organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1194

4-Nitro-N-(4-nitro­benzo­yl)benzamide

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 April 2011; accepted 18 April 2011; online 22 April 2011)

The central acetyl­acetamide moiety in the title compound, C14H9N3O6, is buckled [e.g. the C—N—C—O torsion angle is 14.3 (6)°] but the r.m.s. deviation for the five atoms is 0.044 Å. The benzene rings lie on the same side of the central plane, forming dihedral angles of 37.17 (15) and 28.58 (19)° with it. The dihedral angle between the two rings is 17.8 (2)° indicating that the mol­ecule is curved. The carbonyl groups are syn to each other and anti to the amino H atom. This allows for the formation of N—H⋯O hydrogen bonds in the crystal, which leads to twisted chains along the b axis. Positional disorder (50:50) of the O atoms was modelled for both the nitro groups.

Related literature

For background to high-temperature polymers for replacement of ceramics and metals, see: Ataei et al. (2005[Ataei, S. M., Sarrafi, Y., Hatami, M. & Faizi, L. A. (2005). Eur. Polym. J. 41, 491-499.]); Im & Jung, (2000[Im, J. K. & Jung, J. C. (2000). Polymers, 41, 8709-8716.]); Yang et al. (2002[Yang, C.-P., Chen, R.-S. & Hsu, M.-F. (2002). J. Polym. Res. 9, 245-250.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9N3O6

  • Mr = 315.24

  • Orthorhombic, P b c a

  • a = 13.4757 (7) Å

  • b = 8.5170 (6) Å

  • c = 24.6285 (17) Å

  • V = 2826.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.30 × 0.15 × 0.05 mm

Data collection
  • Agilent Technologies SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.965, Tmax = 0.994

  • 13745 measured reflections

  • 2487 independent reflections

  • 1433 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.217

  • S = 1.02

  • 2487 reflections

  • 221 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.88 2.08 2.951 (4) 170
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

High-temperature polymers have received much attention owing to interest in the replacement of ceramics and metals (Ataei et al., 2005). However, in many cases they are insoluble and do not melt below their decomposition temperature, a feature that restricts their applications (Im & Jung, 2000). Many studies have therefore focused upon obtaining aromatic polymers that are processable by conventional techniques (Yang et al., 2002). The title compound, (I), is a logical precursor for an attempt to synthesize polyamides and polyimides having excellent thermal and mechanical properties.

Small twists are evident in the central acetylacetamide moiety as seen in the values of the C8—N2—C7—O3 and C7—N2—C8—O4 torsion angles of -4.9 (6) and 14.3 (6) °, respectively. Despite this, the r.m.s. of the fitted atoms from their least-squares plane = 0.0438 Å with the major deviations of 0.0473 (16) and -0.0708 (23) Å being for the O4 and C8 atoms, respectively. The C1- and C9-benzene rings form dihedral angles of 37.17 (15) and 28.58 (19) ° with the central plane, respectively, and form a dihedral angle of 17.8 (2) ° with each other. As the benzene rings lie to the same side of the central plane, overall, the molecule of (I) is curved, Fig. 1. The carbonyl groups are syn and the amino-H atom is directed towards the other side of the molecule, i.e. anti to the carbonyls. This arrangmement allows for the formation of N—H···O hydorgen bonds leading to a highly twisted chain, Fig. 2 and Table 1. Globally, molecules pack into undulating layers as shown in Fig. 3.

Related literature top

For background to high-temperature polymers for replacement of ceramics and metals, see: Ataei et al. (2005); Im & Jung, (2000); Yang et al. (2002).

Experimental top

All the reagents and organic solvents were of analytical grade and commercially available. The title compound was accidentally generated during the reaction of 4-nitrobenzoyl chloride with imidazole; it was isolated from the reaction mixture by column chromatography in 45% yield and then purified by re-crystallization from ethanol to give colourless prisms of (I). M.pt. 438–439 K; Anal.: C, 53.34; H, 2.88; N, 13.33%. C14H9N3O6 requires: C, 53.41; H, 2.87; N, 13.36%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.93 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was similarly placed [N–H 0.88 Å, Uiso(H) 1.2Ueq(N)].

The nitro groups are disordered over two positions in respect of the O atoms; the disorder could not be refined, and was assumed to be a 1:1 type of disorder. For each group, the N—O distances were restrained to within ±0.01 Å of each other, and the four-atom CNO2 unit was restrained to be nearly flat. The displacement parameters were restrained to be nearly isotropic.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Supramolecular chain aligned along the b axis in (I) mediated by N—H···O hydrogen bonding shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the crystal packing in (I), highlighting the undulating layers. The N—H···O hydrogen bonding is shown as orange dashed lines.
4-Nitro-N-(4-nitrobenzoyl)benzamide top
Crystal data top
C14H9N3O6F(000) = 1296
Mr = 315.24Dx = 1.482 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2137 reflections
a = 13.4757 (7) Åθ = 2.4–29.3°
b = 8.5170 (6) ŵ = 0.12 mm1
c = 24.6285 (17) ÅT = 295 K
V = 2826.7 (3) Å3Prism, colorless
Z = 80.30 × 0.15 × 0.05 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
2487 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1433 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.067
Detector resolution: 10.4041 pixels mm-1θmax = 25.1°, θmin = 3.0°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 108
Tmin = 0.965, Tmax = 0.994l = 2929
13745 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.217 w = 1/[σ2(Fo2) + (0.0936P)2 + 1.8503P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2487 reflectionsΔρmax = 0.38 e Å3
221 parametersΔρmin = 0.31 e Å3
40 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (11)
Crystal data top
C14H9N3O6V = 2826.7 (3) Å3
Mr = 315.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.4757 (7) ŵ = 0.12 mm1
b = 8.5170 (6) ÅT = 295 K
c = 24.6285 (17) Å0.30 × 0.15 × 0.05 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
2487 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1433 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.994Rint = 0.067
13745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06540 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.02Δρmax = 0.38 e Å3
2487 reflectionsΔρmin = 0.31 e Å3
221 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.975 (3)0.868 (3)0.4716 (10)0.092 (4)0.50
O21.1108 (6)0.774 (4)0.5041 (14)0.087 (3)0.50
O1'0.974 (3)0.835 (3)0.4633 (9)0.092 (4)0.50
O2'1.1072 (6)0.804 (4)0.5128 (14)0.087 (3)0.50
O30.84634 (19)0.2233 (3)0.64513 (11)0.0615 (8)
O40.67456 (19)0.1707 (3)0.70172 (11)0.0596 (8)
O50.1877 (10)0.4334 (12)0.7162 (4)0.100 (3)0.50
O60.2086 (12)0.5041 (11)0.6323 (4)0.112 (3)0.50
O5'0.1823 (10)0.3657 (12)0.6995 (4)0.100 (3)0.50
O6'0.2166 (12)0.5728 (10)0.6491 (4)0.112 (3)0.50
N11.0204 (3)0.7784 (4)0.50161 (13)0.0710 (11)
N20.71486 (19)0.3916 (4)0.65368 (12)0.0489 (8)
H20.69510.48820.64710.059*
N30.2410 (3)0.4541 (4)0.67600 (15)0.0986 (15)
C10.8597 (2)0.4671 (4)0.60108 (14)0.0462 (9)
C20.9620 (3)0.4820 (5)0.60666 (15)0.0518 (10)
H2A0.99550.42180.63230.062*
C31.0139 (3)0.5855 (5)0.57437 (15)0.0524 (10)
H31.08210.59760.57840.063*
C40.9630 (3)0.6702 (4)0.53628 (14)0.0525 (10)
C50.8623 (3)0.6587 (5)0.52915 (15)0.0576 (11)
H50.82990.71740.50270.069*
C60.8110 (3)0.5574 (5)0.56230 (15)0.0546 (10)
H60.74250.54920.55870.066*
C70.8080 (3)0.3493 (4)0.63559 (15)0.0468 (9)
C80.6499 (3)0.2939 (5)0.68146 (14)0.0475 (9)
C90.5444 (2)0.3483 (4)0.68244 (14)0.0458 (9)
C100.4802 (3)0.2851 (5)0.72057 (15)0.0578 (11)
H100.50480.21800.74710.069*
C110.3815 (3)0.3200 (6)0.71968 (17)0.0691 (13)
H110.33850.27830.74540.083*
C120.3472 (3)0.4188 (5)0.67959 (17)0.0628 (11)
C130.4080 (3)0.4851 (5)0.64193 (17)0.0628 (11)
H130.38280.55320.61580.075*
C140.5079 (3)0.4492 (5)0.64323 (15)0.0532 (10)
H140.55070.49290.61770.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.125 (3)0.080 (8)0.071 (6)0.005 (6)0.007 (5)0.026 (5)
O20.083 (2)0.087 (9)0.093 (8)0.014 (2)0.032 (3)0.006 (5)
O1'0.125 (3)0.080 (8)0.071 (6)0.005 (6)0.007 (5)0.026 (5)
O2'0.083 (2)0.087 (9)0.093 (8)0.014 (2)0.032 (3)0.006 (5)
O30.0501 (15)0.0421 (17)0.092 (2)0.0075 (12)0.0066 (14)0.0080 (14)
O40.0601 (17)0.0487 (17)0.0699 (17)0.0045 (13)0.0018 (13)0.0090 (14)
O50.059 (2)0.131 (8)0.109 (6)0.003 (5)0.022 (4)0.021 (5)
O60.066 (3)0.164 (7)0.105 (5)0.017 (6)0.015 (4)0.031 (5)
O5'0.059 (2)0.131 (8)0.109 (6)0.003 (5)0.022 (4)0.021 (5)
O6'0.066 (3)0.164 (7)0.105 (5)0.017 (6)0.015 (4)0.031 (5)
N10.088 (3)0.064 (3)0.061 (2)0.001 (2)0.018 (2)0.007 (2)
N20.0411 (16)0.0393 (18)0.066 (2)0.0004 (14)0.0043 (14)0.0044 (15)
N30.054 (2)0.150 (4)0.091 (3)0.011 (3)0.005 (2)0.040 (3)
C10.045 (2)0.043 (2)0.051 (2)0.0012 (16)0.0009 (16)0.0034 (17)
C20.047 (2)0.055 (2)0.053 (2)0.0058 (18)0.0012 (17)0.0064 (19)
C30.047 (2)0.055 (2)0.055 (2)0.0038 (18)0.0067 (18)0.0019 (19)
C40.063 (3)0.049 (2)0.045 (2)0.0002 (19)0.0097 (18)0.0019 (18)
C50.065 (3)0.060 (3)0.048 (2)0.013 (2)0.0016 (19)0.0076 (19)
C60.048 (2)0.059 (3)0.057 (2)0.0057 (19)0.0044 (18)0.001 (2)
C70.042 (2)0.038 (2)0.060 (2)0.0013 (17)0.0050 (17)0.0045 (18)
C80.049 (2)0.044 (2)0.050 (2)0.0030 (18)0.0013 (17)0.0001 (18)
C90.044 (2)0.042 (2)0.051 (2)0.0036 (17)0.0047 (17)0.0007 (17)
C100.054 (2)0.069 (3)0.051 (2)0.0032 (19)0.0006 (18)0.014 (2)
C110.054 (2)0.094 (4)0.059 (3)0.001 (2)0.008 (2)0.016 (2)
C120.037 (2)0.087 (3)0.064 (3)0.000 (2)0.0038 (19)0.012 (2)
C130.052 (2)0.073 (3)0.063 (3)0.003 (2)0.009 (2)0.015 (2)
C140.046 (2)0.056 (2)0.058 (2)0.0063 (18)0.0020 (18)0.0086 (19)
Geometric parameters (Å, º) top
O1—N11.228 (7)C2—H2A0.9300
O2—N11.221 (7)C3—C41.367 (5)
O1'—N11.228 (7)C3—H30.9300
O2'—N11.222 (7)C4—C51.372 (5)
O3—C71.214 (4)C5—C61.374 (5)
O4—C81.209 (4)C5—H50.9300
O5—N31.235 (7)C6—H60.9300
O6—N31.237 (7)C8—C91.496 (5)
O5'—N31.236 (7)C9—C141.383 (5)
O6'—N31.254 (7)C9—C101.385 (5)
N1—C41.475 (5)C10—C111.363 (5)
N2—C71.380 (4)C10—H100.9300
N2—C81.388 (4)C11—C121.377 (6)
N2—H20.8800C11—H110.9300
N3—C121.466 (5)C12—C131.360 (6)
C1—C21.391 (5)C13—C141.381 (5)
C1—C61.391 (5)C13—H130.9300
C1—C71.488 (5)C14—H140.9300
C2—C31.378 (5)
O2—N1—O1123 (3)C4—C5—H5121.1
O2'—N1—O1'126 (3)C6—C5—H5121.1
O2—N1—C4118.4 (19)C5—C6—C1121.2 (4)
O2'—N1—C4118.9 (19)C5—C6—H6119.4
O1—N1—C4118 (2)C1—C6—H6119.4
O1'—N1—C4115 (2)O3—C7—N2123.7 (3)
C7—N2—C8125.2 (3)O3—C7—C1120.5 (3)
C7—N2—H2117.4N2—C7—C1115.7 (3)
C8—N2—H2117.4O4—C8—N2123.4 (3)
O5—N3—O6122.7 (12)O4—C8—C9121.6 (3)
O5—N3—O6'112.7 (10)N2—C8—C9115.0 (3)
O5'—N3—O6'124.8 (12)C14—C9—C10119.5 (3)
O5—N3—C12119.4 (8)C14—C9—C8121.2 (3)
O6—N3—C12117.9 (9)C10—C9—C8119.0 (3)
O5'—N3—C12118.2 (8)C11—C10—C9120.9 (4)
O6'—N3—C12117.0 (9)C11—C10—H10119.5
C2—C1—C6119.0 (3)C9—C10—H10119.5
C2—C1—C7118.0 (3)C10—C11—C12118.2 (4)
C6—C1—C7123.0 (3)C10—C11—H11120.9
C3—C2—C1120.3 (3)C12—C11—H11120.9
C3—C2—H2A119.9C13—C12—C11122.7 (4)
C1—C2—H2A119.9C13—C12—N3117.5 (4)
C4—C3—C2118.6 (4)C11—C12—N3119.8 (3)
C4—C3—H3120.7C12—C13—C14118.6 (4)
C2—C3—H3120.7C12—C13—H13120.7
C3—C4—C5123.1 (3)C14—C13—H13120.7
C3—C4—N1117.7 (4)C13—C14—C9120.0 (3)
C5—C4—N1119.3 (3)C13—C14—H14120.0
C4—C5—C6117.8 (3)C9—C14—H14120.0
C6—C1—C2—C30.4 (5)C7—N2—C8—O414.3 (6)
C7—C1—C2—C3177.8 (3)C7—N2—C8—C9162.8 (3)
C1—C2—C3—C41.3 (6)O4—C8—C9—C14153.9 (4)
C2—C3—C4—C51.0 (6)N2—C8—C9—C1423.3 (5)
C2—C3—C4—N1179.0 (3)O4—C8—C9—C1020.4 (5)
O2—N1—C4—C38.3 (14)N2—C8—C9—C10162.4 (3)
O2'—N1—C4—C39.7 (14)C14—C9—C10—C110.6 (6)
O1—N1—C4—C3171.8 (14)C8—C9—C10—C11173.8 (4)
O1'—N1—C4—C3170.3 (14)C9—C10—C11—C120.5 (6)
O2—N1—C4—C5171.7 (14)C10—C11—C12—C131.5 (7)
O2'—N1—C4—C5170.3 (14)C10—C11—C12—N3177.6 (4)
O1—N1—C4—C58.2 (14)O5—N3—C12—C13160.6 (6)
O1'—N1—C4—C59.7 (14)O6—N3—C12—C1319.3 (6)
C3—C4—C5—C60.3 (6)O5'—N3—C12—C13161.1 (6)
N1—C4—C5—C6179.7 (3)O6'—N3—C12—C1318.9 (6)
C4—C5—C6—C11.3 (6)O5—N3—C12—C1120.2 (6)
C2—C1—C6—C51.0 (6)O6—N3—C12—C11159.9 (6)
C7—C1—C6—C5176.3 (3)O5'—N3—C12—C1118.1 (6)
C8—N2—C7—O34.9 (6)O6'—N3—C12—C11161.9 (6)
C8—N2—C7—C1173.0 (3)C11—C12—C13—C141.4 (7)
C2—C1—C7—O338.2 (5)N3—C12—C13—C14177.7 (4)
C6—C1—C7—O3139.1 (4)C12—C13—C14—C90.3 (6)
C2—C1—C7—N2143.8 (3)C10—C9—C14—C130.7 (6)
C6—C1—C7—N238.9 (5)C8—C9—C14—C13173.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.882.082.951 (4)170
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H9N3O6
Mr315.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)13.4757 (7), 8.5170 (6), 24.6285 (17)
V3)2826.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.15 × 0.05
Data collection
DiffractometerAgilent Technologies SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.965, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
13745, 2487, 1433
Rint0.067
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.217, 1.02
No. of reflections2487
No. of parameters221
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.31

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.882.082.951 (4)170
Symmetry code: (i) x+3/2, y+1/2, z.
 

Footnotes

Additional correspondence author, e-mail: sohail262001@yahoo.com.

Acknowledgements

The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities. The authors also thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAtaei, S. M., Sarrafi, Y., Hatami, M. & Faizi, L. A. (2005). Eur. Polym. J. 41, 491–499.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIm, J. K. & Jung, J. C. (2000). Polymers, 41, 8709–8716.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, C.-P., Chen, R.-S. & Hsu, M.-F. (2002). J. Polym. Res. 9, 245–250.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1194
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds