (d) Two-fold symmetrical cation. (III) (-)-589-trans-SS-(3,6-diazaoctan-1,8-diamine) di(isothiocyanato)cobalt(III) m-(+)-tartrato(4-)-m-(+)-hydrogentartrato(3-) diantimonate(III) tetrahydrate (Kushi et al., 1983). (IV) trans-(1,4,8,11-tetraazacyclotetradeca-4,11-diene)di(isothiocyanato) cobalt(III) thiocyanate (two centrosymmetric cations; Burgess et al., 1999). (V) trans-(5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca- 4,11-diene)di(isothiocyanato)cobalt(III) thiocyanate [mean Co—Nimine = 1.930 (6) Å; Lu et al., 1996].
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds