research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of naphthalene-2,3-diyl bis­­(3-benz­yl­­oxy)benzoate

crossmark logo

aDepartment of Physics, Government First Grade College, Magadi, Karnataka 562120, India, bDepartment of Physics, ACS College of Engineering, Bangalore, Karnataka 560074, India, cRaman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore, Karnataka, India, dDepartment of Chemistry, UCS, Tumkur University, BH Road, Tumkur, Karnataka 572103, India, and eDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka 572103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 5 June 2023; accepted 23 June 2023; online 4 July 2023)

In the title compound, C38H28O6, the dihedral angles between the naphthalene ring system and its pendant benz­yloxy rings A and B are 88.05 (7) and 80.84 (7)°, respectively. The dihedral angles between the A and B rings and their attached phenyl rings are 49.15 (8) and 80.78 (8)°, respectively. In the extended structure, the mol­ecules are linked by weak C—H⋯O and C—H⋯π hydrogen bonds, and ππ stacking inter­actions, which variously generate C(11) chains and R22(12) loops as part of a three-dimensional network. The Hirshfeld surface [fingerprint contributions = H⋯H (42.3%), C⋯H/H⋯C (40.3%) and O⋯H/H⋯O (15.7%)] and inter­molecular inter­action energies are reported, with dispersion (Edis = −428.6 kJ mol−1) being the major contributor.

1. Chemical context

Naphthalene, biphenyl or benzene rings can act as rigid cores in liquid crystal mol­ecules. A variety of banana-shaped, bow-shaped or bent-core ferroelectric liquid crystals were developed by incorporating a benzene ring as a rigid core (Noiri et al., 1996[Noiri, T., Sekine, T., Watanabe, J., Furukawa, T. & Takezoe, H. (1996). J. Mater. Chem. 67, 1231-1233]; Srinivasa et al., 2017[Srinivasa, H. T. (2017). Liq. Cryst. 44, 1384-1393.]). These types of compounds form lamellar and/or columnar mesophases (Szydlowska et al., 2003[Szydlowska, J., Mieczkowski, J., Matraszek, J., Bruce, D. W., Gorecka, E., Pociecha, D. & Guillon, D. (2003). Phys. Rev. E, 67, 031702.]) and they have been subjected to experimental and theoretical studies (Reddy et al., 2006[Reddy, A. R. & Tschierske, C. (2006). J. Mater. Chem. 16, 907-961.]; Vaupotič, 2006[Vaupotič, N. (2006). Ferroelectrics, 344, 151-159.]). Liquid crystalline materials with a bent-core mol­ecule are attractive because they exhibit good physical properties and possess two-dimensional smectic phases that display qualitatively different physical properties than calamatic ferroelectric liquid crystals.

[Scheme 1]

Our team is studying new bent-core liquid crystals with naphthalene rings as a rigid core (Srinivasa et al., 2018[Srinivasa, H. T., Palakshamurthy, B. S., Devarajegowda, H. C. & Hariprasad, S. (2018). J. Mol. Struct. 1173, 620-626.]) and, as part of that work, we have performed a simple coupling reaction between 1,2-di­hydroxy­naphthalene and 3-benz­yl­oxybenzoic acid to construct the title mol­ecule. It is a bent-type non-liquid crystal material, possibly due to the absence of alkyl chains/polar moiety at the ends of the mol­ecule.

2. Structural commentary

The title compound crystallizes with one mol­ecule in the asym­metric unit (Fig. 1[link]) in the space group P21/n. The dihedral angles between the C1–C10 naphthalene ring system (r.m.s. deviation = 0.022 Å) and its pendant C26–C31 (A) and C12–C17 (B) benz­yloxy rings are 88.05 (7) and 80.84 (7)°, respectively. The dihedral angles between the A and B rings and their attached C33–C38 and C19–C24 phenyl rings are 49.15 (8) and 80.78 (8)°, respectively. Key torsion angles include C1—O4—C25—C26 [−160.98 (13)°], C28—O2—C32—C33 [−172.04 (14)°], C10—O1—C11—C12 [−168.94 (14)°] and C14—O3—C18—C19 [172.84 (14)°]. Otherwise, the geometrical data for the title compound may be regarded as normal.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by numerous C—H⋯O and C—H⋯π inter­actions (Table 1[link]). Prominent packing features include a C(11) chain (arising from the C21—H21⋯O2ii hydrogen bond), which runs along [010], and centrosymmetric [R_{2}^{2}](12) loops (arising from the C9—H9⋯O5i hydrogen bond) between the mol­ecules as shown in Fig. 2[link]. These, and the C—H⋯π inter­actions, link the mol­ecules into a three-dimensional network (see Figs. S1 and S2 in the supporting information).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg4, Cg5, Cg6 and Cg7 are the centroids of the C1–C3/C8–C10, C3–C8, C19–C24, C26–C31, C33–C38 and C1–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O5i 0.93 2.52 3.258 (2) 136
C21—H21⋯O2ii 0.93 2.49 3.378 (2) 160
C4—H4⋯Cg5iii 0.93 2.60 3.4949 (19) 163
C16—H16⋯Cg2i 0.93 2.95 3.6955 (18) 139
C17—H17⋯Cg1i 0.93 2.90 3.7480 (17) 152
C17—H17⋯Cg7i 0.93 2.91 3.6342 (17) 135
C18—H18ACg6ii 0.97 2.66 3.5201 (18) 148
C30—H30⋯Cg1iv 0.93 2.90 3.7078 (17) 146
C31—H31⋯Cg2iv 0.93 2.69 3.5449 (17) 154
C31—H31⋯Cg7iv 0.93 2.95 3.6130 (16) 130
C32—H32ACg4v 0.97 2.82 3.5525 (18) 133
C15—H15⋯Cg6vi 0.93 2.97 3.6860 (18) 135
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y, -z]; (iv) [x-1, y, z]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Partial packing diagram showing the C—H⋯O inter­actions.

4. Hirshfeld surface analysis

The title mol­ecule was subjected to Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the two-dimensional (2D) fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal­Explorer. Version 17. The University of Western Australia.]). The Hirshfeld surface mapped on dnorm is shown in Fig. 3[link] and the overall 2D fingerprint plot and those delineated into H⋯H (42.3%), C⋯H/H⋯C (40.3%) and O⋯H/H⋯O (15.7%) contacts, together with their relative contributions to the Hirshfeld surface, are illustrated in Fig. 4[link]. The inter­action energies for the title compound were calculated at the HF/3-21G quantum level of theory in CrystalExplorer. The four energy variables that make up the total inter­molecular inter­action energy (Etot) are electrostatic (Eele), polarization (Epol), dispersion (Edisp) and exchange–repulsion (Erep), and the cylinder-shaped energy frameworks represent the relative strengths of the inter­action energies in individual directions, as well as the topologies of pairwise inter­molecular inter­action energies within the crystal (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). The energies between mol­ecular pairs are depicted as cylinders connecting the centroids of two mol­ecules, with the radius of the cylinder equal to the amount of inter­action energy between the mol­ecules (Wu et al., 2020[Wu, Q., Xiao, J. C., Zhou, C., Sun, J. R., Huang, M. F., Xu, X., Li, T. & Tian, H. (2020). Crystals, 10, 334-348.]). The net inter­action energies for the title compound are Eele = −56.3 kJ mol−1, Epol = −30.4.0 kJ mol−1, Edis = −428.6 kJ mol−1 and Erep = 160.4 kJ mol−1, with a total inter­action energy Etot of −333.3 kJ mol−1. Therefore, Edis is the major inter­action energy in the title compound. The energy framework showing the electrostatic potential force, dispersion force and total energy diagrams are shown in Fig. 5[link]. The cylindrical radii are proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 50 with a cutoff value of 5 kJ mol−1.

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm.
[Figure 4]
Figure 4
The 2D fingerprint plots for the title compound, showing C⋯H/H⋯C, H⋯H/H⋯H, O⋯H/H⋯O and O⋯O/O⋯O contacts.
[Figure 5]
Figure 5
Energy frameworks calculated for the title compound, viewed along the a-axis direction, showing (a) Coulomb potential force, (b) dispersion force and (c) total energy diagrams. The cylindrical radii are proportional to the relative strength of the corresponding energies and they were adjusted to a cutoff value of 5 kJ mol−1.

5. Database survey

A search of the Cambridge Structural Database (CSD; Version 5.43, update of March 2022: Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the naphthalene-2,3-diyl fragment gave 26 hits, of which six mol­ecules are similar to the title compound, with CSD refcodes WAFRII, WAFROO, WAFRUU, WAFSAB, WAFSEF and WAFSIJ (Rutherford et al., 2020[Rutherford, R. N., Ura, S., Chan, T.-H., Fukumoto, K., Nishioka, T. & Renzetti, A. (2020). Acta Cryst. C76, 1085-1095.]). There exist inter­molecular inter­actions dominated by ππ stacking and C—H⋯π inter­actions involving the arene rings in the benzoate fragments and the arene ring in the tetra­hydro­napthalene moiety. A `thermosalient phase transition effect' was studied in the compounds coded QIBMUM and QIBMUM01–QIBMUM06 (Tamboli et al., 2013[Tamboli, M. I., Krishnaswamy, S., Gonnade, R. G. & Shashidhar, M. S. (2013). Chem. Eur. J. 19, 12867-12874.]), which feature a naphthalene-2,3-diyl bis­(4-fluoro­benzoate) fragment. The presence of ππ stacking and C—H⋯O and C—H⋯F inter­actions appear to play an important role in determining the mol­ecular conformations. The crystal structure analyses of the polymorphic structures coded DOPPAB, DOPPAB01, DOPPAB02, DOPPOP, DOPPOP01 and DOPQAC (Tamboli et al., 2018[Tamboli, M. I., Karothu, D. P., Shashidhar, M. S., Gonnade, R. G. & Naumov, P. (2018). Chem. Eur. J. 24, 4133-4139.]) revealed weak inter­molecular inter­actions, such as C—H⋯O, C—H⋯π and ππ stacking, as also seen in the title mol­ecule. These inter­actions are actively involved in mol­ecular aggregation, which results in the polymorphic modifications, if they are subjected to thermal transformation. Here, all the mol­ecules crystallize in the space group Pbcn or P2/c. The crystal structure analyses of IJAGIJ01 to IJAGIJ05 (Tamboli et al., 2014[Tamboli, M. I., Bahadur, V., Gonnade, R. G. & Shashidhar, M. S. (2014). Acta Cryst. C70, 1040-1045.]) are polymorphs of isomeric napthalene-2,3-diol ditoluates, in which the inter­molecular inter­actions, such as C—H⋯O, C—H⋯π and ππ stacking, are similar to the inter­actions present in the title mol­ecule.

6. Synthesis and crystalization

Under an inert atmosphere, 1,2-di­hydroxy­naphthalene (1.00 mmol), a catalytic amount of 4-di­methyl­amino­pyridine and 3-benzyl­oxybenzoic acid (2.00 mmol) were dissolved in 50 ml of dry di­chloro­methane (DCM). The above mixture was stirred for 2 h at room temperature with a solution of N,N-di­cyclo­hexyl­carbodi­imide (1.2 mmol) in DCM (20 ml). Filtration was used to remove the precipitated N,N-di­cyclo­hexyl­urea and the solvent was evaporated. To obtain the pure product, the solid residue was purified using column chromatography on silica gel with DCM as an eluent, followed by recrystallization from ethyl alcohol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C38H28O6
Mr 580.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 302
a, b, c (Å) 9.5219 (2), 10.1010 (2), 30.7050 (8)
β (°) 96.666 (1)
V3) 2933.26 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.72
Crystal size (mm) 0.32 × 0.28 × 0.21
 
Data collection
Diffractometer Bruker SMART APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 14741, 4775, 4298
Rint 0.032
(sin θ/λ)max−1) 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.142, 1.06
No. of reflections 4775
No. of parameters 397
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.23
Computer programs: APEX3 and SAINT (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL (Sheldrick, 2015b).

Naphthalene-2,3-diyl bis(3-benzyloxy)benzoate top
Crystal data top
C38H28O6Prism
Mr = 580.60Dx = 1.315 Mg m3
Monoclinic, P21/nMelting point: 417 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54178 Å
a = 9.5219 (2) ÅCell parameters from 4775 reflections
b = 10.1010 (2) Åθ = 0.3–25°
c = 30.7050 (8) ŵ = 0.72 mm1
β = 96.666 (1)°T = 302 K
V = 2933.26 (11) Å3Rod, colourless
Z = 40.32 × 0.28 × 0.21 mm
F(000) = 1216
Data collection top
Bruker SMART APEXII CCD
diffractometer
4298 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 64.5°, θmin = 4.6°
Detector resolution: 2.06 pixels mm-1h = 1110
ω scansk = 117
14741 measured reflectionsl = 3235
4775 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0997P)2 + 0.5664P]
where P = (Fo2 + 2Fc2)/3
4775 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
1 constraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58939 (11)0.43382 (12)0.05018 (3)0.0232 (3)
O20.77634 (11)0.38287 (13)0.09926 (3)0.0272 (3)
O30.58453 (11)0.47609 (13)0.24604 (3)0.0268 (3)
O40.50928 (11)0.18476 (12)0.02981 (3)0.0225 (3)
O50.34497 (11)0.27300 (12)0.02087 (3)0.0248 (3)
O60.25879 (11)0.13423 (13)0.16475 (3)0.0253 (3)
C10.61513 (15)0.23968 (17)0.00711 (5)0.0201 (4)
C20.67835 (16)0.16830 (17)0.02259 (5)0.0213 (4)
H20.6490840.0821860.0294400.026*
C30.78971 (15)0.22628 (17)0.04315 (5)0.0204 (4)
C40.86373 (17)0.15418 (18)0.07275 (5)0.0243 (4)
H40.8382080.0670210.0794510.029*
C50.97232 (17)0.21079 (18)0.09165 (5)0.0254 (4)
H51.0212280.1614810.1105630.031*
C61.01010 (16)0.34325 (18)0.08256 (5)0.0237 (4)
H61.0837120.3812110.0956400.028*
C70.93960 (15)0.41691 (18)0.05465 (5)0.0212 (4)
H70.9639840.5051560.0494980.025*
C80.82939 (15)0.35947 (17)0.03349 (4)0.0187 (3)
C90.76033 (15)0.43085 (17)0.00204 (5)0.0194 (3)
H90.7851180.5181670.0046870.023*
C100.65814 (15)0.37016 (17)0.01796 (4)0.0200 (4)
C110.65782 (15)0.42547 (17)0.09173 (5)0.0199 (4)
C120.56915 (16)0.47090 (16)0.12536 (5)0.0203 (4)
C130.62360 (16)0.45161 (17)0.16931 (5)0.0213 (4)
H130.7123550.4138050.1764140.026*
C140.54323 (16)0.48970 (17)0.20201 (5)0.0216 (4)
C150.40898 (17)0.54473 (18)0.19114 (5)0.0266 (4)
H150.3543790.5685360.2131130.032*
C160.35781 (17)0.5636 (2)0.14761 (5)0.0307 (4)
H160.2693500.6019780.1404820.037*
C170.43662 (17)0.52605 (19)0.11437 (5)0.0272 (4)
H170.4009280.5377640.0851290.033*
C180.72408 (17)0.42395 (19)0.25874 (5)0.0265 (4)
H18A0.7933800.4742990.2448620.032*
H18B0.7288050.3323380.2495420.032*
C190.75487 (16)0.43351 (18)0.30777 (5)0.0234 (4)
C200.73388 (16)0.55202 (18)0.32920 (5)0.0250 (4)
H200.6960940.6246170.3132950.030*
C210.76914 (16)0.56235 (19)0.37426 (5)0.0262 (4)
H210.7547800.6417920.3884040.031*
C220.82545 (17)0.45503 (19)0.39814 (5)0.0282 (4)
H220.8495530.4622300.4282780.034*
C230.84571 (19)0.3374 (2)0.37712 (5)0.0316 (4)
H230.8830450.2648140.3931020.038*
C240.81042 (18)0.32703 (19)0.33198 (5)0.0286 (4)
H240.8245050.2472570.3180000.034*
C250.37343 (15)0.22511 (16)0.01482 (5)0.0192 (3)
C260.27380 (16)0.20240 (16)0.04756 (5)0.0194 (3)
C270.32213 (16)0.17695 (16)0.09144 (5)0.0199 (3)
H270.4184210.1689750.1004630.024*
C280.22447 (16)0.16371 (17)0.12146 (5)0.0204 (4)
C290.08046 (16)0.17887 (18)0.10773 (5)0.0235 (4)
H290.0154990.1734770.1280560.028*
C300.03403 (16)0.20179 (18)0.06419 (5)0.0250 (4)
H300.0623260.2096070.0552520.030*
C310.12965 (16)0.21333 (17)0.03353 (5)0.0233 (4)
H310.0980830.2280970.0041240.028*
C320.40533 (16)0.1048 (2)0.17832 (5)0.0267 (4)
H32A0.4623050.1836890.1762710.032*
H32B0.4383430.0374090.1594400.032*
C330.41890 (16)0.05652 (19)0.22477 (5)0.0247 (4)
C340.39745 (18)0.0760 (2)0.23388 (5)0.0311 (4)
H340.3699880.1343220.2110410.037*
C350.41657 (19)0.1225 (2)0.27679 (6)0.0350 (4)
H350.4012330.2113660.2826300.042*
C360.45865 (18)0.0357 (2)0.31084 (5)0.0331 (4)
H360.4732780.0663670.3395630.040*
C370.47870 (18)0.0964 (2)0.30192 (5)0.0330 (4)
H370.5063450.1546300.3247730.040*
C380.45797 (17)0.1431 (2)0.25914 (5)0.0281 (4)
H380.4702900.2325440.2535040.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0207 (5)0.0346 (7)0.0141 (5)0.0060 (5)0.0012 (4)0.0030 (4)
O20.0200 (6)0.0404 (8)0.0207 (6)0.0065 (5)0.0001 (4)0.0027 (5)
O30.0203 (6)0.0440 (8)0.0159 (5)0.0045 (5)0.0003 (4)0.0018 (5)
O40.0168 (5)0.0302 (7)0.0212 (5)0.0025 (4)0.0048 (4)0.0067 (5)
O50.0230 (6)0.0345 (7)0.0167 (6)0.0007 (5)0.0013 (4)0.0025 (5)
O60.0190 (6)0.0417 (8)0.0151 (5)0.0018 (5)0.0023 (4)0.0017 (5)
C10.0150 (7)0.0286 (10)0.0167 (7)0.0005 (6)0.0015 (5)0.0053 (6)
C20.0201 (8)0.0218 (9)0.0217 (8)0.0004 (6)0.0013 (6)0.0019 (6)
C30.0181 (7)0.0276 (10)0.0151 (7)0.0010 (6)0.0002 (6)0.0012 (6)
C40.0255 (8)0.0243 (10)0.0233 (8)0.0003 (7)0.0036 (6)0.0029 (7)
C50.0225 (8)0.0342 (11)0.0203 (8)0.0023 (7)0.0050 (6)0.0025 (7)
C60.0182 (7)0.0352 (11)0.0176 (7)0.0031 (7)0.0021 (6)0.0023 (7)
C70.0198 (8)0.0247 (9)0.0179 (7)0.0027 (6)0.0025 (6)0.0027 (6)
C80.0165 (7)0.0250 (9)0.0135 (7)0.0003 (6)0.0025 (5)0.0008 (6)
C90.0184 (7)0.0223 (9)0.0163 (7)0.0014 (6)0.0023 (6)0.0015 (6)
C100.0172 (7)0.0293 (10)0.0127 (7)0.0045 (6)0.0011 (5)0.0018 (6)
C110.0191 (8)0.0226 (9)0.0174 (7)0.0012 (6)0.0003 (6)0.0003 (6)
C120.0196 (8)0.0224 (9)0.0187 (7)0.0014 (6)0.0014 (6)0.0019 (6)
C130.0170 (7)0.0244 (9)0.0222 (8)0.0001 (6)0.0005 (6)0.0021 (6)
C140.0221 (8)0.0272 (9)0.0154 (7)0.0031 (7)0.0010 (6)0.0021 (6)
C150.0213 (8)0.0364 (11)0.0226 (8)0.0026 (7)0.0041 (6)0.0051 (7)
C160.0202 (8)0.0458 (12)0.0256 (8)0.0096 (7)0.0008 (6)0.0015 (7)
C170.0243 (8)0.0377 (11)0.0185 (7)0.0042 (7)0.0015 (6)0.0001 (7)
C180.0207 (8)0.0391 (11)0.0197 (8)0.0048 (7)0.0015 (6)0.0025 (7)
C190.0159 (7)0.0341 (10)0.0200 (8)0.0002 (7)0.0018 (6)0.0012 (7)
C200.0219 (8)0.0292 (10)0.0236 (8)0.0039 (7)0.0013 (6)0.0014 (7)
C210.0205 (8)0.0339 (11)0.0244 (8)0.0000 (7)0.0035 (6)0.0071 (7)
C220.0235 (8)0.0430 (12)0.0180 (8)0.0026 (7)0.0015 (6)0.0003 (7)
C230.0358 (10)0.0349 (11)0.0235 (8)0.0033 (8)0.0011 (7)0.0057 (7)
C240.0312 (9)0.0290 (10)0.0258 (8)0.0025 (7)0.0046 (7)0.0029 (7)
C250.0188 (7)0.0207 (9)0.0178 (7)0.0004 (6)0.0013 (6)0.0023 (6)
C260.0193 (8)0.0200 (9)0.0190 (8)0.0004 (6)0.0027 (6)0.0011 (6)
C270.0160 (7)0.0235 (9)0.0199 (8)0.0003 (6)0.0010 (6)0.0016 (6)
C280.0222 (8)0.0231 (9)0.0157 (7)0.0009 (6)0.0017 (6)0.0018 (6)
C290.0187 (8)0.0291 (10)0.0234 (8)0.0019 (6)0.0054 (6)0.0003 (7)
C300.0156 (7)0.0333 (10)0.0258 (8)0.0033 (7)0.0017 (6)0.0023 (7)
C310.0217 (8)0.0277 (10)0.0198 (7)0.0013 (7)0.0004 (6)0.0019 (6)
C320.0186 (8)0.0416 (11)0.0195 (8)0.0022 (7)0.0006 (6)0.0021 (7)
C330.0176 (7)0.0379 (11)0.0188 (8)0.0019 (7)0.0025 (6)0.0009 (7)
C340.0296 (9)0.0386 (12)0.0250 (9)0.0057 (8)0.0032 (7)0.0028 (7)
C350.0330 (9)0.0406 (12)0.0319 (9)0.0028 (8)0.0064 (7)0.0098 (8)
C360.0279 (9)0.0519 (13)0.0195 (8)0.0004 (8)0.0030 (6)0.0083 (8)
C370.0308 (9)0.0491 (13)0.0189 (8)0.0036 (8)0.0021 (7)0.0025 (8)
C380.0247 (8)0.0362 (11)0.0235 (8)0.0024 (7)0.0034 (6)0.0006 (7)
Geometric parameters (Å, º) top
O1—C111.3662 (18)C18—C191.503 (2)
O1—C101.4040 (18)C18—H18A0.9700
O2—C111.2049 (19)C18—H18B0.9700
O3—C141.3702 (18)C19—C241.378 (3)
O3—C181.4404 (19)C19—C201.392 (2)
O4—C251.3831 (18)C20—C211.389 (2)
O4—C11.4045 (18)C20—H200.9300
O5—C251.1998 (18)C21—C221.382 (3)
O6—C281.3642 (18)C21—H210.9300
O6—C321.4401 (18)C22—C231.376 (3)
C1—C21.357 (2)C22—H220.9300
C1—C101.409 (2)C23—C241.392 (2)
C2—C31.422 (2)C23—H230.9300
C2—H20.9300C24—H240.9300
C3—C41.415 (2)C25—C261.478 (2)
C3—C81.419 (2)C26—C311.394 (2)
C4—C51.368 (2)C26—C271.396 (2)
C4—H40.9300C27—C281.390 (2)
C5—C61.405 (3)C27—H270.9300
C5—H50.9300C28—C291.395 (2)
C6—C71.368 (2)C29—C301.378 (2)
C6—H60.9300C29—H290.9300
C7—C81.421 (2)C30—C311.388 (2)
C7—H70.9300C30—H300.9300
C8—C91.425 (2)C31—H310.9300
C9—C101.356 (2)C32—C331.498 (2)
C9—H90.9300C33—C341.387 (3)
C11—C121.480 (2)C33—C381.388 (2)
C12—C171.385 (2)C34—C351.391 (2)
C12—C131.402 (2)C34—H340.9300
C13—C141.386 (2)C35—C361.388 (3)
C13—H130.9300C35—H350.9300
C14—C151.398 (2)C36—C371.379 (3)
C15—C161.382 (2)C36—H360.9300
C15—H150.9300C37—C381.388 (2)
C16—C171.388 (2)C37—H370.9300
C16—H160.9300C38—H380.9300
C17—H170.9300
C11—O1—C10114.77 (11)H18A—C18—H18B108.4
C14—O3—C18116.99 (12)C24—C19—C20118.91 (14)
C25—O4—C1114.56 (11)C24—C19—C18120.55 (16)
C28—O6—C32116.20 (11)C20—C19—C18120.46 (15)
C2—C1—C10121.11 (14)C21—C20—C19120.28 (16)
C2—C1—O4121.57 (15)C21—C20—H20119.9
C10—C1—O4117.25 (13)C19—C20—H20119.9
C2—C1—O4121.57 (15)C22—C21—C20120.24 (17)
C10—C1—O4117.25 (13)C22—C21—H21119.9
C1—C2—C3119.43 (15)C20—C21—H21119.9
C1—C2—H2120.3C21—C22—C23119.68 (15)
C3—C2—H2120.3C21—C22—H22120.2
C4—C3—C2121.73 (15)C23—C22—H22120.2
C4—C3—C8118.80 (14)C22—C23—C24120.11 (17)
C2—C3—C8119.46 (14)C22—C23—H23119.9
C5—C4—C3120.97 (16)C24—C23—H23119.9
C5—C4—H4119.5C19—C24—C23120.77 (17)
C3—C4—H4119.5C19—C24—H24119.6
C4—C5—C6120.16 (15)C23—C24—H24119.6
C4—C5—H5119.9O5—C25—O4121.75 (13)
C6—C5—H5119.9O5—C25—O4121.75 (13)
C5—C6—C7120.62 (15)O5—C25—C26126.09 (14)
C5—C6—H6119.7O4—C25—C26112.15 (12)
C7—C6—H6119.7O4—C25—C26112.15 (12)
C6—C7—C8120.43 (16)C31—C26—C27121.00 (14)
C6—C7—H7119.8C31—C26—C25117.65 (14)
C8—C7—H7119.8C27—C26—C25121.28 (13)
C7—C8—C9121.77 (15)C28—C27—C26119.14 (14)
C7—C8—C3118.97 (14)C28—C27—H27120.4
C9—C8—C3119.24 (14)C26—C27—H27120.4
C10—C9—C8119.32 (15)O6—C28—C27124.34 (13)
C10—C9—H9120.3O6—C28—C29115.74 (13)
C8—C9—H9120.3C27—C28—C29119.91 (14)
C9—C10—O1121.99 (15)C30—C29—C28120.33 (14)
C9—C10—O1121.99 (15)C30—C29—H29119.8
C9—C10—C1121.34 (14)C28—C29—H29119.8
O1—C10—C1116.66 (13)C29—C30—C31120.67 (14)
O1—C10—C1116.66 (13)C29—C30—H30119.7
O2—C11—O1122.40 (14)C31—C30—H30119.7
O2—C11—O1122.40 (14)C26—C31—C30118.91 (14)
O2—C11—C12125.04 (13)C26—C31—H31120.5
O1—C11—C12112.55 (12)C30—C31—H31120.5
O1—C11—C12112.55 (12)O6—C32—C33108.43 (12)
C17—C12—C13121.00 (14)O6—C32—H32A110.0
C17—C12—C11122.14 (13)C33—C32—H32A110.0
C13—C12—C11116.82 (13)O6—C32—H32B110.0
C14—C13—C12119.04 (14)C33—C32—H32B110.0
C14—C13—H13120.5H32A—C32—H32B108.4
C12—C13—H13120.5C34—C33—C38119.16 (15)
O3—C14—C13124.59 (14)C34—C33—C32120.50 (16)
O3—C14—C15115.16 (13)C38—C33—C32120.30 (17)
C13—C14—C15120.25 (14)C33—C34—C35120.74 (17)
C16—C15—C14119.72 (15)C33—C34—H34119.6
C16—C15—H15120.1C35—C34—H34119.6
C14—C15—H15120.1C36—C35—C34119.64 (19)
C15—C16—C17120.90 (15)C36—C35—H35120.2
C15—C16—H16119.5C34—C35—H35120.2
C17—C16—H16119.5C35—C36—C37119.75 (16)
C12—C17—C16119.08 (14)C35—C36—H36120.1
C12—C17—H17120.5C37—C36—H36120.1
C16—C17—H17120.5C38—C37—C36120.58 (17)
O3—C18—C19108.31 (12)C38—C37—H37119.7
O3—C18—H18A110.0C36—C37—H37119.7
C19—C18—H18A110.0C37—C38—C33120.11 (19)
O3—C18—H18B110.0C37—C38—H38119.9
C19—C18—H18B110.0C33—C38—H38119.9
C25—O4—C1—C2103.88 (16)C13—C14—C15—C161.3 (3)
C25—O4—C1—C1079.14 (16)C14—C15—C16—C171.4 (3)
O4—C1—C2—C3176.96 (12)C13—C12—C17—C160.6 (3)
O4—C1—C2—C3176.96 (12)C11—C12—C17—C16178.47 (16)
C1—C2—C3—C4176.92 (14)C15—C16—C17—C121.0 (3)
C1—C2—C3—C82.3 (2)C14—O3—C18—C19172.84 (14)
C2—C3—C4—C5178.84 (14)O3—C18—C19—C24132.87 (16)
C3—C4—C5—C61.4 (2)O3—C18—C19—C2050.1 (2)
C5—C6—C7—C81.7 (2)C24—C19—C20—C210.3 (2)
C6—C7—C8—C9175.77 (13)C18—C19—C20—C21176.77 (14)
C6—C7—C8—C32.6 (2)C19—C20—C21—C220.1 (2)
C4—C3—C8—C71.5 (2)C20—C21—C22—C230.4 (2)
C2—C3—C8—C7179.20 (13)C21—C22—C23—C240.4 (3)
C4—C3—C8—C9176.86 (13)C20—C19—C24—C230.3 (2)
C2—C3—C8—C92.4 (2)C18—C19—C24—C23176.77 (15)
C7—C8—C9—C10178.40 (13)C22—C23—C24—C190.1 (3)
C8—C9—C10—O1177.98 (12)C1—O4—C25—O518.8 (2)
C8—C9—C10—O1177.98 (12)C1—O4—C25—O40 (22)
C8—C9—C10—C12.4 (2)C1—O4—C25—C26160.98 (13)
C11—O1—C10—C985.49 (17)O5—C25—C26—C3113.0 (3)
C11—O1—C10—C194.88 (15)O4—C25—C26—C31167.24 (14)
C2—C1—C10—C92.5 (2)O4—C25—C26—C31167.24 (14)
O4—C1—C10—C9179.53 (13)O5—C25—C26—C27164.05 (16)
O4—C1—C10—C9179.53 (13)O4—C25—C26—C2715.7 (2)
C2—C1—C10—O1177.83 (13)O4—C25—C26—C2715.7 (2)
O4—C1—C10—O10.83 (18)C31—C26—C27—C280.6 (2)
O4—C1—C10—O10.83 (18)C25—C26—C27—C28176.37 (15)
C2—C1—C10—O1177.83 (13)C32—O6—C28—C275.3 (2)
O4—C1—C10—O10.83 (18)C32—O6—C28—C29173.76 (15)
O4—C1—C10—O10.83 (18)C26—C27—C28—O6177.57 (15)
C10—O1—C11—O29.7 (2)C26—C27—C28—C291.5 (3)
C10—O1—C11—C12168.94 (14)O6—C28—C29—C30176.56 (15)
O2—C11—C12—C17176.16 (17)C27—C28—C29—C302.6 (3)
O1—C11—C12—C175.3 (2)C28—C29—C30—C311.6 (3)
O1—C11—C12—C175.3 (2)C27—C26—C31—C301.6 (3)
O2—C11—C12—C135.9 (3)C25—C26—C31—C30175.49 (15)
O1—C11—C12—C13172.69 (14)C29—C30—C31—C260.5 (3)
O1—C11—C12—C13172.69 (14)C28—O6—C32—C33172.04 (14)
C17—C12—C13—C140.6 (3)O6—C32—C33—C3485.55 (19)
C11—C12—C13—C14178.55 (15)O6—C32—C33—C3896.72 (18)
C18—O3—C14—C132.9 (2)C32—C33—C34—C35176.88 (15)
C18—O3—C14—C15177.96 (15)C34—C35—C36—C371.1 (3)
C12—C13—C14—O3179.99 (15)C36—C37—C38—C331.0 (3)
C12—C13—C14—C150.9 (2)C34—C33—C38—C371.6 (2)
O3—C14—C15—C16179.51 (16)C32—C33—C38—C37176.12 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O5i0.932.523.258 (2)136
C21—H21···O2ii0.932.493.378 (2)160
C4—H4···Cg5iii0.932.603.4949 (19)163
C16—H16···Cg2i0.932.953.6955 (18)139
C17—H17···Cg1i0.932.903.7480 (17)152
C17—H17···Cg7i0.932.913.6342 (17)135
C18—H18A···Cg6ii0.972.663.5201 (18)148
C30—H30···Cg1iv0.932.903.7078 (17)146
C31—H31···Cg2iv0.932.693.5449 (17)154
C31—H31···Cg7iv0.932.953.6130 (16)130
C32—H32A···Cg4v0.972.823.5525 (18)133
C15—H15···Cg6vi0.932.973.6860 (18)135
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x1, y, z; (v) x+3/2, y1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the BSPM laboratory, UCS, Tumkur University, for support in completing this work.

Funding information

Funding for this research was provided by: Vision Group on Science and Technology (grant No. VGST/CISEE/GRD319 to Palakshamurthy B.S).

References

First citationBruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNoiri, T., Sekine, T., Watanabe, J., Furukawa, T. & Takezoe, H. (1996). J. Mater. Chem. 67, 1231–1233  Google Scholar
First citationReddy, A. R. & Tschierske, C. (2006). J. Mater. Chem. 16, 907–961.  Web of Science CrossRef CAS Google Scholar
First citationRutherford, R. N., Ura, S., Chan, T.-H., Fukumoto, K., Nishioka, T. & Renzetti, A. (2020). Acta Cryst. C76, 1085–1095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSrinivasa, H. T. (2017). Liq. Cryst. 44, 1384–1393.  Web of Science CrossRef CAS Google Scholar
First citationSrinivasa, H. T., Palakshamurthy, B. S., Devarajegowda, H. C. & Hariprasad, S. (2018). J. Mol. Struct. 1173, 620–626.  Web of Science CSD CrossRef CAS Google Scholar
First citationSzydlowska, J., Mieczkowski, J., Matraszek, J., Bruce, D. W., Gorecka, E., Pociecha, D. & Guillon, D. (2003). Phys. Rev. E, 67, 031702.  Web of Science CrossRef Google Scholar
First citationTamboli, M. I., Bahadur, V., Gonnade, R. G. & Shashidhar, M. S. (2014). Acta Cryst. C70, 1040–1045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTamboli, M. I., Karothu, D. P., Shashidhar, M. S., Gonnade, R. G. & Naumov, P. (2018). Chem. Eur. J. 24, 4133–4139.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTamboli, M. I., Krishnaswamy, S., Gonnade, R. G. & Shashidhar, M. S. (2013). Chem. Eur. J. 19, 12867–12874.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal­Explorer. Version 17. The University of Western Australia.  Google Scholar
First citationVaupotič, N. (2006). Ferroelectrics, 344, 151–159.  Google Scholar
First citationWu, Q., Xiao, J. C., Zhou, C., Sun, J. R., Huang, M. F., Xu, X., Li, T. & Tian, H. (2020). Crystals, 10, 334–348.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds