inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Al0.88Cu0.94Fe0.18

crossmark logo

aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China, and bHebei Key Lab for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 11 September 2023; accepted 4 October 2023; online 12 October 2023)

The inter­metallic phase with composition Al0.88Cu0.94Fe0.18 was synthesized by high-temperature sinter­ing of a mixture with initial chemical composition Al78Cu48Fe13. Al0.88Cu0.94Fe0.18 adopts the CsCl structure type in space-group Pm[\overline{3}]m. The structure analysis revealed that one site is co-occupied by Al and Cu with a ratio of 0.88 (5):0.12 (5) and the other is co-occupied by Fe and Cu with a ratio of 0.2 (4):0.8 (4). The Al/Cu⋯Fe/Cu separation is 2.5465 (13) Å.

3D view (loading...)
[Scheme 3D1]

Structure description

Phases in the ternary Al–Cu–Fe alloy system often have complex crystal structures as well as quasicrystals (QC). For example, an aperiodic diffraction pattern was observed for the alloy with composition Al63Cu24Fe13, exhibiting tenfold rotation symmetry and characterized as a quasi-crystalline phase, as revealed by the first natural quasicrystal (Bindi et al., 2011[Bindi, L., Steinhardt, P. J., Yao, N. & Lu, P. J. (2011). Am. Mineral. 96, 928-931.]). The present phase Al0.88Cu0.94Fe0.18 belongs to the β-phase in the Al–Cu–Fe system, which is similar to that of the B2-FeAl phase (Rosas & Perez,1998[Rosas, G. & Perez, R. (1998). Mater. Lett. 36, 229-234.]). Meyer et al. (2007[Meyer, M., Sánchez, F. & Mendoza-Zélis, L. (2007). Physica B, 389, 163-167.]) suggested that the β-phase has a b.c.c. crystal structure, and the lattice parameter of β-Al50Cu20Fe30 was a = 2.925 Å as determined by X-ray diffraction. Kalmykov et al. (2009[Kalmykov, K. B., Zvereva, N. L., Dunaev, S. F., Kazennov, N. V., Tat'yanin, E. V., Semernin, G. V., Dmitrieva, N. E. & Balykova, Y. V. (2009). Moscow Univ. Chem. Bull. 64, 99-103.]) studied the Al–Cu–Fe phase diagram at 853 K, and considered that the lattice parameter of the β-AlCuFe phase increased with the increase of Cu content. The lowest copper content of the β-phase is 7.3 at.% corresponding to a lattice parameter of a = 2.9171 Å, while the β-phase with the highest copper content of 45.5 at.% has a = 2.9390 Å. Shalaeva & Prekul (2011[Shalaeva, E. V. & Prekul, A. F. (2011). Philos. Mag. 91, 589-608.]) studied two kinds of β-phases with nominal composition of Al50Cu33Fe17, namely the β1- and β2-phases. The lattice parameters of the two phases were found to be 2.939 and 2.969 Å, respectively, by X-ray diffraction, and the average compositions of the two phases were Al51.5Fe19Cu29.5 and Al48.5Fe13Cu38.5, respectively, by the electron-probe method. It should be noted that only the lattice parameters of the β-phase have been given in the aforementioned studies while an exact crystal structural model has not been provided. According to the Springer Materials database, there are several crystal-structure models for the β-phase in previous studies; however, such a given structure model only represents a possibility inferred from the composition rather than a refined one.

In the present study, the crystal structure model for the β-phase in the Al–Cu–Fe system has been refined on basis of single-crystal X-ray diffraction data. This phase has similar lattice parameters to the previously reported β-phase. Its chemical composition was refined to be Al0.88Cu0.94Fe0.18, in accordance with the complementary EDX results (see Table S1 of the supporting information).

Fig. 1[link] shows the distribution of the atoms in the unit cell of Al0.88Cu0.94Fe0.18. The environments of the Al1/Cu1 and Cu2/Fe1 sites are shown in Figs. 2[link] and 3[link], respectively. The Al1/Cu1 atom at (0, 0, 0) is centered at a dodeca­hedron, which is surrounded by six Al1/Cu1 atoms and eight Cu2/Fe1 atoms; conversely, the Cu2/Fe1 site at (1/2, 1/2, 1/2) is surrounded by eight Al1/Cu1 atoms and six Cu2/Fe1 atoms. The shortest Al1/Cu1 to Cu2/Fe1 separation is 2.5465 (13) Å and the shortest Al1/Cu1 to Al1/Cu1 contact is 2.9405 (15) Å.

[Figure 1]
Figure 1
The crystal structure of Al0.88Cu0.94Fe0.18.
[Figure 2]
Figure 2
(a) The dodeca­hedron formed around the Al1/Cu1 atom at the 1a site; (b) the environment of the Al1/Cu1 atom with displacement ellipsoids given at the 99% probability level. [Symmetry codes: (i) x − 1, y − 1, z − 1; (ii) x − 1, y, z; (iii) x, y − 1, z; (iv) x − 1, y − 1, z; (v) x, y, z − 1; (vi) x − 1, y, z − 1; (vii) x, y − 1, z − 1; (viii) x, y, z + 1; (ix) x, y + 1, z.]
[Figure 3]
Figure 3
(a) The dodeca­hedron formed around the Cu2/Fe1 atom at the 1b site; (b) the environment of the Cu2/Fe atom with displacement ellipsoids given at the 99% probability level. [Symmetry codes: (ii) x − 1, y, z; (iii) x, y − 1, z; (v) x, y, z − 1; (viii) x, y, z + 1.]

Synthesis and crystallization

The high-purity elements Al (indicated purity 99.95%; 0.7163 g), Cu (indicated purity 99.99%; 1.0372 g) and Fe (indicated purity 99.9%; 0.2485 g) were mixed in the molar ratio 78:48:13 and ground in an agate mortar. The blended powders were placed into a cemented carbide grinding mound of 9.6 mm diameter and pressed at 4 MPa for about 3 min. The obtained cylindrical block was put into a silica glass tube and vacuum-sealed by a home-made sealing machine. The resulting ampoule then was placed in a furnace (SG-XQL1200) and heated up to 1373 K for 2 h with with a heating rate of 10 K min−1. The temperature was then reduced to 1073 K for 10 h. Finally, the sample was slowly cooled to room temperature by turning off the furnace power. Suitable pieces of single-crystal grains were broken and selected from the product for single-crystal X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All atoms in the unit cell co-occupied the Wykoff positions. Different choices of refinement are listed in Table S2 of the supporting information. The maximum and minimum residual electron densities in the final difference map are located 0.0 Å and 1.01 Å from the atoms Cu1.

Table 1
Experimental details

Crystal data
Chemical formula Al0.88Cu0.94Fe0.18
Mr 93.42
Crystal system, space group Cubic, Pm[\overline{3}]m
Temperature (K) 299
a (Å) 2.9405 (15)
V3) 25.43 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 22.36
Crystal size (mm) 0.14 × 0.12 × 0.12
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.439, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 385, 14, 14
Rint 0.021
(sin θ/λ)max−1) 0.636
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.031, 1.44
No. of reflections 14
No. of parameters 5
Δρmax, Δρmin (e Å−3) 0.32, −0.48
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2017[Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: APEX3 (Bruker, 2015); data reduction: APEX3 and SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2017); software used to prepare material for publication: publCIF (Westrip, 2010).

Aluminium copper iron top
Crystal data top
Al0.88Cu0.94Fe0.18Mo Kα radiation, λ = 0.71073 Å
Mr = 93.42Cell parameters from 367 reflections
Cubic, Pm3mθ = 6.9–26.9°
a = 2.9405 (15) ŵ = 22.36 mm1
V = 25.43 (4) Å3T = 299 K
Z = 1Lump, drak gray
F(000) = 430.14 × 0.12 × 0.12 mm
Dx = 6.101 Mg m3
Data collection top
Bruker D8 Venture Photon 100 CMOS
diffractometer
14 reflections with I > 2σ(I)
phi and ω scansRint = 0.021
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.9°, θmin = 6.9°
Tmin = 0.439, Tmax = 0.746h = 33
385 measured reflectionsk = 33
14 independent reflectionsl = 33
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: isomorphous structure methods
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0246P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.031(Δ/σ)max < 0.001
S = 1.44Δρmax = 0.32 e Å3
14 reflectionsΔρmin = 0.48 e Å3
5 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Al10.0000000.0000000.0000000.0113 (13)0.88 (5)
Cu10.0000000.0000000.0000000.0113 (13)0.12 (5)
Fe10.5000000.5000000.5000000.0105 (6)0.2 (4)
Cu20.5000000.5000000.5000000.0105 (6)0.8 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0113 (13)0.0113 (13)0.0113 (13)0.0000.0000.000
Cu10.0113 (13)0.0113 (13)0.0113 (13)0.0000.0000.000
Fe10.0105 (6)0.0105 (6)0.0105 (6)0.0000.0000.000
Cu20.0105 (6)0.0105 (6)0.0105 (6)0.0000.0000.000
Geometric parameters (Å, º) top
Al1—Fe1i2.5465 (13)Al1—Al1v2.9405 (15)
Al1—Fe12.5465 (13)Al1—Al1viii2.9405 (15)
Al1—Fe1ii2.5465 (13)Al1—Al1ix2.9405 (15)
Al1—Fe1iii2.5465 (13)Cu1—Cu22.5465 (13)
Al1—Fe1iv2.5465 (13)Fe1—Fe1viii2.9405 (15)
Al1—Fe1v2.5465 (13)Fe1—Fe1v2.9405 (15)
Al1—Fe1vi2.5465 (13)Fe1—Fe1iii2.9405 (15)
Al1—Fe1vii2.5465 (13)Fe1—Fe1ii2.9405 (15)
Al1—Al1iii2.9405 (15)
Fe1i—Al1—Fe1180.0Al1x—Fe1—Al1180.0
Fe1i—Al1—Fe1ii109.5Al1x—Fe1—Al1xi109.5
Fe1—Al1—Fe1ii70.529 (1)Al1—Fe1—Al1xi70.529 (1)
Fe1i—Al1—Fe1iii109.5Al1x—Fe1—Al1ix109.5
Fe1—Al1—Fe1iii70.5Al1—Fe1—Al1ix70.5
Fe1ii—Al1—Fe1iii109.5Al1xi—Fe1—Al1ix109.5
Fe1i—Al1—Fe1iv70.529 (1)Al1x—Fe1—Al1xii70.529 (1)
Fe1—Al1—Fe1iv109.5Al1—Fe1—Al1xii109.5
Fe1ii—Al1—Fe1iv70.5Al1xi—Fe1—Al1xii70.5
Fe1iii—Al1—Fe1iv70.5Al1ix—Fe1—Al1xii70.5
Fe1i—Al1—Fe1v109.5Al1x—Fe1—Al1viii109.5
Fe1—Al1—Fe1v70.529 (1)Al1—Fe1—Al1viii70.529 (1)
Fe1ii—Al1—Fe1v109.5Al1xi—Fe1—Al1viii109.5
Fe1iii—Al1—Fe1v109.5Al1ix—Fe1—Al1viii109.5
Fe1iv—Al1—Fe1v180.0Al1xii—Fe1—Al1viii180.0
Fe1i—Al1—Fe1vi70.5Al1x—Fe1—Al1xiii70.5
Fe1—Al1—Fe1vi109.5Al1—Fe1—Al1xiii109.5
Fe1ii—Al1—Fe1vi70.5Al1xi—Fe1—Al1xiii70.5
Fe1iii—Al1—Fe1vi180.0Al1ix—Fe1—Al1xiii180.0
Fe1iv—Al1—Fe1vi109.5Al1xii—Fe1—Al1xiii109.5
Fe1v—Al1—Fe1vi70.5Al1viii—Fe1—Al1xiii70.5
Fe1i—Al1—Fe1vii70.529 (1)Al1x—Fe1—Al1xiv70.529 (1)
Fe1—Al1—Fe1vii109.5Al1—Fe1—Al1xiv109.5
Fe1ii—Al1—Fe1vii180.0Al1xi—Fe1—Al1xiv180.0
Fe1iii—Al1—Fe1vii70.5Al1ix—Fe1—Al1xiv70.5
Fe1iv—Al1—Fe1vii109.5Al1xii—Fe1—Al1xiv109.5
Fe1v—Al1—Fe1vii70.5Al1viii—Fe1—Al1xiv70.5
Fe1vi—Al1—Fe1vii109.5Al1xiii—Fe1—Al1xiv109.5
Fe1i—Al1—Al1iii54.7Al1x—Fe1—Fe1viii54.7
Fe1—Al1—Al1iii125.3Al1—Fe1—Fe1viii125.3
Fe1ii—Al1—Al1iii125.3Al1xi—Fe1—Fe1viii125.3
Fe1iii—Al1—Al1iii54.7Al1ix—Fe1—Fe1viii125.3
Fe1iv—Al1—Al1iii54.7Al1xii—Fe1—Fe1viii125.3
Fe1v—Al1—Al1iii125.3Al1viii—Fe1—Fe1viii54.7
Fe1vi—Al1—Al1iii125.3Al1xiii—Fe1—Fe1viii54.7
Fe1vii—Al1—Al1iii54.7Al1xiv—Fe1—Fe1viii54.7
Fe1i—Al1—Al1v54.7Al1x—Fe1—Fe1v125.3
Fe1—Al1—Al1v125.3Al1—Fe1—Fe1v54.7
Fe1ii—Al1—Al1v125.3Al1xi—Fe1—Fe1v54.7
Fe1iii—Al1—Al1v125.3Al1ix—Fe1—Fe1v54.7
Fe1iv—Al1—Al1v125.3Al1xii—Fe1—Fe1v54.7
Fe1v—Al1—Al1v54.7Al1viii—Fe1—Fe1v125.3
Fe1vi—Al1—Al1v54.7Al1xiii—Fe1—Fe1v125.3
Fe1vii—Al1—Al1v54.7Al1xiv—Fe1—Fe1v125.3
Al1iii—Al1—Al1v90.0Fe1viii—Fe1—Fe1v180.0
Fe1i—Al1—Al1viii125.3Al1x—Fe1—Fe1iii125.3
Fe1—Al1—Al1viii54.7Al1—Fe1—Fe1iii54.7
Fe1ii—Al1—Al1viii54.7Al1xi—Fe1—Fe1iii54.7
Fe1iii—Al1—Al1viii54.7Al1ix—Fe1—Fe1iii125.3
Fe1iv—Al1—Al1viii54.7Al1xii—Fe1—Fe1iii125.3
Fe1v—Al1—Al1viii125.3Al1viii—Fe1—Fe1iii54.7
Fe1vi—Al1—Al1viii125.3Al1xiii—Fe1—Fe1iii54.7
Fe1vii—Al1—Al1viii125.3Al1xiv—Fe1—Fe1iii125.3
Al1iii—Al1—Al1viii90.0Fe1viii—Fe1—Fe1iii90.0
Al1v—Al1—Al1viii180.0Fe1v—Fe1—Fe1iii90.0
Fe1i—Al1—Al1ix125.3Al1x—Fe1—Fe1ii125.3
Fe1—Al1—Al1ix54.7Al1—Fe1—Fe1ii54.7
Fe1ii—Al1—Al1ix54.7Al1xi—Fe1—Fe1ii125.3
Fe1iii—Al1—Al1ix125.3Al1ix—Fe1—Fe1ii54.7
Fe1iv—Al1—Al1ix125.3Al1xii—Fe1—Fe1ii125.3
Fe1v—Al1—Al1ix54.7Al1viii—Fe1—Fe1ii54.7
Fe1vi—Al1—Al1ix54.7Al1xiii—Fe1—Fe1ii125.3
Fe1vii—Al1—Al1ix125.3Al1xiv—Fe1—Fe1ii54.7
Al1iii—Al1—Al1ix180.0Fe1viii—Fe1—Fe1ii90.0
Al1v—Al1—Al1ix90.0Fe1v—Fe1—Fe1ii90.0
Al1viii—Al1—Al1ix90.0Fe1iii—Fe1—Fe1ii90.0
Symmetry codes: (i) x1, y1, z1; (ii) x1, y, z; (iii) x, y1, z; (iv) x1, y1, z; (v) x, y, z1; (vi) x1, y, z1; (vii) x, y1, z1; (viii) x, y, z+1; (ix) x, y+1, z; (x) x+1, y+1, z+1; (xi) x+1, y, z; (xii) x+1, y+1, z; (xiii) x+1, y, z+1; (xiv) x, y+1, z+1.
 

Funding information

Funding for this research was provided by: The National Natural Science Foundation of China (grant Nos. 52173231 and 51925105); Research Foundation of Education Bureau of Hebei Province (grant No. E2022203182); The Innovation Ability Promotion Project of Hebei supported by Hebei Key Lab for Optimizing Metal Product Technology and Performance (No. 22567609H).

References

First citationBindi, L., Steinhardt, P. J., Yao, N. & Lu, P. J. (2011). Am. Mineral. 96, 928–931.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationKalmykov, K. B., Zvereva, N. L., Dunaev, S. F., Kazennov, N. V., Tat'yanin, E. V., Semernin, G. V., Dmitrieva, N. E. & Balykova, Y. V. (2009). Moscow Univ. Chem. Bull. 64, 99–103.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMeyer, M., Sánchez, F. & Mendoza-Zélis, L. (2007). Physica B, 389, 163–167.  Web of Science CrossRef CAS Google Scholar
First citationRosas, G. & Perez, R. (1998). Mater. Lett. 36, 229–234.  Web of Science CrossRef CAS Google Scholar
First citationShalaeva, E. V. & Prekul, A. F. (2011). Philos. Mag. 91, 589–608.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146