metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1,10-phenanthroline-κ2N,N′)iron(II) bis­­(1,1,3,3-tetra­cyano-2-eth­­oxy­propenide) hemihydrate

aDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955 de Skikda, 21000 Skikda, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri Constantine, 25000 Constantine, Algeria, cLaboatoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas de Sétif, 19000 Sétif, Algeria, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, eChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, fClermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France, and gCNRS UMR 6296, ICCF, BP 80026, 63171 Aubière, France
*Correspondence e-mail: fat_setifi@yahoo.fr

(Received 16 November 2012; accepted 26 November 2012; online 5 December 2012)

In the title hydrated mol­ecular salt, [Fe(C12H8N2)3](C9H5N4O)2·0.5H2O, the water mol­ecule site is half-occupied. The Fe—N bond lengths within the octa­hedral tris-chelate [Fe(phen)3]2+ ion (phen is 1,10-phenantroline) are indicative of a low-spin d6 electronic configuration for the metal ion. The C—N, C—C and C—O bond lengths in the polynitrile anions indicate extensive electronic delocalization. In the crystal, the components are linked through O—H⋯N hydrogen bonds, forming [100] chains, as well as through Coulombic inter­actions.

Related literature

For background to 1,10-phenanthroline as a chelating ligand, see: Hoshina et al. (2000[Hoshina, G., Ohba, S., Tsuchiya, N., Isobe, T. & Senna, M. (2000). Acta Cryst. C56, e191-e192.]); Hwang & Ha (2006[Hwang, I.-C. & Ha, K. (2006). Acta Cryst. E62, m376-m378.]); Aparici Plaza et al. (2007[Aparici Plaza, L., Baranowska, K. & Becker, B. (2007). Acta Cryst. E63, m1537-m1539.]); Zhou & Guo (2007[Zhou, D.-P. & Guo, G.-L. (2007). Acta Cryst. E63, m1122-m1124.]). For a related structure, see: Cai & Zhan (2012[Cai, Z.-M. & Zhan, S.-Z. (2012). Acta Cryst. E68, m956.]). For further synthetic details, see: Middleton & Engelhardt (1958[Middleton, W. J. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2788-2795.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C12H8N2)3](C9H5N4O)2·0.5H2O

  • Mr = 975.81

  • Triclinic, [P \overline 1]

  • a = 9.3497 (3) Å

  • b = 14.1736 (4) Å

  • c = 18.6086 (6) Å

  • α = 94.462 (2)°

  • β = 96.562 (1)°

  • γ = 101.129 (1)°

  • V = 2391.12 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 293 K

  • 0.55 × 0.35 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.820, Tmax = 0.946

  • 38167 measured reflections

  • 10845 independent reflections

  • 6909 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.134

  • S = 1.02

  • 10845 reflections

  • 661 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N6 1.9563 (19)
Fe1—N5 1.9654 (18)
Fe1—N4 1.9686 (19)
Fe1—N1 1.9752 (18)
Fe1—N2 1.9819 (18)
Fe1—N3 1.9836 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯N7 0.84 2.17 2.996 (5) 169
O1w—H12⋯N8i 0.84 2.25 3.078 (5) 169
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,10-Phenanthroline (phen) is a widely utilized chelating ligand in coordination chemistry and a lot of complexes with phen as a ligand have been reported (Hoshina et al., 2000; Hwang & Ha, 2006; Zhou & Guo, 2007). Recently, Cai et al. (2012) has reported the structure of a complex with [Fe(phen)3]2+ as cation and 1,1-dicyano-2-ethoxy-2-oxoethanide as counter-ion. We report here the synthesis and crystal structure of the title compound, in which a polynitrile anion acts as counter-ion.

The structure of (I) is composed of a discrete [Fe(phen)3]2+ cations, uncoordinated tcnoet anions and water molecules of crystallization (Fig. 1).

Six nitrogen atoms from three bidentate phen ligands form a distorted octahedron around the iron atom with a mean Fe1—N bond length of 1.972 (18) Å. The main distortion from the octahedral geometry is observed in the values of the angles subtended by phen at the metal atom (82.36 (7)°, 82.50 (8)° and 83.02 (8)° for N1—Fe1—N2, N4—Fe1—N3 and N6—Fe1—N5, respectively) which deviate significantly from the ideal value of 90°. Each phenanthroline ligand is coplanar to within 0.04 Å. The average value of dihedral angle between pairs of phenanthroline planes is 82,1(3)°. The carbon-carbon and carbon-nitrogen intra-ring bond lengths agree with those observed in other metal complexes with chelating phen (Hoshina et al., 2000; Aparici Plaza et al., 2007; Cai & Zhan, 2012).

Examination of the intermolecular contacts in the crystal structure of (I) reveals that the main contacts are associated with O—H···N hydrogen bonds involving the water H atoms and those of the N atoms of the CN groups of the tcnoet anions containing atoms O1 (Table 1). In the crystal, this leads to the formation of an infinite one-dimensional {[(H2O)(tcnoet)2]2-}n anionic chains (Fig. 2), which interact with the cationic entities [Fe(phen)3]2+ and the tcnoet anions involving atoms O2 via coulombic forces.

Due to the presence of the supplementary π electron systems of the cyano groups, the tcnoet ligands of (I) present a strong electronic delocalization, as indicated by C—N, C—C and C—O bond lengths.

Related literature top

For background to 1,10-phenanthroline as a chelating ligand, see: Hoshina et al. (2000); Hwang & Ha (2006); Aparici Plaza et al. (2007); Zhou & Guo (2007). For a related structure, see: Cai & Zhan (2012). For further synthetic details, see: Middleton & Engelhardt (1958).

Experimental top

Potassium 1,1,3,3-tetracyano-2-ethoxypropenide (Ktcnoet) was prepared by reaction in ethanol of 1,1-diethoxy-2,2-dicyanoethene with malononitrile and potassium t-butoxide as described in Ref (Middleton & Engelhardt, 1958). Under aerobic conditions, an aqueous solution of Fe(BF4)2.6H2O (0.034 g, 5 ml) was slowly added to an ethanolique solution of 1,10-phenanthroline (0.020 g, 5 ml). To the resulting red soluion was added dropwise an aqueous solution of the polynitrile potassium salt Ktcnoet (0.045 g, 10 ml). The final solution was filtered and the filtrate was allowed to evaporate for few days at r.t. offorded red prisms of (I).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5 U(C).

The water H-atoms were placed in calculated positions on the basis of hydrogen bonding and their temperature factors tied by a factor of 1.5 times. As the oxygen atom displayed extremely large temperature factors, the refinement of its occupancy was attempted. This refined to nearly 0.5; the occupancy was then set to exactly 0.5.

The two ethyl groups are disordered over two positions in a 1:1 ratio. The C—C distance was restrained to 1.54±0.01 Å. For each group, the pair of O—C distances were restrained to within 0.01 Å of each other. The anisotropic temperature factors of the C atoms of the groups as well as those of the water molecule were tightly restrained to be nearly isotropic.

Omitted from the refinement were several reflections affected by the beamstop: (0 0 2), (0 1 0), (0 - 1 1), (1 - 1 1), (0 1 1), (0 1 2), (-1 1 0), (-1 1 1), (0 2 0), (0 0 1) and (0 0 3).

Structure description top

1,10-Phenanthroline (phen) is a widely utilized chelating ligand in coordination chemistry and a lot of complexes with phen as a ligand have been reported (Hoshina et al., 2000; Hwang & Ha, 2006; Zhou & Guo, 2007). Recently, Cai et al. (2012) has reported the structure of a complex with [Fe(phen)3]2+ as cation and 1,1-dicyano-2-ethoxy-2-oxoethanide as counter-ion. We report here the synthesis and crystal structure of the title compound, in which a polynitrile anion acts as counter-ion.

The structure of (I) is composed of a discrete [Fe(phen)3]2+ cations, uncoordinated tcnoet anions and water molecules of crystallization (Fig. 1).

Six nitrogen atoms from three bidentate phen ligands form a distorted octahedron around the iron atom with a mean Fe1—N bond length of 1.972 (18) Å. The main distortion from the octahedral geometry is observed in the values of the angles subtended by phen at the metal atom (82.36 (7)°, 82.50 (8)° and 83.02 (8)° for N1—Fe1—N2, N4—Fe1—N3 and N6—Fe1—N5, respectively) which deviate significantly from the ideal value of 90°. Each phenanthroline ligand is coplanar to within 0.04 Å. The average value of dihedral angle between pairs of phenanthroline planes is 82,1(3)°. The carbon-carbon and carbon-nitrogen intra-ring bond lengths agree with those observed in other metal complexes with chelating phen (Hoshina et al., 2000; Aparici Plaza et al., 2007; Cai & Zhan, 2012).

Examination of the intermolecular contacts in the crystal structure of (I) reveals that the main contacts are associated with O—H···N hydrogen bonds involving the water H atoms and those of the N atoms of the CN groups of the tcnoet anions containing atoms O1 (Table 1). In the crystal, this leads to the formation of an infinite one-dimensional {[(H2O)(tcnoet)2]2-}n anionic chains (Fig. 2), which interact with the cationic entities [Fe(phen)3]2+ and the tcnoet anions involving atoms O2 via coulombic forces.

Due to the presence of the supplementary π electron systems of the cyano groups, the tcnoet ligands of (I) present a strong electronic delocalization, as indicated by C—N, C—C and C—O bond lengths.

For background to 1,10-phenanthroline as a chelating ligand, see: Hoshina et al. (2000); Hwang & Ha (2006); Aparici Plaza et al. (2007); Zhou & Guo (2007). For a related structure, see: Cai & Zhan (2012). For further synthetic details, see: Middleton & Engelhardt (1958).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the ethyl groups is not shown.
[Figure 2] Fig. 2. A View of the one-dimensional {[(H2O)(tcnoet)2]2-}n anion chain in (I). O—H···N Hydrogen bonds are represented by dashed lines. [details are given in Table 1; symmetry code: (i) x + 1, y, z.]
Tris(1,10-phenanthroline-κ2N,N')iron(II) bis(1,1,3,3-tetracyano-2-ethoxypropenide) hemihydrate top
Crystal data top
[Fe(C12H8N2)3](C9H5N4O)2·0.5H2OZ = 2
Mr = 975.81F(000) = 1006
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3497 (3) ÅCell parameters from 7674 reflections
b = 14.1736 (4) Åθ = 2.6–23.7°
c = 18.6086 (6) ŵ = 0.38 mm1
α = 94.462 (2)°T = 293 K
β = 96.562 (1)°Prism, red
γ = 101.129 (1)°0.55 × 0.35 × 0.15 mm
V = 2391.12 (13) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
10845 independent reflections
Radiation source: fine-focus sealed tube6909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 129
Tmin = 0.820, Tmax = 0.946k = 1818
38167 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.6022P]
where P = (Fo2 + 2Fc2)/3
10845 reflections(Δ/σ)max = 0.001
661 parametersΔρmax = 0.36 e Å3
40 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Fe(C12H8N2)3](C9H5N4O)2·0.5H2Oγ = 101.129 (1)°
Mr = 975.81V = 2391.12 (13) Å3
Triclinic, P1Z = 2
a = 9.3497 (3) ÅMo Kα radiation
b = 14.1736 (4) ŵ = 0.38 mm1
c = 18.6086 (6) ÅT = 293 K
α = 94.462 (2)°0.55 × 0.35 × 0.15 mm
β = 96.562 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
10845 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6909 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.946Rint = 0.043
38167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04940 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
10845 reflectionsΔρmin = 0.43 e Å3
661 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50347 (3)0.85774 (2)0.224833 (17)0.03344 (11)
O10.3012 (2)0.22872 (14)0.20343 (10)0.0616 (5)
O21.14419 (19)0.66090 (12)0.39687 (10)0.0537 (5)
O1W0.7463 (5)0.5451 (3)0.1682 (3)0.0894 (15)0.50
H110.65660.52020.16620.134*0.50
H120.79080.50220.15460.134*0.50
N10.5443 (2)0.76256 (13)0.29244 (10)0.0361 (4)
N20.39483 (19)0.89919 (13)0.30300 (10)0.0376 (4)
N30.4689 (2)0.95925 (14)0.16118 (10)0.0380 (4)
N40.67007 (19)0.95977 (14)0.27045 (10)0.0368 (4)
N50.6138 (2)0.80877 (13)0.15141 (10)0.0367 (4)
N60.3394 (2)0.76187 (13)0.17130 (10)0.0370 (4)
N70.4217 (3)0.4827 (2)0.16948 (15)0.0812 (8)
N80.0519 (3)0.4093 (2)0.12339 (18)0.0859 (9)
N90.1061 (3)0.1837 (2)0.02106 (15)0.0761 (8)
N100.0661 (3)0.0069 (2)0.17246 (17)0.0878 (9)
N110.9634 (3)0.7897 (2)0.28465 (15)0.0779 (8)
N120.8732 (3)0.87480 (19)0.49783 (14)0.0709 (7)
N130.8445 (4)0.6721 (2)0.58681 (16)0.0889 (9)
N141.2477 (4)0.5698 (2)0.57159 (18)0.0987 (10)
C10.4990 (2)0.77928 (17)0.35844 (12)0.0394 (5)
C20.6104 (3)0.68844 (17)0.28387 (14)0.0456 (6)
H20.64160.67500.23920.055*
C30.6353 (3)0.6299 (2)0.33882 (16)0.0576 (7)
H30.67930.57740.32980.069*
C40.5956 (3)0.6491 (2)0.40522 (16)0.0592 (8)
H40.61480.61150.44250.071*
C50.5254 (3)0.72648 (19)0.41700 (13)0.0495 (6)
C60.4788 (3)0.7556 (2)0.48418 (15)0.0650 (8)
H60.49790.72260.52430.078*
C70.4086 (3)0.8287 (2)0.49128 (14)0.0643 (8)
H70.38150.84590.53630.077*
C80.3742 (3)0.88111 (19)0.43108 (14)0.0499 (6)
C90.2964 (3)0.9560 (2)0.43273 (16)0.0605 (8)
H90.26420.97660.47560.073*
C100.2684 (3)0.9981 (2)0.37134 (17)0.0613 (8)
H100.21571.04740.37210.074*
C110.3178 (3)0.96841 (18)0.30664 (15)0.0489 (6)
H11A0.29600.99810.26510.059*
C120.4207 (2)0.85541 (17)0.36471 (12)0.0383 (5)
C130.5731 (3)1.04231 (17)0.17762 (13)0.0410 (6)
C140.3676 (3)0.9556 (2)0.10430 (13)0.0486 (6)
H140.29520.89980.09240.058*
C150.3654 (4)1.0324 (2)0.06164 (16)0.0637 (8)
H150.29331.02680.02190.076*
C160.4689 (4)1.1150 (2)0.07842 (17)0.0659 (8)
H160.46801.16620.05010.079*
C170.5771 (3)1.1230 (2)0.13850 (15)0.0546 (7)
C180.6900 (4)1.2064 (2)0.1631 (2)0.0712 (9)
H180.69511.26060.13770.085*
C190.7891 (4)1.2086 (2)0.2221 (2)0.0703 (9)
H190.85961.26460.23720.084*
C200.7877 (3)1.12635 (19)0.26187 (16)0.0524 (7)
C210.8876 (3)1.1224 (2)0.32361 (17)0.0632 (8)
H210.96111.17580.34150.076*
C220.8755 (3)1.0399 (2)0.35668 (16)0.0596 (7)
H220.93981.03680.39800.071*
C230.7672 (3)0.96011 (19)0.32887 (14)0.0464 (6)
H230.76190.90400.35210.056*
C240.6805 (3)1.04381 (17)0.23827 (13)0.0407 (6)
C250.5282 (3)0.73853 (16)0.10219 (12)0.0371 (5)
C260.7553 (3)0.83529 (19)0.14283 (13)0.0456 (6)
H260.81600.88280.17600.055*
C270.8151 (3)0.7944 (2)0.08606 (15)0.0561 (7)
H270.91390.81540.08150.067*
C280.7299 (3)0.7238 (2)0.03722 (15)0.0583 (8)
H280.77020.69620.00060.070*
C290.5804 (3)0.69269 (18)0.04414 (13)0.0463 (6)
C300.4781 (4)0.6204 (2)0.00332 (15)0.0624 (8)
H300.51060.58860.04200.075*
C310.3358 (4)0.5970 (2)0.00644 (15)0.0609 (8)
H310.27200.55010.02600.073*
C320.2801 (3)0.64234 (17)0.06550 (13)0.0464 (6)
C330.1346 (3)0.6214 (2)0.08017 (16)0.0574 (7)
H330.06480.57520.04990.069*
C340.0957 (3)0.6688 (2)0.13894 (16)0.0561 (7)
H340.00050.65420.14940.067*
C350.1998 (3)0.73890 (19)0.18332 (14)0.0478 (6)
H350.17090.77100.22290.057*
C360.3778 (3)0.71246 (16)0.11279 (12)0.0368 (5)
C370.4801 (14)0.2478 (16)0.3099 (11)0.082 (3)0.50
H37A0.51310.28280.35700.123*0.50
H37B0.55900.25650.28070.123*0.50
H37C0.44930.18030.31500.123*0.50
C380.3543 (10)0.2847 (10)0.2741 (5)0.072 (2)0.50
H38A0.27580.27870.30440.086*0.50
H38B0.38540.35250.26750.086*0.50
C37'0.4354 (15)0.2331 (16)0.3176 (11)0.082 (3)0.50
H37D0.50060.27160.35740.123*0.50
H37E0.48030.18260.29890.123*0.50
H37F0.34480.20520.33430.123*0.50
C38'0.4052 (10)0.2956 (9)0.2589 (5)0.072 (2)0.50
H38C0.36160.34810.27670.086*0.50
H38D0.49460.32230.23950.086*0.50
C390.3170 (3)0.4245 (2)0.16383 (15)0.0592 (7)
C400.1870 (3)0.3516 (2)0.15409 (14)0.0501 (6)
C410.0544 (3)0.3820 (2)0.13560 (16)0.0588 (7)
C420.1886 (3)0.2547 (2)0.16271 (13)0.0504 (7)
C430.0813 (3)0.1764 (2)0.13052 (14)0.0511 (6)
C440.0228 (3)0.1823 (2)0.07024 (16)0.0550 (7)
C450.0744 (3)0.0832 (2)0.15443 (16)0.0607 (8)
C461.2014 (13)0.5419 (14)0.3149 (9)0.095 (3)0.50
H46A1.22180.47800.31060.143*0.50
H46B1.29140.58860.31690.143*0.50
H46C1.13440.54920.27370.143*0.50
C471.1335 (19)0.5573 (5)0.3836 (10)0.069 (2)0.50
H47A1.03150.52360.37730.082*0.50
H47B1.18640.53360.42400.082*0.50
C46'1.1337 (13)0.5284 (14)0.3094 (9)0.095 (3)0.50
H46D1.12420.45950.30260.143*0.50
H46E1.21070.55880.28380.143*0.50
H46F1.04260.54500.29090.143*0.50
C47'1.1709 (19)0.5630 (5)0.3900 (10)0.069 (2)0.50
H47C1.10890.52180.41820.082*0.50
H47D1.27300.56270.40680.082*0.50
C481.0607 (3)0.69078 (17)0.44425 (14)0.0446 (6)
C490.9870 (3)0.76048 (18)0.41913 (14)0.0452 (6)
C500.9760 (3)0.7760 (2)0.34445 (17)0.0527 (7)
C510.9244 (3)0.8222 (2)0.46418 (14)0.0501 (6)
C521.0539 (3)0.65510 (19)0.51216 (15)0.0523 (7)
C530.9382 (4)0.6662 (2)0.55343 (16)0.0626 (8)
C541.1624 (4)0.6080 (2)0.54415 (17)0.0662 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03130 (18)0.0387 (2)0.0314 (2)0.00944 (14)0.00527 (13)0.00311 (14)
O10.0539 (11)0.0735 (13)0.0546 (12)0.0231 (10)0.0069 (9)0.0160 (10)
O20.0536 (11)0.0461 (11)0.0661 (12)0.0149 (9)0.0178 (9)0.0074 (9)
O1W0.056 (2)0.070 (3)0.133 (4)0.001 (2)0.027 (3)0.035 (3)
N10.0345 (10)0.0384 (11)0.0353 (11)0.0076 (8)0.0043 (8)0.0028 (8)
N20.0326 (10)0.0412 (11)0.0382 (11)0.0067 (8)0.0059 (8)0.0001 (9)
N30.0371 (10)0.0451 (12)0.0351 (11)0.0146 (9)0.0069 (9)0.0054 (9)
N40.0328 (10)0.0419 (11)0.0369 (11)0.0109 (8)0.0061 (8)0.0013 (9)
N50.0367 (10)0.0427 (11)0.0335 (11)0.0122 (9)0.0070 (9)0.0077 (9)
N60.0378 (10)0.0401 (11)0.0335 (11)0.0088 (9)0.0052 (8)0.0040 (9)
N70.0645 (18)0.086 (2)0.083 (2)0.0033 (16)0.0072 (15)0.0035 (16)
N80.0693 (18)0.0659 (18)0.118 (2)0.0124 (15)0.0099 (17)0.0170 (16)
N90.0671 (17)0.092 (2)0.0589 (17)0.0024 (15)0.0104 (14)0.0039 (15)
N100.0750 (19)0.076 (2)0.109 (2)0.0100 (16)0.0034 (17)0.0215 (18)
N110.0790 (19)0.111 (2)0.0620 (18)0.0474 (17)0.0268 (15)0.0255 (16)
N120.0793 (18)0.0732 (18)0.0631 (17)0.0322 (15)0.0048 (14)0.0110 (13)
N130.115 (3)0.0733 (19)0.086 (2)0.0148 (17)0.054 (2)0.0074 (16)
N140.090 (2)0.100 (2)0.106 (2)0.0214 (19)0.0108 (19)0.042 (2)
C10.0386 (13)0.0425 (14)0.0332 (13)0.0002 (10)0.0031 (10)0.0027 (11)
C20.0463 (14)0.0454 (15)0.0472 (15)0.0145 (12)0.0049 (12)0.0066 (12)
C30.0578 (17)0.0507 (17)0.067 (2)0.0177 (13)0.0038 (15)0.0157 (14)
C40.0579 (17)0.0590 (18)0.0603 (19)0.0076 (14)0.0012 (15)0.0277 (15)
C50.0507 (15)0.0564 (17)0.0364 (15)0.0006 (13)0.0002 (12)0.0098 (12)
C60.068 (2)0.081 (2)0.0409 (17)0.0001 (17)0.0043 (14)0.0167 (15)
C70.073 (2)0.082 (2)0.0306 (15)0.0034 (17)0.0154 (14)0.0008 (14)
C80.0446 (14)0.0558 (17)0.0433 (15)0.0037 (12)0.0127 (12)0.0078 (13)
C90.0578 (17)0.069 (2)0.0530 (18)0.0037 (15)0.0260 (14)0.0111 (15)
C100.0505 (16)0.0605 (18)0.076 (2)0.0179 (14)0.0230 (15)0.0115 (16)
C110.0425 (14)0.0524 (16)0.0554 (17)0.0181 (12)0.0105 (12)0.0007 (13)
C120.0349 (12)0.0448 (14)0.0315 (13)0.0001 (10)0.0070 (10)0.0028 (10)
C130.0434 (13)0.0407 (14)0.0436 (14)0.0130 (11)0.0162 (11)0.0074 (11)
C140.0487 (15)0.0585 (17)0.0403 (14)0.0169 (13)0.0009 (12)0.0072 (12)
C150.072 (2)0.079 (2)0.0474 (17)0.0319 (18)0.0023 (15)0.0184 (16)
C160.085 (2)0.064 (2)0.063 (2)0.0322 (18)0.0232 (17)0.0317 (16)
C170.0641 (18)0.0508 (17)0.0581 (18)0.0190 (14)0.0254 (15)0.0180 (14)
C180.081 (2)0.0509 (19)0.089 (3)0.0115 (17)0.035 (2)0.0229 (17)
C190.067 (2)0.0474 (18)0.093 (3)0.0028 (15)0.0266 (19)0.0027 (17)
C200.0481 (15)0.0428 (16)0.0644 (19)0.0014 (12)0.0178 (14)0.0023 (13)
C210.0471 (16)0.0581 (19)0.072 (2)0.0079 (14)0.0056 (15)0.0180 (16)
C220.0418 (15)0.073 (2)0.0561 (18)0.0065 (14)0.0024 (13)0.0122 (16)
C230.0372 (13)0.0557 (16)0.0447 (15)0.0100 (12)0.0016 (11)0.0001 (12)
C240.0379 (13)0.0397 (14)0.0457 (15)0.0088 (11)0.0118 (11)0.0000 (11)
C250.0473 (14)0.0394 (13)0.0286 (12)0.0175 (11)0.0043 (10)0.0068 (10)
C260.0384 (13)0.0591 (16)0.0427 (15)0.0139 (12)0.0103 (11)0.0083 (12)
C270.0499 (16)0.078 (2)0.0499 (17)0.0255 (15)0.0206 (14)0.0153 (16)
C280.072 (2)0.077 (2)0.0416 (16)0.0423 (17)0.0249 (15)0.0109 (15)
C290.0640 (17)0.0507 (16)0.0308 (13)0.0268 (13)0.0072 (12)0.0060 (12)
C300.091 (2)0.0595 (19)0.0419 (16)0.0319 (17)0.0086 (16)0.0019 (14)
C310.085 (2)0.0477 (17)0.0438 (17)0.0128 (15)0.0054 (15)0.0096 (13)
C320.0587 (16)0.0385 (14)0.0396 (15)0.0099 (12)0.0043 (12)0.0050 (12)
C330.0582 (18)0.0459 (16)0.0581 (19)0.0028 (13)0.0112 (14)0.0044 (14)
C340.0400 (14)0.0572 (18)0.0651 (19)0.0030 (13)0.0010 (13)0.0110 (15)
C350.0374 (13)0.0552 (16)0.0497 (16)0.0047 (12)0.0085 (12)0.0064 (13)
C360.0452 (13)0.0351 (13)0.0310 (13)0.0117 (11)0.0002 (10)0.0067 (10)
C370.069 (7)0.107 (6)0.065 (4)0.019 (6)0.006 (5)0.002 (3)
C380.085 (6)0.089 (4)0.046 (4)0.040 (4)0.001 (3)0.012 (3)
C37'0.069 (7)0.107 (6)0.065 (4)0.019 (6)0.006 (5)0.002 (3)
C38'0.085 (6)0.089 (4)0.046 (4)0.040 (4)0.001 (3)0.012 (3)
C390.0559 (18)0.070 (2)0.0483 (17)0.0075 (16)0.0082 (14)0.0055 (14)
C400.0497 (15)0.0563 (17)0.0422 (15)0.0085 (13)0.0055 (12)0.0003 (13)
C410.0578 (18)0.0516 (17)0.0642 (19)0.0052 (14)0.0025 (15)0.0112 (14)
C420.0437 (14)0.0711 (19)0.0377 (15)0.0164 (14)0.0074 (12)0.0015 (13)
C430.0476 (15)0.0593 (18)0.0468 (16)0.0133 (13)0.0048 (12)0.0044 (13)
C440.0518 (16)0.0635 (18)0.0467 (17)0.0045 (14)0.0077 (14)0.0029 (14)
C450.0505 (17)0.072 (2)0.0584 (19)0.0134 (15)0.0040 (14)0.0028 (16)
C460.132 (9)0.079 (5)0.080 (3)0.027 (7)0.032 (7)0.003 (3)
C470.076 (7)0.0497 (19)0.088 (4)0.022 (3)0.029 (4)0.0052 (19)
C46'0.132 (9)0.079 (5)0.080 (3)0.027 (7)0.032 (7)0.003 (3)
C47'0.076 (7)0.0497 (19)0.088 (4)0.022 (3)0.029 (4)0.0052 (19)
C480.0407 (13)0.0393 (14)0.0518 (16)0.0043 (11)0.0081 (12)0.0003 (12)
C490.0419 (14)0.0455 (15)0.0476 (16)0.0081 (11)0.0085 (12)0.0007 (12)
C500.0445 (15)0.0611 (18)0.0580 (19)0.0185 (13)0.0149 (13)0.0085 (15)
C510.0466 (15)0.0532 (17)0.0488 (16)0.0120 (13)0.0002 (13)0.0002 (13)
C520.0560 (16)0.0477 (16)0.0509 (17)0.0064 (13)0.0051 (13)0.0030 (13)
C530.085 (2)0.0438 (17)0.0564 (19)0.0035 (15)0.0148 (17)0.0034 (14)
C540.069 (2)0.0602 (19)0.066 (2)0.0021 (16)0.0033 (16)0.0191 (16)
Geometric parameters (Å, º) top
Fe1—N61.9563 (19)C19—C201.426 (4)
Fe1—N51.9654 (18)C19—H190.9300
Fe1—N41.9686 (19)C20—C241.390 (3)
Fe1—N11.9752 (18)C20—C211.407 (4)
Fe1—N21.9819 (18)C21—C221.355 (4)
Fe1—N31.9836 (18)C21—H210.9300
O1—C421.353 (3)C22—C231.385 (4)
O1—C381.463 (6)C22—H220.9300
O1—C38'1.473 (6)C23—H230.9300
O2—C481.339 (3)C25—C291.401 (3)
O2—C471.452 (6)C25—C361.424 (3)
O2—C47'1.455 (6)C26—C271.389 (3)
O1W—H110.8400C26—H260.9300
O1W—H120.8400C27—C281.359 (4)
N1—C21.326 (3)C27—H270.9300
N1—C11.362 (3)C28—C291.405 (4)
N2—C111.326 (3)C28—H280.9300
N2—C121.367 (3)C29—C301.426 (4)
N3—C141.328 (3)C30—C311.344 (4)
N3—C131.364 (3)C30—H300.9300
N4—C231.334 (3)C31—C321.429 (4)
N4—C241.366 (3)C31—H310.9300
N5—C261.336 (3)C32—C361.388 (3)
N5—C251.361 (3)C32—C331.398 (4)
N6—C351.332 (3)C33—C341.360 (4)
N6—C361.368 (3)C33—H330.9300
N7—C391.140 (4)C34—C351.390 (4)
N8—C411.140 (4)C34—H340.9300
N9—C441.136 (3)C35—H350.9300
N10—C451.149 (4)C37—C381.487 (9)
N11—C501.141 (3)C37—H37A0.9600
N12—C511.145 (3)C37—H37B0.9600
N13—C531.142 (4)C37—H37C0.9600
N14—C541.143 (4)C38—H38A0.9700
C1—C51.395 (3)C38—H38B0.9700
C1—C121.421 (3)C37'—C38'1.495 (9)
C2—C31.393 (3)C37'—H37D0.9600
C2—H20.9300C37'—H37E0.9600
C3—C41.353 (4)C37'—H37F0.9600
C3—H30.9300C38'—H38C0.9700
C4—C51.398 (4)C38'—H38D0.9700
C4—H40.9300C39—C401.419 (4)
C5—C61.427 (4)C40—C421.398 (4)
C6—C71.334 (4)C40—C411.404 (4)
C6—H60.9300C42—C431.388 (4)
C7—C81.432 (4)C43—C441.417 (4)
C7—H70.9300C43—C451.418 (4)
C8—C91.398 (4)C46—C471.509 (9)
C8—C121.400 (3)C46—H46A0.9600
C9—C101.352 (4)C46—H46B0.9600
C9—H90.9300C46—H46C0.9600
C10—C111.401 (4)C47—H47A0.9700
C10—H100.9300C47—H47B0.9700
C11—H11A0.9300C46'—C47'1.521 (9)
C13—C171.399 (3)C46'—H46D0.9600
C13—C241.418 (3)C46'—H46E0.9600
C14—C151.398 (4)C46'—H46F0.9600
C14—H140.9300C47'—H47C0.9700
C15—C161.357 (4)C47'—H47D0.9700
C15—H150.9300C48—C491.389 (3)
C16—C171.401 (4)C48—C521.401 (4)
C16—H160.9300C49—C511.416 (4)
C17—C181.430 (4)C49—C501.419 (4)
C18—C191.348 (4)C52—C541.419 (4)
C18—H180.9300C52—C531.422 (4)
N6—Fe1—N583.02 (8)N5—C25—C29123.8 (2)
N6—Fe1—N4174.79 (7)N5—C25—C36115.8 (2)
N5—Fe1—N494.35 (8)C29—C25—C36120.3 (2)
N6—Fe1—N190.18 (7)N5—C26—C27122.3 (3)
N5—Fe1—N193.45 (7)N5—C26—H26118.8
N4—Fe1—N194.48 (8)C27—C26—H26118.8
N6—Fe1—N296.56 (8)C28—C27—C26120.3 (3)
N5—Fe1—N2175.80 (7)C28—C27—H27119.9
N4—Fe1—N286.38 (7)C26—C27—H27119.9
N1—Fe1—N282.36 (7)C27—C28—C29119.7 (2)
N6—Fe1—N392.90 (8)C27—C28—H28120.2
N5—Fe1—N388.01 (7)C29—C28—H28120.2
N4—Fe1—N382.50 (8)C25—C29—C28116.5 (2)
N1—Fe1—N3176.74 (8)C25—C29—C30117.7 (3)
N2—Fe1—N396.18 (7)C28—C29—C30125.7 (2)
C42—O1—C38116.7 (6)C31—C30—C29121.6 (3)
C42—O1—C38'123.4 (6)C31—C30—H30119.2
C48—O2—C47116.9 (7)C29—C30—H30119.2
C48—O2—C47'123.0 (7)C30—C31—C32121.6 (3)
H11—O1W—H12108.7C30—C31—H31119.2
C2—N1—C1116.7 (2)C32—C31—H31119.2
C2—N1—Fe1130.32 (16)C36—C32—C33116.9 (2)
C1—N1—Fe1112.96 (15)C36—C32—C31117.8 (3)
C11—N2—C12117.2 (2)C33—C32—C31125.3 (3)
C11—N2—Fe1130.11 (17)C34—C33—C32119.7 (3)
C12—N2—Fe1112.15 (14)C34—C33—H33120.2
C14—N3—C13117.4 (2)C32—C33—H33120.2
C14—N3—Fe1129.94 (18)C33—C34—C35120.0 (3)
C13—N3—Fe1112.52 (15)C33—C34—H34120.0
C23—N4—C24116.6 (2)C35—C34—H34120.0
C23—N4—Fe1129.93 (17)N6—C35—C34122.5 (2)
C24—N4—Fe1113.38 (15)N6—C35—H35118.7
C26—N5—C25117.4 (2)C34—C35—H35118.7
C26—N5—Fe1129.83 (17)N6—C36—C32124.0 (2)
C25—N5—Fe1112.78 (15)N6—C36—C25115.2 (2)
C35—N6—C36116.9 (2)C32—C36—C25120.8 (2)
C35—N6—Fe1129.92 (17)C38—C37—H37A109.5
C36—N6—Fe1113.17 (15)C38—C37—H37B109.5
N1—C1—C5123.7 (2)H37A—C37—H37B109.5
N1—C1—C12115.5 (2)C38—C37—H37C109.5
C5—C1—C12120.8 (2)H37A—C37—H37C109.5
N1—C2—C3122.9 (2)H37B—C37—H37C109.5
N1—C2—H2118.5O1—C38—C37109.1 (12)
C3—C2—H2118.5O1—C38—H38A109.9
C4—C3—C2120.2 (3)C37—C38—H38A109.9
C4—C3—H3119.9O1—C38—H38B109.9
C2—C3—H3119.9C37—C38—H38B109.9
C3—C4—C5119.1 (2)H38A—C38—H38B108.3
C3—C4—H4120.5C38'—C37'—H37D109.5
C5—C4—H4120.5C38'—C37'—H37E109.5
C1—C5—C4117.3 (2)H37D—C37'—H37E109.5
C1—C5—C6117.5 (3)C38'—C37'—H37F109.5
C4—C5—C6125.2 (3)H37D—C37'—H37F109.5
C7—C6—C5122.2 (3)H37E—C37'—H37F109.5
C7—C6—H6118.9O1—C38'—C37'103.5 (12)
C5—C6—H6118.9O1—C38'—H38C111.1
C6—C7—C8121.4 (3)C37'—C38'—H38C111.1
C6—C7—H7119.3O1—C38'—H38D111.1
C8—C7—H7119.3C37'—C38'—H38D111.1
C9—C8—C12116.8 (2)H38C—C38'—H38D109.0
C9—C8—C7125.3 (3)N7—C39—C40178.0 (3)
C12—C8—C7117.9 (2)C42—C40—C41121.1 (2)
C10—C9—C8119.3 (2)C42—C40—C39122.6 (2)
C10—C9—H9120.4C41—C40—C39116.3 (3)
C8—C9—H9120.4N8—C41—C40177.0 (4)
C9—C10—C11120.9 (3)O1—C42—C43113.2 (2)
C9—C10—H10119.6O1—C42—C40121.5 (2)
C11—C10—H10119.6C43—C42—C40125.2 (2)
N2—C11—C10121.9 (3)C42—C43—C44123.1 (3)
N2—C11—H11A119.1C42—C43—C45121.1 (2)
C10—C11—H11A119.1C44—C43—C45115.7 (3)
N2—C12—C8123.9 (2)N9—C44—C43177.6 (3)
N2—C12—C1115.9 (2)N10—C45—C43178.3 (3)
C8—C12—C1120.2 (2)C47—C46—H46A109.5
N3—C13—C17123.5 (2)C47—C46—H46B109.5
N3—C13—C24116.1 (2)H46A—C46—H46B109.5
C17—C13—C24120.3 (2)C47—C46—H46C109.5
N3—C14—C15122.6 (3)H46A—C46—H46C109.5
N3—C14—H14118.7H46B—C46—H46C109.5
C15—C14—H14118.7O2—C47—C46106.0 (12)
C16—C15—C14119.8 (3)O2—C47—H47A110.5
C16—C15—H15120.1C46—C47—H47A110.5
C14—C15—H15120.1O2—C47—H47B110.5
C15—C16—C17119.8 (3)C46—C47—H47B110.5
C15—C16—H16120.1H47A—C47—H47B108.7
C17—C16—H16120.1C47'—C46'—H46D109.5
C13—C17—C16116.8 (3)C47'—C46'—H46E109.5
C13—C17—C18117.6 (3)H46D—C46'—H46E109.5
C16—C17—C18125.5 (3)C47'—C46'—H46F109.5
C19—C18—C17121.8 (3)H46D—C46'—H46F109.5
C19—C18—H18119.1H46E—C46'—H46F109.5
C17—C18—H18119.1O2—C47'—C46'105.4 (12)
C18—C19—C20121.1 (3)O2—C47'—H47C110.7
C18—C19—H19119.4C46'—C47'—H47C110.7
C20—C19—H19119.4O2—C47'—H47D110.7
C24—C20—C21117.2 (3)C46'—C47'—H47D110.7
C24—C20—C19118.1 (3)H47C—C47'—H47D108.8
C21—C20—C19124.7 (3)O2—C48—C49112.9 (2)
C22—C21—C20119.3 (3)O2—C48—C52121.9 (2)
C22—C21—H21120.3C49—C48—C52125.2 (2)
C20—C21—H21120.3C48—C49—C51124.2 (2)
C21—C22—C23119.9 (3)C48—C49—C50120.1 (2)
C21—C22—H22120.0C51—C49—C50115.7 (2)
C23—C22—H22120.0N11—C50—C49177.9 (3)
N4—C23—C22123.3 (3)N12—C51—C49176.6 (3)
N4—C23—H23118.4C48—C52—C54122.4 (3)
C22—C23—H23118.4C48—C52—C53121.2 (2)
N4—C24—C20123.7 (2)C54—C52—C53116.4 (3)
N4—C24—C13115.4 (2)N13—C53—C52177.9 (3)
C20—C24—C13120.9 (2)N14—C54—C52178.1 (4)
N6—Fe1—N1—C277.2 (2)N3—C13—C17—C18178.1 (2)
N5—Fe1—N1—C25.8 (2)C24—C13—C17—C181.6 (4)
N4—Fe1—N1—C2100.5 (2)C15—C16—C17—C131.2 (4)
N2—Fe1—N1—C2173.8 (2)C15—C16—C17—C18178.5 (3)
N6—Fe1—N1—C1104.61 (16)C13—C17—C18—C190.5 (4)
N5—Fe1—N1—C1172.37 (16)C16—C17—C18—C19179.2 (3)
N4—Fe1—N1—C177.72 (16)C17—C18—C19—C201.5 (5)
N2—Fe1—N1—C18.02 (15)C18—C19—C20—C240.3 (4)
N6—Fe1—N2—C1189.7 (2)C18—C19—C20—C21179.6 (3)
N4—Fe1—N2—C1186.0 (2)C24—C20—C21—C220.1 (4)
N1—Fe1—N2—C11179.0 (2)C19—C20—C21—C22179.8 (3)
N3—Fe1—N2—C113.9 (2)C20—C21—C22—C231.1 (4)
N6—Fe1—N2—C1298.77 (15)C24—N4—C23—C220.6 (3)
N4—Fe1—N2—C1285.53 (15)Fe1—N4—C23—C22176.88 (18)
N1—Fe1—N2—C129.48 (15)C21—C22—C23—N40.9 (4)
N3—Fe1—N2—C12167.58 (15)C23—N4—C24—C201.9 (3)
N6—Fe1—N3—C140.1 (2)Fe1—N4—C24—C20178.83 (19)
N5—Fe1—N3—C1483.0 (2)C23—N4—C24—C13178.1 (2)
N4—Fe1—N3—C14177.6 (2)Fe1—N4—C24—C131.2 (2)
N2—Fe1—N3—C1496.8 (2)C21—C20—C24—N41.7 (4)
N6—Fe1—N3—C13175.51 (15)C19—C20—C24—N4178.2 (2)
N5—Fe1—N3—C1392.61 (15)C21—C20—C24—C13178.4 (2)
N4—Fe1—N3—C132.05 (15)C19—C20—C24—C131.7 (4)
N2—Fe1—N3—C1387.56 (15)N3—C13—C24—N43.1 (3)
N5—Fe1—N4—C2396.6 (2)C17—C13—C24—N4177.2 (2)
N1—Fe1—N4—C232.8 (2)N3—C13—C24—C20177.0 (2)
N2—Fe1—N4—C2379.2 (2)C17—C13—C24—C202.7 (3)
N3—Fe1—N4—C23176.0 (2)C26—N5—C25—C290.5 (3)
N5—Fe1—N4—C2486.99 (15)Fe1—N5—C25—C29179.39 (17)
N1—Fe1—N4—C24179.20 (15)C26—N5—C25—C36179.68 (19)
N2—Fe1—N4—C2497.16 (15)Fe1—N5—C25—C360.8 (2)
N3—Fe1—N4—C240.43 (15)C25—N5—C26—C270.5 (3)
N6—Fe1—N5—C26179.6 (2)Fe1—N5—C26—C27178.19 (18)
N4—Fe1—N5—C264.2 (2)N5—C26—C27—C280.9 (4)
N1—Fe1—N5—C2690.6 (2)C26—C27—C28—C290.4 (4)
N3—Fe1—N5—C2686.5 (2)N5—C25—C29—C281.0 (3)
N6—Fe1—N5—C250.94 (14)C36—C25—C29—C28179.2 (2)
N4—Fe1—N5—C25174.54 (14)N5—C25—C29—C30179.9 (2)
N1—Fe1—N5—C2590.70 (15)C36—C25—C29—C300.3 (3)
N3—Fe1—N5—C2592.22 (15)C27—C28—C29—C250.5 (4)
N5—Fe1—N6—C35179.3 (2)C27—C28—C29—C30179.3 (2)
N1—Fe1—N6—C3585.9 (2)C25—C29—C30—C310.6 (4)
N2—Fe1—N6—C353.5 (2)C28—C29—C30—C31178.2 (3)
N5—Fe1—N6—C360.92 (14)C29—C30—C31—C320.9 (4)
N1—Fe1—N6—C3694.38 (15)C30—C31—C32—C360.4 (4)
N2—Fe1—N6—C36176.71 (14)C30—C31—C32—C33179.0 (3)
N3—Fe1—N6—C3686.72 (15)C36—C32—C33—C340.4 (4)
C2—N1—C1—C53.4 (3)C31—C32—C33—C34179.0 (2)
Fe1—N1—C1—C5175.04 (18)C32—C33—C34—C351.1 (4)
C2—N1—C1—C12176.4 (2)C36—N6—C35—C340.5 (3)
Fe1—N1—C1—C125.2 (3)Fe1—N6—C35—C34179.29 (18)
C1—N1—C2—C30.6 (4)C33—C34—C35—N60.7 (4)
Fe1—N1—C2—C3177.50 (19)C35—N6—C36—C321.2 (3)
N1—C2—C3—C42.1 (4)Fe1—N6—C36—C32178.56 (17)
C2—C3—C4—C52.0 (4)C35—N6—C36—C25179.46 (19)
N1—C1—C5—C43.4 (4)Fe1—N6—C36—C250.7 (2)
C12—C1—C5—C4176.4 (2)C33—C32—C36—N60.8 (3)
N1—C1—C5—C6176.5 (2)C31—C32—C36—N6179.7 (2)
C12—C1—C5—C63.7 (4)C33—C32—C36—C25179.9 (2)
C3—C4—C5—C10.5 (4)C31—C32—C36—C250.5 (3)
C3—C4—C5—C6179.4 (3)N5—C25—C36—N60.0 (3)
C1—C5—C6—C71.9 (4)C29—C25—C36—N6179.86 (19)
C4—C5—C6—C7178.2 (3)N5—C25—C36—C32179.37 (19)
C5—C6—C7—C81.0 (5)C29—C25—C36—C320.8 (3)
C6—C7—C8—C9177.4 (3)C42—O1—C38—C37178.4 (7)
C6—C7—C8—C122.0 (4)C42—O1—C38'—C37'143.5 (8)
C12—C8—C9—C101.0 (4)C38—O1—C42—C43136.6 (6)
C7—C8—C9—C10178.5 (3)C38'—O1—C42—C43162.0 (5)
C8—C9—C10—C110.7 (4)C38—O1—C42—C4044.9 (6)
C12—N2—C11—C101.9 (4)C38'—O1—C42—C4019.5 (6)
Fe1—N2—C11—C10169.21 (19)C41—C40—C42—O1156.7 (3)
C9—C10—C11—N20.8 (4)C39—C40—C42—O122.8 (4)
C11—N2—C12—C81.7 (3)C41—C40—C42—C4324.9 (4)
Fe1—N2—C12—C8171.01 (19)C39—C40—C42—C43155.6 (3)
C11—N2—C12—C1177.9 (2)O1—C42—C43—C44161.2 (2)
Fe1—N2—C12—C19.4 (2)C40—C42—C43—C4417.4 (4)
C9—C8—C12—N20.2 (4)O1—C42—C43—C4515.6 (3)
C7—C8—C12—N2179.7 (2)C40—C42—C43—C45165.9 (3)
C9—C8—C12—C1179.3 (2)C48—O2—C47—C46164.3 (7)
C7—C8—C12—C10.2 (3)C47'—O2—C47—C4676 (6)
N1—C1—C12—N22.9 (3)C48—O2—C47'—C46'128.5 (8)
C5—C1—C12—N2176.9 (2)C47—O2—C48—C49133.8 (8)
N1—C1—C12—C8177.5 (2)C47'—O2—C48—C49148.0 (8)
C5—C1—C12—C82.7 (3)C47—O2—C48—C5247.5 (9)
C14—N3—C13—C170.8 (3)C47'—O2—C48—C5233.3 (9)
Fe1—N3—C13—C17176.96 (18)O2—C48—C49—C51162.4 (2)
C14—N3—C13—C24179.5 (2)C52—C48—C49—C5116.3 (4)
Fe1—N3—C13—C243.3 (2)O2—C48—C49—C5015.0 (3)
C13—N3—C14—C150.4 (3)C52—C48—C49—C50166.3 (2)
Fe1—N3—C14—C15174.98 (19)O2—C48—C52—C5418.5 (4)
N3—C14—C15—C160.7 (4)C49—C48—C52—C54160.1 (3)
C14—C15—C16—C170.1 (4)O2—C48—C52—C53162.8 (2)
N3—C13—C17—C161.6 (4)C49—C48—C52—C5318.7 (4)
C24—C13—C17—C16178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N70.842.172.996 (5)169
O1w—H12···N8i0.842.253.078 (5)169
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C12H8N2)3](C9H5N4O)2·0.5H2O
Mr975.81
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3497 (3), 14.1736 (4), 18.6086 (6)
α, β, γ (°)94.462 (2), 96.562 (1), 101.129 (1)
V3)2391.12 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.55 × 0.35 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.820, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
38167, 10845, 6909
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.02
No. of reflections10845
No. of parameters661
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.43

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Fe1—N61.9563 (19)Fe1—N11.9752 (18)
Fe1—N51.9654 (18)Fe1—N21.9819 (18)
Fe1—N41.9686 (19)Fe1—N31.9836 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N70.842.172.996 (5)169
O1w—H12···N8i0.842.253.078 (5)169
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We are grateful for financial assistance from the DG–RSDT and ANDRU (Diretion Générale de la Recherche Scientif­ique et du Développement Technologique et l'Agence Nationale pour le Développement de la Recherche Universitaire, Algéria) through the PNR project. We also acknowledge the Ministry of Higher Education of Malaysia (grant No·UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAparici Plaza, L., Baranowska, K. & Becker, B. (2007). Acta Cryst. E63, m1537–m1539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Z.-M. & Zhan, S.-Z. (2012). Acta Cryst. E68, m956.  CSD CrossRef IUCr Journals Google Scholar
First citationHoshina, G., Ohba, S., Tsuchiya, N., Isobe, T. & Senna, M. (2000). Acta Cryst. C56, e191–e192.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHwang, I.-C. & Ha, K. (2006). Acta Cryst. E62, m376–m378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiddleton, W. J. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2788–2795.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, D.-P. & Guo, G.-L. (2007). Acta Cryst. E63, m1122–m1124.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds