Download citation
Download citation
link to html
The crystal structure of the title compound, {(C3H12N2)[Mo3O10]·2H2O}n, is composed of [Mo3O10]2− anionic chains, propane-1,3-diammonium cations and solvent water mol­ecules. The [Mo3O10]2− chain is constructed from edge-sharing MoO6 octa­hedra. The protonated propane-1,3-diamine cations and solvent water mol­ecules are located between the chains and are linked to the O atoms of the inorganic chains by hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107021051/gz3086sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107021051/gz3086Isup2.hkl
Contains datablock I

CCDC reference: 652493

Comment top

Hybrid organic–inorganic materials have been attracting extensive interest due to their potential applications in catalysis, electron conductivity, magnetism and photochemistry (Rhule et al., 1998). Exploitation of hydrothermal techniques and the use of organic structure-directing agents proved fruitful in preparing such materials (Hagrman et al., 1999; Lin et al., 2003). Influenced by the employed organic components, there exist various inorganic skeletal backbones of metal-oxo polyhedra with different connecting modes through sharing corners, edges and faces. For example, the [Mo3O10]2- chain in [Co(bpy)Mo3O10] is made up of MoO6 octahedra, MoO5 square pyramids and MoO4 tetrahedra through sharing corners and edges (bpy is 2,2'-bipyridine; Zapf et al., 1997). The [Mo3O10]2- chain in (H2en)[Mo3O10] is made up of MoO6 octahedra linked by sharing corners, edges and faces (en is ethylenetriamine; Guillou & Férey, 1997). The present paper presents the synthesis and the crystal structure of a new one-dimensional polymeric molybdenum oxide solid, (H2pn)[Mo3O10]·2H2O, (I).

The crystal structure of (I) is composed of [Mo3O10]2- anionic chains, (H2pn)2+ cations and solvent water molecules. The [Mo3O10]2- chain is built up of MoO6 octahedra by sharing edges and expansion along the a axis (Fig. 1). The coordination environments around the Mo sites are shown in Fig. 2. The octahedral geometry of each Mo atom is defined by two terminal and four triply bridging O atoms, where the two terminal O atoms are in a cis arrangement. As listed in Table 1, each octahedron exhibits two short, two medium and two long Mo—O bonds with lengths of 1.690 (2)–1.7032 (17), 1.884 (2)–1.976 (2) and 2.215 (2)–2.342 (2) Å, respectively. These values are in accordance with those observed in the reported molybdenum oxides such as (H2en)[Mo3O10] (Guillou & Férey, 1997), Na(NH4)[Mo3O10] (Xu et al., 1996) and (C6H5NH3)2[Mo3O10]·4H2O (Lasocha et al., 1995). As displayed in Fig. 1, two MoO6 octahedra surrounding Mo2 and one of its symmetry-related sites, or Mo3 and one of its symmetry-related sites, share one edge to form a dimer. The dimer is then linked by one MoO6 octahedron around Mo1 to an Mo3O10 moiety by sharing two edges. Such units are further interlinked through sharing two other edges of the middle octahedron around Mo1 to form an infinite one-dimensional molybdenum–oxo chain. The one-dimensional molybdenum–oxo chain in (I) is similar to those found in Na(NH4)[Mo3O10] (Xu et al., 1996) and (C6H5NH3)2[Mo3O10]·4H2O (Lasocha et al., 1995). However, this one-dimensional chain is distinctly different from those with similar composition [Mo3O10] or [Mo9O30]. As mentioned above, the [Mo3O10]2- chain in [Co(bpy)Mo3O10] is built up of three kinds of MoOn polyhedra (Zapf et al., 1997). The chain in K2[Mo3O10] is composed of edge-sharing MoO6 octahedra and MoO5 square pyramids (Gatehouse & Leverett, 1968). The [Mo9O30]6- chain in (H3dien)2[Mo9O30] is constructed from [Mo8O26]4- clusters and MoO6 octahedra through sharing vertices (dien is diethylenetriamine; Xu et al., 2003). In contrast, the [Mo3O10]2- chain in (I) is built up of edge-sharing MoO6 octahedra.

In the crystal structure of (I), the protonated diaminopropane cations and the solvent water molecules are located between these edge-sharing MoO6 octahedral chains and are linked to the O atoms of the molybdenum units by hydrogen bonds with O···O distances of 2.812 (3)–3.142 (3) Å and N···O distances 2.657 (4)–2.866 (4) Å (Table 2). These hydrogen-bonding interactions make the crystal structure of (I) more stable, and hold the components together into a three-dimensional superamolecular network (Fig. 3).

Related literature top

For related literature, see: Gatehouse & Leverett (1968); Guillou & Férey (1997); Hagrman et al. (1999); Lasocha et al. (1995); Lin et al. (2003); Rhule et al. (1998); Xu et al. (1996, 2003); Zapf et al. (1997).

Experimental top

Compound (I) was synthesized hydrothermally under autogenous pressure. A mixture of (NH4)6Mo7O24, 1,3-propylenediamine and water in the molar ratio 1:3.6:833.3 was sealed in a 17 ml Teflon-lined autoclave and heated at 433 K for 60 h. The reaction mixture was cooled slowly to room temperature at a rate of 10 K h-1 and colorless needle-shaped crystals of (I) were obtained. The pH value of the reactive system was adjusted by 5 mol dm-3 HCl solution to 5.04 before the reaction, and it reached 4.98 after the reaction. The resulting crystals were filtered off, washed with distilled water and dried in air (65% yield based on Mo). The strong features at 928 and 915 cm-1 in the IR spectrum of (I) are associated with the Mo—O stretching vibrations, and the bands at 1491, 1314, 1225, 1114 and 1052 cm-1 are related to the C—C and C—N stretchings. The weight loss of 6.36% between 389 and 433 K of (I) corresponds to the removal of the solvent water molecules, and the weight loss in the temperature range from 443 to 663 K is attributed to the release of the organic amines. The total observed loss of 20.12% is consistent with the calculated value of 20.03%. Analysis calculated for C3H16Mo3N2O12: C 6.43, H 2.88, N 5.00%; found: C, 6.64; H, 3.12; N, 4.92%.

Refinement top

While the H atoms attached to C and N atoms were placed in calculated positions, those on water molecules were located in a difference Fourier map and then refined with O—H distances restrained to 0.96 (4) Å and the H—O—H angles restrained to 104.4 (4)°. All H atoms were included in the refinement with Uiso(H) values of 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELX97 (Sheldrick, 1997); program(s) used to refine structure: SHELX97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELX97.

Figures top
[Figure 1] Fig. 1. The infinite one-dimensional edge-sharing MoO6 chains, extending along the a axis in (I). The large cross-hatched and open circles denote Mo and O atoms, respectively. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1.]
[Figure 2] Fig. 2. The asymmetric unit in (I), showing the metal atom coordination environments with 50% probability displacement ellipsoids. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1.]
[Figure 3] Fig. 3. The projection of the crystal structure of (I) along the a axis. The large cross-hatched, large open, striped, shaded and small open circles denote Mo, O, N, C and H atoms, respectively, while the H atoms attached to C atoms have been omitted for clarity.
Poly[propylene-1,3-diammonium [tetra-µ3-oxo-hexaoxotrimolybdenum(VI)] dihydrate] top
Crystal data top
(C3H12N2)[Mo3O10]·2H2OZ = 2
Mr = 560.00F(000) = 540
Triclinic, P1Dx = 2.672 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6330 (15) ÅCell parameters from 3714 reflections
b = 8.7000 (17) Åθ = 2.5–28.1°
c = 11.174 (2) ŵ = 2.72 mm1
α = 107.86 (2)°T = 291 K
β = 96.556 (7)°Needle, colorless
γ = 94.816 (6)°0.18 × 0.08 × 0.05 mm
V = 696.1 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2738 independent reflections
Radiation source: fine-focus sealed tube2699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.003
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.640, Tmax = 0.876k = 1010
5476 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.1105P)2 + 1.8518P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
2738 reflectionsΔρmax = 0.96 e Å3
195 parametersΔρmin = 0.95 e Å3
6 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0052 (6)
Crystal data top
(C3H12N2)[Mo3O10]·2H2Oγ = 94.816 (6)°
Mr = 560.00V = 696.1 (2) Å3
Triclinic, P1Z = 2
a = 7.6330 (15) ÅMo Kα radiation
b = 8.7000 (17) ŵ = 2.72 mm1
c = 11.174 (2) ÅT = 291 K
α = 107.86 (2)°0.18 × 0.08 × 0.05 mm
β = 96.556 (7)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2738 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2699 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.876Rint = 0.003
5476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0466 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.96 e Å3
2738 reflectionsΔρmin = 0.95 e Å3
195 parameters
Special details top

Experimental. Crystal was coated with epoxy glue.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.21194 (2)0.26019 (2)0.408198 (17)0.02240 (5)
Mo20.47932 (3)0.53795 (2)0.349695 (18)0.02256 (5)
Mo30.02163 (3)0.46293 (2)0.650745 (18)0.02255 (5)
O10.2157 (3)0.1099 (2)0.47459 (17)0.0368 (5)
O20.1755 (3)0.1651 (3)0.24814 (16)0.0373 (6)
O30.0089 (3)0.3325 (3)0.4408 (2)0.0375 (6)
O40.4646 (3)0.3312 (3)0.44328 (19)0.0358 (5)
O50.2268 (3)0.5036 (3)0.37050 (19)0.0357 (5)
O60.2614 (3)0.4321 (3)0.60831 (19)0.0366 (5)
O70.4771 (3)0.4019 (2)0.20316 (17)0.0356 (5)
O80.4524 (3)0.7158 (2)0.32085 (19)0.0388 (6)
O90.0302 (3)0.2863 (2)0.68011 (19)0.0365 (5)
O100.0929 (3)0.5987 (3)0.79770 (18)0.0415 (6)
O110.1810 (3)0.8224 (3)0.1375 (2)0.0439 (6)
H11A0.184 (5)0.796 (2)0.2132 (17)0.053*
H11B0.219 (5)0.933 (2)0.160 (3)0.053*
O120.6788 (4)0.4708 (4)0.0017 (3)0.0607 (8)
H12A0.657 (5)0.454 (4)0.0785 (16)0.073*
H12B0.696 (5)0.370 (3)0.050 (2)0.073*
N10.1518 (4)0.2381 (4)1.0154 (3)0.0557 (9)
H1C0.16670.25361.09860.067*
H1D0.03770.20540.98340.067*
H1E0.18570.33101.00170.067*
N20.3087 (4)0.1123 (4)0.6079 (3)0.0479 (8)
H2C0.37980.18600.57660.057*
H2D0.32360.03060.57630.057*
H2E0.19610.15810.58640.057*
C10.2590 (5)0.1142 (4)0.9538 (3)0.0480 (9)
H1A0.22550.01580.97380.058*
H1B0.38280.15130.98970.058*
C20.2418 (5)0.0719 (5)0.8094 (3)0.0479 (10)
H2A0.11860.03160.77330.057*
H2B0.27190.17080.78930.057*
C30.3532 (5)0.0489 (5)0.7488 (3)0.0471 (9)
H3A0.34100.13940.78210.056*
H3B0.47650.00040.77120.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01901 (9)0.02760 (9)0.01951 (9)0.00237 (8)0.00297 (8)0.00604 (7)
Mo20.01912 (9)0.02824 (10)0.01930 (9)0.00234 (8)0.00284 (7)0.00627 (7)
Mo30.01928 (9)0.02793 (10)0.01936 (9)0.00242 (8)0.00286 (8)0.00613 (7)
O10.0369 (10)0.0430 (10)0.0296 (8)0.0040 (8)0.0062 (8)0.0103 (8)
O20.0360 (10)0.0380 (10)0.0331 (9)0.0044 (8)0.0036 (8)0.0049 (8)
O30.0337 (10)0.0416 (10)0.0351 (9)0.0037 (8)0.0046 (8)0.0096 (8)
O40.0325 (9)0.0396 (10)0.0346 (9)0.0054 (8)0.0066 (8)0.0098 (8)
O50.0290 (9)0.0452 (10)0.0337 (9)0.0061 (8)0.0037 (7)0.0135 (8)
O60.0333 (10)0.0447 (10)0.0332 (9)0.0066 (8)0.0064 (8)0.0136 (8)
O70.0305 (9)0.0382 (9)0.0360 (9)0.0008 (8)0.0038 (8)0.0103 (8)
O80.0363 (10)0.0435 (10)0.0381 (10)0.0085 (8)0.0033 (8)0.0151 (8)
O90.0319 (9)0.0414 (10)0.0381 (9)0.0036 (8)0.0099 (8)0.0142 (8)
O100.0405 (11)0.0447 (11)0.0381 (10)0.0063 (9)0.0045 (9)0.0118 (8)
O110.0445 (12)0.0429 (10)0.0426 (10)0.0014 (9)0.0051 (9)0.0129 (9)
O120.0636 (16)0.0598 (14)0.0577 (14)0.0060 (13)0.0082 (12)0.0180 (12)
N10.0523 (16)0.0593 (17)0.0532 (16)0.0068 (14)0.0055 (14)0.0156 (14)
N20.0384 (13)0.0582 (16)0.0435 (14)0.0057 (12)0.0041 (11)0.0120 (12)
C10.0493 (17)0.0475 (16)0.0479 (16)0.0080 (14)0.0076 (14)0.0153 (13)
C20.0388 (15)0.0590 (18)0.0459 (16)0.0080 (14)0.0068 (13)0.0162 (14)
C30.0367 (15)0.0585 (18)0.0457 (16)0.0019 (14)0.0070 (13)0.0168 (14)
Geometric parameters (Å, º) top
Mo1—O11.690 (2)O6—Mo2i1.957 (2)
Mo1—O21.7032 (17)O11—H11A0.939 (19)
Mo1—O31.884 (2)O11—H11B0.927 (17)
Mo1—O41.932 (2)O12—H12A0.94 (2)
Mo1—O62.245 (2)O12—H12B0.92 (2)
Mo1—O52.278 (2)N1—C11.458 (5)
Mo2—O71.6980 (17)N1—H1C0.8900
Mo2—O81.699 (2)N1—H1D0.8900
Mo2—O6i1.957 (2)N1—H1E0.8900
Mo2—O51.976 (2)N2—C31.488 (4)
Mo2—O4i2.215 (2)N2—H2C0.8900
Mo2—O42.342 (2)N2—H2D0.8900
Mo3—O91.6923 (19)N2—H2E0.8900
Mo3—O101.6989 (18)C1—C21.529 (5)
Mo3—O5ii1.942 (2)C1—H1A0.9700
Mo3—O61.962 (2)C1—H1B0.9700
Mo3—O32.246 (2)C2—C31.460 (5)
Mo3—O3ii2.312 (3)C2—H2A0.9700
O3—Mo3ii2.312 (3)C2—H2B0.9700
O4—Mo2i2.215 (2)C3—H3A0.9700
O5—Mo3ii1.942 (2)C3—H3B0.9700
O1—Mo1—O2105.74 (10)Mo1—O3—Mo3106.29 (9)
O1—Mo1—O3101.65 (11)Mo1—O3—Mo3ii102.92 (10)
O2—Mo1—O3102.63 (10)Mo3—O3—Mo3ii104.50 (9)
O1—Mo1—O497.02 (10)Mo1—O4—Mo2i105.24 (10)
O2—Mo1—O4103.27 (10)Mo1—O4—Mo2100.54 (10)
O3—Mo1—O4142.39 (9)Mo2i—O4—Mo2104.38 (8)
O1—Mo1—O685.93 (9)Mo3ii—O5—Mo2154.64 (14)
O2—Mo1—O6168.33 (10)Mo3ii—O5—Mo1102.26 (9)
O3—Mo1—O674.54 (8)Mo2—O5—Mo1101.40 (9)
O4—Mo1—O674.57 (8)Mo2i—O6—Mo3152.95 (11)
O1—Mo1—O5165.53 (8)Mo2i—O6—Mo1103.29 (9)
O2—Mo1—O588.66 (9)Mo3—O6—Mo1103.62 (8)
O3—Mo1—O575.98 (9)H11A—O11—H11B107 (2)
O4—Mo1—O577.85 (9)H12A—O12—H12B104 (3)
O6—Mo1—O579.67 (8)C1—N1—H1C109.5
O7—Mo2—O8103.99 (10)C1—N1—H1D109.5
O7—Mo2—O6i94.16 (9)H1C—N1—H1D109.5
O8—Mo2—O6i99.01 (10)C1—N1—H1E109.5
O7—Mo2—O5100.50 (9)H1C—N1—H1E109.5
O8—Mo2—O591.74 (10)H1D—N1—H1E109.5
O6i—Mo2—O5159.19 (10)C3—N2—H2C109.5
O7—Mo2—O4i163.26 (10)C3—N2—H2D109.5
O8—Mo2—O4i90.36 (9)H2C—N2—H2D109.5
O6i—Mo2—O4i74.81 (8)C3—N2—H2E109.5
O5—Mo2—O4i87.43 (8)H2C—N2—H2E109.5
O7—Mo2—O491.99 (9)H2D—N2—H2E109.5
O8—Mo2—O4161.23 (9)N1—C1—C2115.0 (3)
O6i—Mo2—O489.42 (9)N1—C1—H1A108.5
O5—Mo2—O475.48 (9)C2—C1—H1A108.5
O4i—Mo2—O475.62 (8)N1—C1—H1B108.5
O9—Mo3—O10103.55 (11)C2—C1—H1B108.5
O9—Mo3—O5ii91.58 (10)H1A—C1—H1B107.5
O10—Mo3—O5ii100.35 (10)C3—C2—C1114.7 (3)
O9—Mo3—O699.15 (10)C3—C2—H2A108.6
O10—Mo3—O694.75 (10)C1—C2—H2A108.6
O5ii—Mo3—O6158.91 (10)C3—C2—H2B108.6
O9—Mo3—O391.36 (9)C1—C2—H2B108.6
O10—Mo3—O3162.26 (10)H2A—C2—H2B107.6
O5ii—Mo3—O388.61 (8)C2—C3—N2113.6 (3)
O6—Mo3—O373.13 (8)C2—C3—H3A108.8
O9—Mo3—O3ii160.57 (8)N2—C3—H3A108.8
O10—Mo3—O3ii92.13 (10)C2—C3—H3B108.8
O5ii—Mo3—O3ii74.12 (9)N2—C3—H3B108.8
O6—Mo3—O3ii90.78 (9)H3A—C3—H3B107.7
O3—Mo3—O3ii75.50 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O80.94 (2)2.52 (3)3.142 (3)124 (3)
O11—H11A···O9ii0.94 (2)2.00 (3)2.812 (3)143 (3)
O11—H11B···O2iii0.93 (2)2.03 (2)2.861 (3)148 (3)
O12—H12A···O70.94 (2)2.18 (3)3.044 (4)152 (3)
O12—H12A···O10i0.94 (2)2.39 (3)2.923 (4)116 (3)
O12—H12B···O11iv0.92 (2)2.03 (3)2.911 (4)161 (3)
N1—H1C···O2v0.892.042.851 (4)151
N1—H1D···O11ii0.891.972.807 (4)156
N1—H1E···O12i0.891.952.815 (5)164
N2—H2C···O4vi0.891.792.657 (4)165
N2—H2D···O10.892.072.866 (4)149
N2—H2E···O3vii0.891.922.747 (4)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formula(C3H12N2)[Mo3O10]·2H2O
Mr560.00
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.6330 (15), 8.7000 (17), 11.174 (2)
α, β, γ (°)107.86 (2), 96.556 (7), 94.816 (6)
V3)696.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.72
Crystal size (mm)0.18 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.640, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
5476, 2738, 2699
Rint0.003
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.04
No. of reflections2738
No. of parameters195
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.95

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2001), SHELX97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELX97.

Selected bond lengths (Å) top
Mo1—O11.690 (2)Mo2—O51.976 (2)
Mo1—O21.7032 (17)Mo2—O4i2.215 (2)
Mo1—O31.884 (2)Mo2—O42.342 (2)
Mo1—O41.932 (2)Mo3—O91.6923 (19)
Mo1—O62.245 (2)Mo3—O101.6989 (18)
Mo1—O52.278 (2)Mo3—O5ii1.942 (2)
Mo2—O71.6980 (17)Mo3—O61.962 (2)
Mo2—O81.699 (2)Mo3—O32.246 (2)
Mo2—O6i1.957 (2)Mo3—O3ii2.312 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O80.939 (19)2.52 (3)3.142 (3)124 (3)
O11—H11A···O9ii0.939 (19)2.00 (3)2.812 (3)143 (3)
O11—H11B···O2iii0.927 (17)2.03 (2)2.861 (3)148 (3)
O12—H12A···O70.94 (2)2.18 (3)3.044 (4)152 (3)
O12—H12B···O11iv0.92 (2)2.03 (3)2.911 (4)161 (3)
N1—H1C···O2v0.892.042.851 (4)150.9
N1—H1D···O11ii0.891.972.807 (4)155.9
N1—H1E···O12i0.891.952.815 (5)164.1
N2—H2C···O4vi0.891.792.657 (4)164.9
N2—H2D···O10.892.072.866 (4)148.9
N2—H2E···O3vii0.891.922.747 (4)153.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds