Download citation
Download citation
link to html
The structures of two pseudopolymorphic hydrates of brucine, C23H26N2O4·4H2O, (I), and C23H26N2O4·5.25H2O, (II), have been determined at 130 K. In both (I) and (II) (which has two independent brucine mol­ecules together with 10.5 water mol­ecules of solvation in the asymmetric unit), the brucine mol­ecules form head-to-tail sheet substructures, which associate with the water mol­ecules in the inter­stitial cavities through hydrogen-bonding associations and, together with water-water associations, give three-dimensional framework structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106005944/gz1028sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106005944/gz1028Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106005944/gz1028IIsup3.hkl
Contains datablock jmwgs84_revised_file

CCDC references: 605709; 605710

Comment top

The commercially available form of the alkaloid brucine is a tetrahydrate, this being first reported by Groth (1919). The crystal structure of the anhydrous form (m.p. 451 K), readily obtained from the hydrate by heating at 373 K (O'Neil, 2001), has been reported recently (Bialońska & Ciunik, 2004a). Although the crystal cell data for the orthorhombic tetrahydrate have been reported (Eeles, 1953), its structure has not previously been determined. Reported along with the anhydrous brucine structure were the structures of two brucine solvate pseudopolymorphs (Bernstein, 1987; Kumar et al., 1999), brucine acetone solvate and brucine 2-propanol solvate dihydrate (Bialońska & Ciunik, 2004a). This 2-propanol solvate structure is isomorphous with the previously reported brucine ethanol solvate dihydrate structure (Glover et al., 1985). Molecular recognition has been demonstrated as being significant in dictating the selectivity shown by brucine for various molecules, including the classic Fischer-type resolved N-benzoyl-protected alanine enantiomers (Fischer, 1899; Gould & Walkinshaw, 1984) and the compound with an achiral molecule, brucinium 3-nitrobenzoate (Oshikawa et al., 2002), where no crystalline products were obtained with the ortho- or para-substituted benzoic acid isomers. With the brucine compounds generally, the brucine species commonly form regular undulating parallel or antiparallel host sheet substructures built from partially overlapping head-to-tail molecular associations (Gould & Walkinshaw, 1984; Dijksma, Gould, Parsons, Taylor & Walkinshaw, 1998; Bialońska & Ciunik, 2004b). The compatible guest species then may occupy the interstitial cavities, associating with the host sheets through hydrogen-bonding interactions. Molecules of solvation (commonly water) act in either a proton-donor/acceptor or a space-filling capacity.

The tetrahydrate, (I), obtained as minor clusters of well formed prismatic needles from the attempted preparation of a brucine–adenosine adduct in 50% ethanol–water, was confirmed from the cell parameters and space group as being the orthorhombic tetrahydrate reported by Eeles (1953) (a = 7.6 Å, b = 11.6 Å, c = 26.6 Å, Z = 4, space group P212121). The second pseudopolymorphic hydrate, brucine 5.25-hydrate, (II), was similarly obtained, but in good yield, in an attempted preparation of a brucine–urea adduct in 50% ethanol–water. Initial diffraction data for (II), obtained at room temperature on a conventional four-circle diffractometer, provided a structure having an asymmetric unit comprising two ordered brucine molecules and 11 water molecules of solvation with varying occupancies in a centred monoclinic cell. The occupancies varied from ca 0.3–0.9, indicating significant solvate lability, although negligible crystal decay was evident from the intensity-standards change (0.25%) during the data collection period. This lability has also been observed in a number of recently determined brucine structures (Gould et al., 2002; Bialońska et al., 2005; Smith, Wermuth, Healy et al., 2005; Smith, Wermuth & White, 2005). Low-temperature [130 (2) K] data were therefore re-collected for (II), and later for (I), using a CCD-detector-equipped diffractometer, effectively resolving the problem.

The atom-numbering scheme for (I) is shown in Fig. 1, while Fig. 3 shows the presence of two independent brucine molecules (A and B) and 11 water molecules of solvation (one with an occupancy of 0.5) in the molecular repeating unit of (II). In addition, one of the water molecules in (II) is disordered over two approximately equal close sites [O10W with occupancy factor 0.543 (17), and O11W with occupancy factor 0.457 (17)]. The atom numbering for the brucine species in both (I) and (II) follows the original Robinson convention (Holmes, 1952) and both have the overall Cahn–Ingold–Prelog absolute configuration for the neutral brucine molecule (Eliel, 1962) [C7(R), C8(S), C12(S), C13(R), C14(R), C16(S)]. As expected, the rigid brucine molecules show negligible conformational variation, including the methoxy substituent groups, which are invariably anti-related and lie essentially in the plane of the benzene ring.

The brucine molecules in (I) form into the previously described undulating sheet substructures, which extend through the crystal along the b cell direction (Fig. 2). These are generated by the 21 screw operation along the c axis giving antiparallel sheet propagation along b, with a dimeric repeat in that direction of 11.53 Å (the a cell dimension). This value is significantly shorter than the common repeat of ca 12.5 Å found in a number of brucine structures, e.g. brucinium N-benzoylalinate–water (1/4.5) (antiparallel, 12.42 Å) (Gould & Walkinshaw, 1984); brucinium D-glucuronate trihydrate (parallel, 12.66 Å) and brucinium D-galacturonate monohydrate (antiparallel, 12.37 Å) (Dijksma, Gould, Parsons & Walkinshaw, 1998); the two brucinium cyanohydrin complexes (both antiparallel, 12.39 and 12.52 Å; Pinkerton et al., 1993), brucine 2-propanol solvate dihydrate (antiparallel, 12.37 Å; Biolońska & Ciunik, 2004a); and brucine ethanol solvate dihydrate (antiparallel, 12.34 Å; Glover et al., 1985). This shortening of the repeat interval parallels a contraction of the angle α [ca 87 ° in (I) but typically greater than 100°] between the lines drawn down the centre of the indole rings of adjacent brucine molecules in the head-to-tail interactive sequence (see Fig. 2).

In (II), the brucine substructure generated by the two independent molecules in the asymmetric unit differs significantly from that seen in (I) (Fig. 4). However, if the B molecules alone are considered, these do form into similar undulating sheet structures, which extend along the b cell direction with an approximate 12.2 Å dimer repeat (Fig. 5). In both (I) and (II), the intersheet cavities generated accommodate the water molecules of solvation, the overall structures being characterized by extensive hydrogen-bonding interactions (Tables 1 and 2). These involve all available proton donors and acceptors in water–brucine [both N19 and O25 (carbonyl) acceptors] and water–water interactions. In addition, there are unusual (for brucine) water–O(cage ether) interactions in both structures, viz. O4W—H···O24iii [symmetry code; (iii) x + 1, y, z {sym code iv in Table 2?}] in (I) and O10W—H···O24Avi [symmetry code; (vi) −x + 1, y, −z + 1] in (II). Additionally, in (II), there are water–O(methoxy) interactions, viz. O7W—H···O2B,O3B (symmetrical three-centred) and O9W—H···O3A (linear), also unusual for brucine and its compounds. In both pseudopolymorphs, three-dimensional framework structures are generated.

In the structure of (II), the molecular asymmetric unit comprises two brucine molecules and 11 water molecules [one of which (O12W) has half-occupancy], together with the previously mentioned, approximately equal, partially occupying disordered molecules O10W [0.543 (17)] and O11W [0.457 (17)]. The observation with (II) that there was no apparent physical crystal deterioration during the room-temperature conventional diffractometer data collection period indicates the stability of the basic brucine substructure, which is retained with some variation in the structure of the anhydrous form (Bialońska & Ciunik, 2004a) (where there are no interstitial species, hence only intersheet interactions), resulting in a larger angle (ca 123 °) between adjacent brucine molecules in the parallel-mode substructure. This gives a longer dimer repeat (12.7 Å), and compares with ca 115° in the N-benzoylalinate salt, ca 110° in the 2-propanol hydrate structure and ca 113° for the B-molecule chains in (II).

Experimental top

Brucine tetrahydrate, (I), was obtained as isolated clusters of well formed colourless prismatic needles [m.p. 378 K (literature) (Moffat, 1986; Buckingham, 1982)] from the attempted preparation of a brucine–adenosine adduct in 50% ethanol–water, after partial room-temperature evaporation. Hydrate (II) was obtained from an attempted preparation of a brucine–urea adduct in 50% ethanol–water, as large colourless prismatic crystals (m.p. 386.9–388.2 K).

Refinement top

H atoms potentially involved in hydrogen-bonding interactions were generally located by difference methods. However, a number of the H atoms of the water molecules of (II) could not be located and were included in the refinement at calculated sites dictated by the assumed hydrogen-bonding geometry. Because of the low reflection/refined parameter ratio, all water H atoms were constrained in the refinement. Brucine H atoms were included at calculated positions [C—H(aromatic) = 0.95 Å; C—H(aliphatic) = 0.96–0.99 Å] and treated as riding, with Uiso(H) values of 1.2Ueq(C), or 1.5Ueq(C) for methyl atoms. The atom-numbering scheme for brucine (Figs. 1 and 3) follows the original Robinson convention used for strychnine (Holmes, 1952). The absolute configuration determined for the parent strychnine (Peerdeman, 1956) was invoked.

Computing details top

For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 1999). Program(s) used to solve structure: SHELXTL?? (Bruker, 1997) and WinGX (Farrugia, 1999) for (I); SHELXS97 (Sheldrick, 1997) and WinGX (Farrugia, 1999) for (II). Program(s) used to refine structure: SHELXTL?? and WinGX for (I); SHELXL97 (Sheldrick, 1997) and WinGX for (II). For both compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the brucine molecule and the four water molecules in the molecular repeating unit in (I). Non-H atoms are shown as 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. A perspective view of the packing of (I), viewed down the approximate a axial direction. The angle (α) between the lines through the centre of the indole rings in the brucine repeat unit is also shown. Hydrogen-bonding associations are shown as broken lines. [Symmetry codes: (v) x − 1, y, z.; (vi) −x + 1, y + 1/2; −z + 3/2. For other codes, see Table 1.]
[Figure 3] Fig. 3. The molecular configuration and atom-numbering scheme for the two independent brucine molecules (A and B) and the 11 water molecules in the molecular repeating unit in (II). Water molecule O12W has 50% occupancy, while molecules O10W and O11W represent disordered portions of another water molecule (occupancy factors both ca 1/2). Non-H atoms are shown as 30% probability displacement ellipsoids.
[Figure 4] Fig. 4. A perspective view of the partial packing of (II), viewed down the approximate c axial direction, showing brucine–water and water–water hydrogen-bonding interactions. [Symmetry code: (x) x + 1/2, −y − 1/2, z. For other codes, see Table 2.]
[Figure 5] Fig. 5. A similar view of the unit cell in (II), showing the brucine B-molecules only and their propagation down the b axial direction.
(I) 2,3-dimethoxystrychnidin-10-one–water (1/4) top
Crystal data top
C23H26N2O4·4H2ODx = 1.343 Mg m3
Mr = 466.52Melting point: 378 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2584 reflections
a = 7.555 (2) Åθ = 2.7–20.5°
b = 11.531 (3) ŵ = 0.10 mm1
c = 26.492 (8) ÅT = 130 K
V = 2307.9 (11) Å3Plate, colourless
Z = 40.50 × 0.25 × 0.05 mm
F(000) = 1000
Data collection top
Bruker CCD area-detector
diffractometer
1727 reflections with F2 > 2σ(F2)
Radiation source: sealed tubeRint = 0.066
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ϕ and ω scansh = 88
11874 measured reflectionsk = 1213
2346 independent reflectionsl = 3130
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0319P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.002
2346 reflectionsΔρmax = 0.17 e Å3
301 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (4)
Crystal data top
C23H26N2O4·4H2OV = 2307.9 (11) Å3
Mr = 466.52Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.555 (2) ŵ = 0.10 mm1
b = 11.531 (3) ÅT = 130 K
c = 26.492 (8) Å0.50 × 0.25 × 0.05 mm
Data collection top
Bruker CCD area-detector
diffractometer
1727 reflections with F2 > 2σ(F2)
11874 measured reflectionsRint = 0.066
2346 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 0.89Δρmax = 0.17 e Å3
2346 reflectionsΔρmin = 0.21 e Å3
301 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.7477 (2)0.30126 (13)0.79247 (6)0.0503 (6)
O30.7110 (2)0.46433 (14)0.85768 (6)0.0530 (6)
O240.7409 (2)0.96359 (14)0.61067 (6)0.0561 (7)
O250.7655 (3)0.86338 (14)0.78146 (6)0.0645 (7)
N90.6837 (2)0.74540 (16)0.71731 (7)0.0406 (7)
N190.6581 (3)0.55296 (18)0.56471 (7)0.0461 (7)
C10.7115 (3)0.43496 (19)0.72192 (8)0.0420 (8)
C20.7241 (3)0.4104 (2)0.77320 (8)0.0413 (8)
C30.7103 (3)0.4997 (2)0.80812 (8)0.0400 (8)
C40.6974 (3)0.6137 (2)0.79334 (8)0.0423 (9)
C50.6930 (3)0.6359 (2)0.74165 (8)0.0386 (8)
C60.6942 (3)0.5489 (2)0.70686 (8)0.0386 (8)
C70.6600 (3)0.5946 (2)0.65435 (8)0.0384 (8)
C80.6880 (3)0.72724 (19)0.66128 (8)0.0382 (8)
C100.7422 (3)0.8479 (2)0.73614 (9)0.0460 (9)
C110.7725 (4)0.9429 (2)0.69842 (9)0.0550 (10)
C120.8507 (3)0.9086 (2)0.64756 (9)0.0481 (9)
C130.8616 (3)0.7780 (2)0.64338 (8)0.0399 (8)
C140.9271 (3)0.7242 (2)0.59389 (8)0.0429 (9)
C150.9504 (3)0.5948 (2)0.60391 (9)0.0465 (9)
C160.7700 (3)0.5416 (2)0.61134 (8)0.0421 (8)
C170.4734 (3)0.5677 (2)0.63640 (8)0.0450 (9)
C180.4814 (3)0.5920 (2)0.58021 (8)0.0483 (9)
C200.7364 (4)0.6311 (2)0.52679 (8)0.0550 (9)
C210.8017 (3)0.7412 (2)0.54957 (8)0.0472 (9)
C220.7489 (4)0.8441 (2)0.53495 (9)0.0554 (10)
C230.8046 (4)0.9546 (2)0.55952 (10)0.0681 (11)
C250.7779 (4)0.2107 (2)0.75690 (10)0.0583 (10)
C260.6924 (4)0.5508 (2)0.89554 (9)0.0636 (10)
O1W0.7698 (4)0.8312 (2)0.96851 (11)0.0913 (11)
O2W0.4091 (4)0.8217 (2)0.96011 (8)0.0733 (10)
O3W0.9264 (4)0.8149 (2)0.87513 (10)0.0823 (11)
O4W1.2627 (4)0.7149 (2)0.87513 (9)0.0867 (10)
H10.7149000.3743000.6977000.0500*
H40.6918000.6748000.8174000.0510*
H80.5896000.7693000.6456000.0460*
H11A0.8504000.9998000.7137000.0660*
H11B0.6600000.9809000.6923000.0660*
H120.9704000.9407000.6450000.0580*
H130.9488000.7546000.6688000.0480*
H141.0424000.7578000.5853000.0520*
H15A1.0096000.5583000.5756000.0560*
H15B1.0221000.5831000.6339000.0560*
H160.7858000.4588000.6184000.0510*
H17A0.4429000.4874000.6429000.0540*
H17B0.3874000.6175000.6529000.0540*
H18A0.3901000.5492000.5624000.0580*
H18B0.4663000.6741000.5735000.0580*
H20A0.6482000.6489000.5013000.0660*
H20B0.8340000.5918000.5102000.0660*
H220.6703000.8486000.5070000.0660*
H23A0.9328000.9591000.5596000.0820*
H23B0.7599001.0195000.5400000.0820*
H25A0.8795000.2292000.7367000.0880*
H25B0.6761000.2026000.7355000.0880*
H25C0.7985000.1392000.7745000.0880*
H26A0.5857000.5940000.8897000.0950*
H26B0.7922000.6023000.8944000.0950*
H26C0.6869000.5146000.9281000.0950*
H11W0.8210.7760.98670.108*
H12W0.8250.8190.93810.108*
H21W0.5190.8170.96100.088*
H22W0.3960.8960.95410.088*
H31W0.8750.8300.84500.098*
H32W1.0340.7830.87500.098*
H41W1.2670.6370.87640.103*
H42W1.3010.7490.90180.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0672 (12)0.0455 (10)0.0383 (10)0.0018 (9)0.0016 (9)0.0047 (8)
O30.0680 (12)0.0617 (11)0.0293 (9)0.0032 (9)0.0022 (9)0.0044 (8)
O240.0710 (13)0.0496 (10)0.0476 (11)0.0050 (10)0.0022 (10)0.0089 (8)
O250.0954 (15)0.0593 (11)0.0389 (11)0.0046 (11)0.0102 (10)0.0111 (9)
N90.0505 (13)0.0415 (12)0.0299 (10)0.0040 (10)0.0029 (9)0.0022 (9)
N190.0577 (14)0.0523 (13)0.0283 (11)0.0039 (11)0.0041 (10)0.0013 (10)
C10.0492 (15)0.0445 (14)0.0323 (13)0.0012 (12)0.0020 (12)0.0024 (11)
C20.0405 (15)0.0453 (14)0.0380 (14)0.0008 (12)0.0011 (11)0.0037 (12)
C30.0393 (15)0.0546 (15)0.0261 (12)0.0021 (11)0.0009 (11)0.0039 (11)
C40.0484 (16)0.0469 (15)0.0315 (14)0.0029 (11)0.0022 (11)0.0046 (11)
C50.0393 (14)0.0441 (14)0.0323 (14)0.0032 (11)0.0010 (11)0.0028 (11)
C60.0386 (14)0.0483 (14)0.0288 (13)0.0017 (12)0.0022 (11)0.0005 (11)
C70.0442 (15)0.0428 (13)0.0281 (13)0.0009 (11)0.0007 (11)0.0003 (11)
C80.0401 (14)0.0474 (14)0.0270 (12)0.0011 (11)0.0052 (10)0.0006 (11)
C100.0517 (16)0.0450 (15)0.0414 (15)0.0072 (13)0.0066 (12)0.0062 (12)
C110.0711 (19)0.0414 (14)0.0525 (17)0.0029 (14)0.0010 (14)0.0016 (13)
C120.0507 (16)0.0446 (15)0.0490 (16)0.0018 (12)0.0062 (13)0.0026 (13)
C130.0404 (14)0.0453 (14)0.0341 (14)0.0003 (11)0.0066 (11)0.0023 (12)
C140.0402 (15)0.0508 (16)0.0378 (14)0.0036 (12)0.0039 (11)0.0007 (12)
C150.0483 (16)0.0572 (16)0.0341 (14)0.0048 (13)0.0011 (12)0.0066 (13)
C160.0510 (16)0.0426 (13)0.0328 (13)0.0034 (13)0.0067 (12)0.0040 (11)
C170.0476 (16)0.0534 (16)0.0339 (14)0.0058 (12)0.0015 (11)0.0008 (12)
C180.0485 (18)0.0613 (17)0.0351 (14)0.0062 (13)0.0085 (12)0.0005 (14)
C200.0645 (18)0.0695 (17)0.0309 (14)0.0109 (15)0.0017 (13)0.0007 (13)
C210.0531 (16)0.0580 (17)0.0306 (13)0.0046 (14)0.0011 (12)0.0043 (12)
C220.0615 (19)0.0668 (19)0.0378 (15)0.0052 (15)0.0014 (13)0.0107 (13)
C230.093 (2)0.0628 (18)0.0485 (17)0.0073 (18)0.0048 (17)0.0177 (15)
C250.076 (2)0.0502 (15)0.0486 (16)0.0010 (15)0.0002 (15)0.0000 (13)
C260.086 (2)0.0751 (19)0.0297 (14)0.0098 (17)0.0013 (14)0.0026 (14)
O1W0.105 (2)0.105 (2)0.0638 (16)0.0385 (16)0.0042 (15)0.0019 (14)
O2W0.085 (2)0.0634 (16)0.0714 (16)0.0016 (13)0.0037 (13)0.0150 (11)
O3W0.082 (2)0.113 (2)0.0520 (15)0.0097 (16)0.0094 (14)0.0028 (14)
O4W0.123 (2)0.0616 (15)0.0756 (16)0.0151 (15)0.0245 (15)0.0026 (13)
Geometric parameters (Å, º) top
O2—C21.370 (3)C13—C141.533 (3)
O2—C251.425 (3)C14—C151.526 (3)
O3—C31.375 (3)C14—C211.521 (3)
O3—C261.421 (3)C15—C161.508 (3)
O24—C121.430 (3)C17—C181.516 (3)
O24—C231.442 (3)C20—C211.490 (3)
O25—C101.227 (3)C21—C221.310 (3)
O1W—H11W0.89C22—C231.491 (3)
O1W—H12W0.92C1—H10.9500
O2W—H21W0.83C4—H40.9500
O2W—H22W0.88C8—H80.9800
O3W—H31W0.90C11—H11B0.9699
O3W—H32W0.89C11—H11A0.9699
O4W—H41W0.90C12—H120.9795
O4W—H42W0.86C13—H130.9800
N9—C81.499 (3)C14—H140.9802
N9—C101.357 (3)C15—H15B0.9710
N9—C51.420 (3)C15—H15A0.9694
N19—C161.503 (3)C16—H160.9802
N19—C181.467 (3)C17—H17A0.9696
N19—C201.473 (3)C17—H17B0.9711
C1—C21.391 (3)C18—H18A0.9706
C1—C61.379 (3)C18—H18B0.9700
C2—C31.388 (3)C20—H20A0.9706
C3—C41.375 (3)C20—H20B0.9707
C4—C51.393 (3)C22—H220.9501
C5—C61.362 (3)C23—H23B0.9703
C6—C71.510 (3)C23—H23A0.9699
C7—C81.555 (3)C25—H25B0.9600
C7—C161.537 (3)C25—H25C0.9599
C7—C171.520 (3)C25—H25A0.9597
C8—C131.512 (3)C26—H26B0.9602
C10—C111.500 (3)C26—H26C0.9592
C11—C121.523 (3)C26—H26A0.9602
C12—C131.512 (3)
C2—O2—C25116.60 (17)C2—C1—H1121
C3—O3—C26117.74 (18)C3—C4—H4121
C12—O24—C23114.63 (18)C5—C4—H4121
H11W—O1W—H12W100C13—C8—H8109.47
H21W—O2W—H22W100C7—C8—H8109.48
H31W—O3W—H32W118N9—C8—H8109.52
H41W—O4W—H42W114C10—C11—H11B107.91
C5—N9—C8108.93 (17)C12—C11—H11A108.02
C5—N9—C10126.28 (19)C10—C11—H11A107.97
C8—N9—C10118.59 (18)C12—C11—H11B108.02
C16—N19—C18107.97 (17)H11A—C11—H11B107.21
C18—N19—C20111.62 (19)O24—C12—H12108.70
C16—N19—C20112.8 (2)C13—C12—H12108.72
C2—C1—C6118.9 (2)C11—C12—H12108.73
O2—C2—C1124.1 (2)C8—C13—H13105.13
O2—C2—C3116.29 (19)C12—C13—H13105.10
C1—C2—C3119.6 (2)C14—C13—H13105.03
C2—C3—C4121.6 (2)C21—C14—H14108.86
O3—C3—C2114.6 (2)C13—C14—H14109.00
O3—C3—C4123.8 (2)C15—C14—H14108.93
C3—C4—C5117.2 (2)C14—C15—H15B110.04
N9—C5—C4127.7 (2)C16—C15—H15A109.97
N9—C5—C6110.37 (19)C16—C15—H15B109.94
C4—C5—C6122.0 (2)C14—C15—H15A110.07
C1—C6—C5120.4 (2)H15A—C15—H15B108.38
C1—C6—C7128.0 (2)N19—C16—H16108.08
C5—C6—C7111.4 (2)C7—C16—H16108.16
C6—C7—C16116.85 (19)C15—C16—H16108.13
C6—C7—C17112.07 (18)C7—C17—H17B111.05
C6—C7—C8102.20 (17)C18—C17—H17A111.12
C16—C7—C17100.86 (17)C7—C17—H17A111.09
C8—C7—C16113.90 (18)H17A—C17—H17B109.01
C8—C7—C17111.34 (19)C18—C17—H17B111.06
C7—C8—C13117.49 (19)C17—C18—H18B110.83
N9—C8—C13105.97 (17)C17—C18—H18A110.80
N9—C8—C7104.56 (17)N19—C18—H18A110.76
O25—C10—C11121.6 (2)H18A—C18—H18B108.88
N9—C10—C11116.2 (2)N19—C18—H18B110.80
O25—C10—N9122.2 (2)N19—C20—H20A109.15
C10—C11—C12117.3 (2)N19—C20—H20B109.16
O24—C12—C11105.33 (18)C21—C20—H20A109.21
O24—C12—C13115.03 (19)C21—C20—H20B109.25
C11—C12—C13110.15 (19)H20A—C20—H20B107.77
C8—C13—C14113.05 (18)C23—C22—H22118
C12—C13—C14118.90 (19)C21—C22—H22118
C8—C13—C12108.37 (18)O24—C23—H23A109.11
C15—C14—C21109.40 (19)O24—C23—H23B109.22
C13—C14—C15106.52 (18)H23A—C23—H23B107.91
C13—C14—C21114.02 (19)C22—C23—H23A109.17
C14—C15—C16108.44 (19)C22—C23—H23B109.15
N19—C16—C15111.46 (18)O2—C25—H25B109.48
C7—C16—C15115.08 (19)O2—C25—H25C109.52
N19—C16—C7105.70 (18)H25A—C25—H25B109.46
C7—C17—C18103.45 (18)H25A—C25—H25C109.40
N19—C18—C17104.73 (18)O2—C25—H25A109.51
N19—C20—C21112.20 (18)H25B—C25—H25C109.46
C14—C21—C20114.15 (19)H26A—C26—H26C109.53
C20—C21—C22123.4 (2)H26B—C26—H26C109.36
C14—C21—C22122.3 (2)H26A—C26—H26B109.47
C21—C22—C23124.0 (2)O3—C26—H26A109.47
O24—C23—C22112.2 (2)O3—C26—H26B109.51
C6—C1—H1121O3—C26—H26C109.49
C25—O2—C2—C16.3 (3)C1—C6—C7—C8170.5 (2)
C25—O2—C2—C3174.5 (2)C5—C6—C7—C16139.7 (2)
C26—O3—C3—C2178.3 (2)C8—C7—C16—C1534.9 (3)
C26—O3—C3—C41.8 (3)C6—C7—C8—C13101.8 (2)
C23—O24—C12—C1366.0 (2)C6—C7—C8—N915.3 (2)
C23—O24—C12—C11172.52 (19)C17—C7—C16—N1930.8 (2)
C12—O24—C23—C2284.9 (3)C6—C7—C16—C1584.0 (3)
C10—N9—C8—C1341.1 (2)C6—C7—C16—N19152.51 (19)
C5—N9—C10—C11160.9 (2)C8—C7—C17—C1880.1 (2)
C10—N9—C5—C6154.5 (2)C16—C7—C17—C1841.1 (2)
C8—N9—C5—C62.9 (2)C17—C7—C16—C15154.22 (19)
C10—N9—C8—C7165.90 (18)C17—C7—C8—C13138.34 (19)
C8—N9—C10—O25169.8 (2)C16—C7—C8—C1325.1 (3)
C5—N9—C10—O2520.7 (3)C6—C7—C17—C18166.13 (18)
C5—N9—C8—C13112.94 (19)C17—C7—C8—N9104.56 (19)
C5—N9—C8—C711.8 (2)C8—C7—C16—N1988.6 (2)
C8—N9—C10—C1111.7 (3)C16—C7—C8—N9142.21 (18)
C10—N9—C5—C426.6 (3)C7—C8—C13—C1438.8 (3)
C8—N9—C5—C4178.2 (2)N9—C8—C13—C1270.8 (2)
C18—N19—C16—C15134.6 (2)N9—C8—C13—C14155.15 (18)
C20—N19—C16—C1510.7 (3)C7—C8—C13—C12172.83 (18)
C20—N19—C16—C7115.0 (2)O25—C10—C11—C12143.4 (2)
C16—N19—C20—C2146.1 (3)N9—C10—C11—C1238.2 (3)
C16—N19—C18—C1717.1 (2)C10—C11—C12—C137.0 (3)
C20—N19—C18—C17141.62 (19)C10—C11—C12—O24131.6 (2)
C18—N19—C16—C78.9 (2)O24—C12—C13—C1457.8 (3)
C18—N19—C20—C2175.7 (3)O24—C12—C13—C873.1 (2)
C2—C1—C6—C7173.2 (2)C11—C12—C13—C14176.6 (2)
C6—C1—C2—C33.2 (3)C11—C12—C13—C845.8 (2)
C6—C1—C2—O2177.7 (2)C8—C13—C14—C1559.8 (2)
C2—C1—C6—C51.3 (3)C12—C13—C14—C2167.8 (3)
C1—C2—C3—C44.9 (3)C12—C13—C14—C15171.47 (19)
C1—C2—C3—O3175.2 (2)C8—C13—C14—C2161.0 (3)
O2—C2—C3—C4175.9 (2)C13—C14—C15—C1668.8 (2)
O2—C2—C3—O34.0 (3)C15—C14—C21—C201.0 (3)
C2—C3—C4—C52.0 (3)C13—C14—C21—C2256.2 (3)
O3—C3—C4—C5178.1 (2)C13—C14—C21—C20120.1 (2)
C3—C4—C5—C62.6 (3)C21—C14—C15—C1654.9 (2)
C3—C4—C5—N9178.7 (2)C15—C14—C21—C22175.3 (2)
N9—C5—C6—C1176.8 (2)C14—C15—C16—N1962.4 (2)
C4—C5—C6—C14.2 (4)C14—C15—C16—C757.9 (2)
C4—C5—C6—C7171.1 (2)C7—C17—C18—N1936.8 (2)
N9—C5—C6—C77.9 (3)N19—C20—C21—C22123.4 (3)
C5—C6—C7—C814.6 (2)N19—C20—C21—C1452.9 (3)
C5—C6—C7—C17104.7 (2)C14—C21—C22—C230.1 (4)
C1—C6—C7—C1645.4 (3)C20—C21—C22—C23176.0 (2)
C1—C6—C7—C1770.2 (3)C21—C22—C23—O2465.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O2Wi0.891.922.791 (4)166
O1W—H12W···O3W0.921.842.749 (4)172
O2W—H21W···O1W0.831.912.736 (4)170
O2W—H22W···N19ii0.881.922.793 (3)173
O3W—H31W···O250.901.912.819 (4)179
O3W—H32W···O4W0.891.902.790 (4)180
O4W—H41W···O24iii0.902.032.922 (3)172
O4W—H42W···O2Wiv0.861.942.794 (3)175
C4—H4···O250.952.452.942 (3)113
C12—H12···O3v0.982.423.376 (3)164
C13—H13···O2v0.982.573.417 (3)145
C23—H23B···O1Wvi0.972.573.497 (4)160
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y1/2, z+3/2; (iv) x+1, y, z; (v) x+2, y+1/2, z+3/2; (vi) x+3/2, y+2, z1/2.
(II) 2,3-dimethoxystrychnidin-10-one–water (1/5.25) top
Crystal data top
C23H26N2O4·5.25H2OF(000) = 2100
Mr = 489.0Dx = 1.352 Mg m3
Monoclinic, C2Melting point = 386.9–388.2 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 23.351 (5) ÅCell parameters from 4189 reflections
b = 12.200 (3) Åθ = 2.2–24.9°
c = 16.972 (4) ŵ = 0.10 mm1
β = 96.202 (4)°T = 130 K
V = 4806.7 (19) Å3Block, colourless
Z = 80.35 × 0.30 × 0.15 mm
Data collection top
Bruker CCD area-detector
diffractometer
3673 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.098
Graphite monochromatorθmax = 25.0°, θmin = 1.2°
ϕ and ω scansh = 1927
12710 measured reflectionsk = 1410
4461 independent reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0961P)2]
where P = (Fo2 + 2Fc2)/3
4461 reflections(Δ/σ)max < 0.001
621 parametersΔρmax = 0.49 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C23H26N2O4·5.25H2OV = 4806.7 (19) Å3
Mr = 489.0Z = 8
Monoclinic, C2Mo Kα radiation
a = 23.351 (5) ŵ = 0.10 mm1
b = 12.200 (3) ÅT = 130 K
c = 16.972 (4) Å0.35 × 0.30 × 0.15 mm
β = 96.202 (4)°
Data collection top
Bruker CCD area-detector
diffractometer
3673 reflections with I > 2σ(I)
12710 measured reflectionsRint = 0.098
4461 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0661 restraint
wR(F2) = 0.173H-atom parameters constrained
S = 1.01Δρmax = 0.49 e Å3
4461 reflectionsΔρmin = 0.28 e Å3
621 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O2A0.66197 (11)0.8034 (3)0.66734 (18)0.0293 (10)
O3A0.69393 (11)0.6156 (3)0.61548 (18)0.0303 (10)
O24A0.34016 (12)0.3818 (3)0.6117 (2)0.0419 (11)
O25A0.53763 (12)0.3316 (3)0.59137 (18)0.0284 (10)
N9A0.49108 (13)0.4934 (3)0.5970 (2)0.0218 (10)
N19A0.37116 (14)0.7752 (4)0.6561 (2)0.0300 (13)
C1A0.56105 (16)0.7481 (4)0.6565 (2)0.0222 (14)
C2A0.61882 (16)0.7276 (4)0.6497 (2)0.0250 (14)
C3A0.63596 (17)0.6260 (4)0.6219 (2)0.0244 (14)
C4A0.59596 (16)0.5420 (4)0.6032 (2)0.0246 (14)
C5A0.53884 (17)0.5645 (4)0.6123 (2)0.0219 (12)
C6A0.52138 (16)0.6649 (4)0.6377 (2)0.0200 (13)
C7A0.45627 (17)0.6728 (4)0.6289 (2)0.0229 (14)
C8A0.43812 (16)0.5516 (4)0.6166 (2)0.0231 (14)
C10A0.49262 (17)0.3835 (4)0.5966 (2)0.0232 (14)
C11A0.43610 (18)0.3265 (4)0.6010 (3)0.0320 (16)
C12A0.39531 (19)0.3776 (4)0.6568 (3)0.0333 (16)
C13A0.41828 (17)0.4894 (4)0.6868 (2)0.0264 (14)
C14A0.38127 (18)0.5605 (4)0.7361 (3)0.0321 (14)
C15A0.41861 (19)0.6590 (5)0.7659 (3)0.0340 (14)
C16A0.42779 (17)0.7322 (4)0.6959 (2)0.0257 (14)
C17A0.43385 (16)0.7438 (4)0.5574 (2)0.0241 (14)
C18A0.37043 (17)0.7579 (4)0.5700 (3)0.0280 (14)
C20A0.32041 (18)0.7253 (5)0.6867 (3)0.0362 (16)
C21A0.32541 (18)0.6017 (5)0.6918 (3)0.0339 (16)
C22A0.2858 (2)0.5352 (5)0.6558 (3)0.0430 (18)
C23A0.2931 (2)0.4139 (6)0.6555 (4)0.058 (2)
C25A0.6442 (2)0.9088 (4)0.6926 (3)0.0371 (16)
C35A0.71252 (18)0.5163 (5)0.5822 (3)0.0394 (16)
O2B0.28224 (12)0.3245 (3)0.89254 (19)0.0308 (10)
O3B0.37311 (11)0.4351 (3)0.93204 (18)0.0311 (10)
O24B0.16629 (12)1.0279 (2)0.87679 (17)0.0253 (9)
O25B0.34302 (12)0.8480 (3)0.9298 (2)0.0392 (11)
N9B0.25425 (13)0.7727 (3)0.9201 (2)0.0218 (10)
N19B0.06358 (15)0.6815 (3)0.8528 (2)0.0309 (11)
C1B0.22109 (17)0.4869 (4)0.8879 (2)0.0232 (12)
C2B0.27380 (17)0.4349 (4)0.8994 (2)0.0237 (12)
C3B0.32370 (17)0.4970 (4)0.9218 (2)0.0233 (12)
C4B0.32186 (17)0.6091 (4)0.9309 (2)0.0246 (12)
C5B0.26790 (17)0.6594 (4)0.9174 (2)0.0211 (11)
C6B0.21859 (16)0.5993 (4)0.8960 (2)0.0216 (12)
C7B0.16561 (18)0.6706 (4)0.8930 (2)0.0230 (12)
C8B0.19119 (16)0.7878 (4)0.8950 (2)0.0213 (11)
C10B0.29032 (18)0.8585 (4)0.9155 (3)0.0268 (14)
C11B0.26285 (18)0.9668 (4)0.8935 (3)0.0272 (12)
C12B0.20644 (17)0.9685 (4)0.8364 (3)0.0241 (12)
C13B0.18793 (16)0.8504 (4)0.8161 (2)0.0225 (12)
C14B0.13126 (17)0.8308 (4)0.7637 (3)0.0264 (14)
C15B0.12846 (18)0.7087 (4)0.7473 (2)0.0263 (14)
C16B0.11913 (17)0.6488 (4)0.8232 (3)0.0255 (12)
C17B0.13219 (17)0.6512 (4)0.9639 (3)0.0256 (12)
C18B0.07485 (18)0.7062 (4)0.9384 (3)0.0320 (14)
C20B0.03512 (18)0.7742 (4)0.8083 (3)0.0323 (16)
C21B0.07687 (18)0.8666 (4)0.8006 (3)0.0278 (14)
C22B0.06973 (18)0.9670 (4)0.8277 (3)0.0279 (14)
C23B0.11398 (19)1.0560 (4)0.8286 (3)0.0314 (14)
C25B0.2321 (2)0.2600 (4)0.8713 (3)0.0374 (16)
C35B0.42553 (17)0.4914 (4)0.9559 (3)0.0325 (14)
O1W0.6484 (2)0.0550 (4)0.5114 (4)0.0613 (19)
O2W0.49287 (19)0.9980 (4)0.6762 (3)0.0571 (16)
O3W0.4147 (2)1.0180 (5)0.8868 (4)0.097 (2)
O4W0.37374 (16)0.9997 (4)0.6499 (3)0.0527 (16)
O5W0.0821 (3)0.3143 (6)0.9213 (4)0.110 (3)
O6W0.54313 (14)0.1107 (3)0.5622 (2)0.0380 (11)
O7W0.38624 (17)0.2253 (4)0.8330 (3)0.0563 (16)
O8W0.01780 (14)0.4773 (3)0.8362 (2)0.0461 (11)
O9W0.80135 (19)0.6254 (5)0.7281 (3)0.0723 (19)
O10W0.7225 (4)0.2403 (8)0.4861 (7)0.058 (4)0.543 (17)
O11W0.6978 (4)0.2595 (8)0.5432 (6)0.071 (4)0.457 (17)
O12W0.5000 (9)0.6918 (8)0.9719 (9)0.083 (7)0.500
H1A0.548900.817700.673600.0270*
H4A0.607400.472600.585000.0290*
H8A0.407700.546300.570400.0280*
H11A0.444200.249900.618000.0380*
H11B0.415500.323800.546900.0380*
H12A0.393100.327800.703200.0400*
H13A0.454200.473100.722500.0320*
H14A0.371800.517000.783000.0380*
H15A0.399200.700800.805400.0410*
H15B0.456200.633100.791800.0410*
H16A0.452500.795700.715300.0310*
H17A0.454000.815300.558200.0290*
H17B0.438200.706100.506700.0290*
H18A0.353400.821800.540100.0330*
H18B0.348000.691500.552900.0330*
H20A0.316300.755300.740000.0430*
H20B0.285400.745000.651400.0430*
H22A0.251700.566000.629300.0520*
H23A0.300500.387200.710700.0690*
H23B0.257000.379500.631300.0690*
H25D0.624000.900500.740000.0550*
H25E0.618400.942700.650200.0550*
H25F0.678200.955500.705100.0550*
H35A0.690900.504500.530200.0590*
H35B0.705700.454900.617300.0590*
H35C0.753700.521200.576300.0590*
H1B0.186900.445800.874500.0280*
H4B0.355800.650400.945700.0290*
H8B0.173600.833000.935300.0250*
H11C0.291601.012000.869500.0320*
H11D0.255001.003700.943200.0320*
H12B0.213201.008300.786700.0290*
H13B0.218900.818800.786600.0270*
H14B0.132600.870500.712400.0320*
H15C0.096400.692600.705900.0320*
H15D0.164800.683900.728000.0320*
H16B0.117900.568300.812100.0310*
H17C0.151700.685501.012500.0300*
H17D0.127200.571900.973500.0300*
H18C0.044100.675800.967800.0380*
H18D0.077400.786300.947500.0380*
H20C0.002600.800700.836100.0390*
H20D0.019400.749000.754900.0390*
H22B0.034300.983600.847900.0340*
H23C0.122701.070200.773800.0380*
H23D0.098101.124200.849200.0380*
H25A0.214900.280700.818200.0560*
H25B0.204100.272800.909500.0560*
H25C0.242600.182300.871800.0560*
H35D0.422300.529901.005900.0490*
H35E0.433100.544600.915000.0490*
H35F0.457300.438600.963200.0490*
H11W0.6410.0380.4590.073*
H12W0.6220.0500.5280.073*
H21W0.5091.0350.6390.068*
H22W0.4591.0070.6600.068*
H31W0.4501.0040.8700.116*
H32W0.3920.9640.9010.116*
H41W0.3501.0410.6760.064*
H42W0.3630.9270.6520.064*
H51W0.1010.3490.9600.130*
H52W0.0610.3670.8940.130*
H61W0.5420.1890.5700.046*
H62W0.5440.1020.5140.046*
H71W0.3720.2700.8710.067*
H72W0.3960.1570.8510.067*
H81W0.0330.5450.8420.055*
H82W0.0090.4840.7830.055*
H91W0.772000.642000.694000.086*
H92W0.828000.680000.750000.086*
H13W0.700000.183000.494000.070*0.543
H14W0.702000.287000.453000.070*0.543
H15W0.682000.194000.533000.085*0.457
H16W0.687000.295000.499000.085*0.457
H17W0.528000.733000.955000.096*0.500
H18W0.477000.727001.002000.096*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O2A0.0193 (14)0.0266 (19)0.0417 (18)0.0061 (13)0.0016 (12)0.0080 (14)
O3A0.0127 (13)0.036 (2)0.0422 (18)0.0003 (13)0.0036 (12)0.0040 (15)
O24A0.0160 (15)0.042 (2)0.067 (2)0.0100 (14)0.0020 (15)0.0060 (18)
O25A0.0236 (15)0.0228 (18)0.0382 (17)0.0004 (13)0.0008 (12)0.0003 (14)
N9A0.0142 (16)0.022 (2)0.0296 (18)0.0008 (14)0.0046 (13)0.0006 (16)
N19A0.0198 (17)0.036 (3)0.035 (2)0.0072 (16)0.0066 (15)0.0017 (18)
C1A0.0186 (19)0.025 (3)0.023 (2)0.0014 (17)0.0022 (15)0.0028 (18)
C2A0.019 (2)0.030 (3)0.025 (2)0.0044 (18)0.0015 (16)0.0029 (19)
C3A0.019 (2)0.029 (3)0.026 (2)0.0025 (18)0.0056 (16)0.0000 (18)
C4A0.021 (2)0.027 (3)0.026 (2)0.0007 (18)0.0035 (16)0.0038 (18)
C5A0.021 (2)0.024 (2)0.020 (2)0.0008 (17)0.0015 (15)0.0007 (18)
C6A0.0140 (19)0.026 (3)0.0206 (19)0.0005 (17)0.0053 (15)0.0002 (18)
C7A0.020 (2)0.025 (3)0.024 (2)0.0013 (17)0.0039 (16)0.0001 (18)
C8A0.017 (2)0.024 (3)0.028 (2)0.0050 (18)0.0008 (16)0.0033 (19)
C10A0.022 (2)0.023 (3)0.024 (2)0.0013 (19)0.0004 (16)0.0028 (18)
C11A0.026 (2)0.028 (3)0.041 (3)0.010 (2)0.0002 (19)0.008 (2)
C12A0.028 (2)0.030 (3)0.042 (3)0.001 (2)0.004 (2)0.012 (2)
C13A0.020 (2)0.031 (3)0.028 (2)0.0027 (19)0.0011 (16)0.008 (2)
C14A0.026 (2)0.037 (3)0.035 (2)0.000 (2)0.0114 (18)0.005 (2)
C15A0.027 (2)0.048 (3)0.028 (2)0.006 (2)0.0078 (18)0.000 (2)
C16A0.019 (2)0.029 (3)0.029 (2)0.0035 (18)0.0021 (16)0.0034 (19)
C17A0.023 (2)0.022 (3)0.027 (2)0.0001 (18)0.0018 (16)0.0026 (19)
C18A0.021 (2)0.029 (3)0.033 (2)0.0010 (19)0.0017 (17)0.006 (2)
C20A0.018 (2)0.051 (3)0.041 (3)0.008 (2)0.0102 (18)0.007 (2)
C21A0.020 (2)0.046 (3)0.038 (3)0.001 (2)0.0136 (19)0.005 (2)
C22A0.020 (2)0.055 (4)0.056 (3)0.004 (2)0.013 (2)0.014 (3)
C23A0.029 (3)0.059 (4)0.088 (4)0.008 (3)0.017 (3)0.016 (4)
C25A0.028 (2)0.032 (3)0.052 (3)0.008 (2)0.007 (2)0.010 (2)
C35A0.019 (2)0.043 (3)0.057 (3)0.000 (2)0.008 (2)0.012 (3)
O2B0.0258 (15)0.0138 (17)0.0512 (19)0.0018 (13)0.0026 (13)0.0030 (14)
O3B0.0189 (14)0.032 (2)0.0416 (18)0.0053 (14)0.0006 (12)0.0015 (15)
O24B0.0262 (15)0.0183 (17)0.0307 (16)0.0044 (12)0.0006 (12)0.0027 (13)
O25B0.0207 (16)0.025 (2)0.070 (2)0.0024 (14)0.0041 (15)0.0084 (17)
N9B0.0179 (16)0.019 (2)0.0273 (18)0.0009 (14)0.0028 (13)0.0015 (15)
N19B0.0224 (18)0.032 (2)0.038 (2)0.0007 (16)0.0013 (15)0.0009 (18)
C1B0.021 (2)0.023 (2)0.025 (2)0.0009 (17)0.0003 (16)0.0001 (18)
C2B0.026 (2)0.016 (2)0.028 (2)0.0018 (18)0.0016 (17)0.0007 (18)
C3B0.026 (2)0.017 (2)0.026 (2)0.0047 (18)0.0009 (16)0.0041 (18)
C4B0.022 (2)0.024 (2)0.027 (2)0.0034 (18)0.0008 (16)0.0038 (19)
C5B0.023 (2)0.019 (2)0.0214 (19)0.0002 (17)0.0026 (16)0.0001 (17)
C6B0.018 (2)0.021 (2)0.026 (2)0.0017 (17)0.0030 (16)0.0005 (18)
C7B0.024 (2)0.015 (2)0.030 (2)0.0012 (17)0.0028 (17)0.0006 (18)
C8B0.0154 (18)0.019 (2)0.029 (2)0.0015 (16)0.0003 (16)0.0022 (17)
C10B0.027 (2)0.022 (3)0.031 (2)0.0057 (19)0.0012 (18)0.0042 (19)
C11B0.029 (2)0.018 (2)0.034 (2)0.0018 (18)0.0008 (18)0.0003 (19)
C12B0.025 (2)0.016 (2)0.032 (2)0.0005 (17)0.0064 (17)0.0037 (18)
C13B0.021 (2)0.022 (2)0.025 (2)0.0030 (17)0.0043 (16)0.0043 (18)
C14B0.025 (2)0.024 (3)0.030 (2)0.0029 (18)0.0017 (17)0.0028 (19)
C15B0.022 (2)0.031 (3)0.025 (2)0.0041 (18)0.0020 (16)0.0048 (19)
C16B0.021 (2)0.019 (2)0.036 (2)0.0008 (17)0.0005 (17)0.0077 (19)
C17B0.025 (2)0.016 (2)0.036 (2)0.0032 (18)0.0048 (18)0.0013 (19)
C18B0.026 (2)0.031 (3)0.040 (2)0.003 (2)0.0078 (19)0.001 (2)
C20B0.020 (2)0.030 (3)0.045 (3)0.0027 (19)0.0054 (19)0.005 (2)
C21B0.024 (2)0.031 (3)0.027 (2)0.0025 (19)0.0035 (17)0.0003 (19)
C22B0.023 (2)0.028 (3)0.032 (2)0.0074 (19)0.0008 (17)0.001 (2)
C23B0.035 (2)0.024 (3)0.034 (2)0.007 (2)0.0017 (19)0.001 (2)
C25B0.034 (2)0.019 (3)0.056 (3)0.000 (2)0.010 (2)0.004 (2)
C35B0.022 (2)0.038 (3)0.037 (2)0.002 (2)0.0005 (18)0.007 (2)
O11W0.080 (7)0.055 (6)0.071 (7)0.041 (5)0.021 (6)0.011 (5)
O10W0.057 (6)0.043 (6)0.070 (9)0.023 (4)0.010 (5)0.007 (5)
O1W0.043 (3)0.050 (3)0.090 (4)0.003 (2)0.003 (2)0.010 (3)
O2W0.038 (2)0.065 (3)0.068 (3)0.005 (2)0.005 (2)0.014 (2)
O3W0.074 (3)0.055 (3)0.175 (6)0.006 (3)0.071 (3)0.022 (4)
O4W0.042 (2)0.041 (3)0.076 (3)0.0009 (18)0.0102 (19)0.002 (2)
O5W0.115 (5)0.078 (5)0.122 (5)0.044 (4)0.052 (4)0.045 (4)
O6W0.0409 (19)0.026 (2)0.045 (2)0.0034 (16)0.0045 (15)0.0007 (17)
O7W0.066 (3)0.049 (3)0.058 (2)0.012 (2)0.025 (2)0.002 (2)
O8W0.0348 (18)0.037 (2)0.067 (2)0.0065 (16)0.0075 (16)0.0001 (19)
O9W0.065 (3)0.075 (4)0.077 (3)0.013 (2)0.008 (2)0.007 (3)
O12W0.092 (6)0.040 (5)0.12 (1)0.025 (7)0.071 (14)0.004 (7)
Geometric parameters (Å, º) top
O2A—C2A1.377 (5)C12A—H12A1.0000
O2A—C25A1.431 (6)C13A—H13A1.0000
O3A—C3A1.376 (5)C14A—H14A1.0000
O3A—C35A1.424 (7)C15A—H15A0.9900
O24A—C12A1.426 (6)C15A—H15B0.9900
O24A—C23A1.446 (6)C16A—H16A1.0000
O25A—C10A1.238 (5)C17A—H17A0.9900
O2B—C2B1.368 (6)C17A—H17B0.9900
O2B—C25B1.424 (6)C18A—H18A0.9900
O3B—C3B1.374 (5)C18A—H18B0.9900
O3B—C35B1.424 (5)C20A—H20B0.9900
O24B—C23B1.436 (5)C20A—H20A0.9900
O24B—C12B1.419 (5)C22A—H22A0.9500
O25B—C10B1.235 (5)C23A—H23B0.9900
O10W—H13W0.89C23A—H23A0.9900
O10W—H14W0.90C25A—H25D0.9800
O11W—H16W0.88C25A—H25E0.9800
O11W—H15W0.89C25A—H25F0.9800
O1W—H11W0.91C35A—H35A0.9800
O1W—H12W0.71C35A—H35B0.9800
O2W—H22W0.82C35A—H35C0.9800
O2W—H21W0.89C1B—C6B1.380 (7)
N9A—C10A1.341 (6)C1B—C2B1.380 (6)
N9A—C8A1.494 (5)C2B—C3B1.407 (6)
N9A—C5A1.415 (5)C3B—C4B1.378 (7)
N19A—C16A1.512 (5)C4B—C5B1.398 (6)
N19A—C20A1.476 (6)C5B—C6B1.380 (6)
N19A—C18A1.475 (6)C6B—C7B1.509 (6)
O3W—H31W0.92C7B—C16B1.541 (6)
O3W—H32W0.90C7B—C17B1.522 (6)
N9B—C10B1.351 (6)C7B—C8B1.549 (7)
N9B—C8B1.499 (5)C8B—C13B1.536 (5)
N9B—C5B1.420 (6)C10B—C11B1.498 (7)
N19B—C16B1.495 (5)C11B—C12B1.549 (6)
N19B—C18B1.479 (6)C12B—C13B1.533 (7)
N19B—C20B1.477 (6)C13B—C14B1.531 (6)
O4W—H41W0.90C14B—C15B1.516 (7)
O4W—H42W0.92C14B—C21B1.539 (6)
O5W—H52W0.90C15B—C16B1.517 (6)
O5W—H51W0.86C17B—C18B1.518 (6)
O6W—H61W0.97C20B—C21B1.505 (7)
O6W—H62W0.83C21B—C22B1.325 (7)
O7W—H72W0.91C22B—C23B1.498 (7)
O7W—H71W0.93C1B—H1B0.9500
C1A—C2A1.389 (5)C4B—H4B0.9500
C1A—C6A1.388 (6)C8B—H8B1.0000
C2A—C3A1.400 (7)O9W—H91W0.87
C3A—C4A1.400 (6)O9W—H92W0.96
C4A—C5A1.387 (6)C11B—H11D0.9900
C5A—C6A1.375 (7)C11B—H11C0.9900
C6A—C7A1.515 (5)C12B—H12B1.0000
C7A—C17A1.536 (6)C13B—H13B1.0000
C7A—C8A1.546 (7)C14B—H14B1.0000
C7A—C16A1.557 (6)C15B—H15D0.9900
C8A—C13A1.526 (5)C15B—H15C0.9900
C10A—C11A1.501 (6)C16B—H16B1.0000
C11A—C12A1.545 (7)C17B—H17C0.9900
C12A—C13A1.532 (7)C17B—H17D0.9900
C13A—C14A1.535 (6)C18B—H18D0.9900
C14A—C15A1.538 (7)C18B—H18C0.9900
C14A—C21A1.519 (7)C20B—H20C0.9900
C15A—C16A1.520 (7)C20B—H20D0.9900
C17A—C18A1.529 (6)C22B—H22B0.9500
C20A—C21A1.514 (9)C23B—H23C0.9900
C21A—C22A1.329 (7)C23B—H23D0.9900
C22A—C23A1.490 (10)C25B—H25B0.9800
C1A—H1A0.9500C25B—H25A0.9800
C4A—H4A0.9500C25B—H25C0.9800
C8A—H8A1.0000C35B—H35F0.9800
O8W—H82W0.91C35B—H35D0.9800
O8W—H81W0.90C35B—H35E0.9800
C11A—H11A0.9900O12W—H17W0.90
C11A—H11B0.9900O12W—H18W0.89
C2A—O2A—C25A116.1 (3)C22A—C23A—H23B109.00
C3A—O3A—C35A117.0 (3)H25D—C25A—H25E110.00
C12A—O24A—C23A115.2 (4)H25D—C25A—H25F109.00
C2B—O2B—C25B116.3 (3)O2A—C25A—H25F109.00
C3B—O3B—C35B117.1 (4)O2A—C25A—H25E110.00
C12B—O24B—C23B114.4 (3)H25E—C25A—H25F109.00
H13W—O10W—H14W108O2A—C25A—H25D109.00
H15W—O11W—H16W102H35B—C35A—H35C110.00
H11W—O1W—H12W107O3A—C35A—H35B109.00
H21W—O2W—H22W99O3A—C35A—H35C109.00
C5A—N9A—C8A108.8 (3)H35A—C35A—H35C109.00
C5A—N9A—C10A126.4 (3)O3A—C35A—H35A109.00
C8A—N9A—C10A120.0 (3)H35A—C35A—H35B109.00
C16A—N19A—C20A113.4 (4)C2B—C1B—C6B119.3 (4)
C18A—N19A—C20A111.5 (4)O2B—C2B—C1B125.1 (4)
C16A—N19A—C18A108.0 (3)C1B—C2B—C3B119.4 (4)
H31W—O3W—H32W122O2B—C2B—C3B115.5 (4)
C8B—N9B—C10B119.2 (4)O3B—C3B—C2B113.4 (4)
C5B—N9B—C10B127.5 (3)O3B—C3B—C4B124.6 (4)
C5B—N9B—C8B109.1 (3)C2B—C3B—C4B122.0 (4)
C16B—N19B—C18B108.4 (3)C3B—C4B—C5B117.1 (4)
C16B—N19B—C20B113.0 (3)N9B—C5B—C4B128.6 (4)
C18B—N19B—C20B111.6 (4)C4B—C5B—C6B121.4 (4)
H41W—O4W—H42W110N9B—C5B—C6B110.0 (4)
H51W—O5W—H52W105C1B—C6B—C7B127.8 (4)
H61W—O6W—H62W105C5B—C6B—C7B111.1 (4)
H71W—O7W—H72W114C1B—C6B—C5B120.7 (4)
C2A—C1A—C6A118.6 (4)C6B—C7B—C17B111.9 (3)
O2A—C2A—C1A123.8 (4)C6B—C7B—C8B102.6 (3)
C1A—C2A—C3A120.2 (4)C6B—C7B—C16B115.7 (3)
O2A—C2A—C3A116.0 (3)C8B—C7B—C16B114.5 (3)
C2A—C3A—C4A121.1 (4)C8B—C7B—C17B110.8 (3)
O3A—C3A—C2A115.3 (4)C16B—C7B—C17B101.7 (3)
O3A—C3A—C4A123.6 (4)N9B—C8B—C7B104.9 (3)
C3A—C4A—C5A117.1 (4)N9B—C8B—C13B105.3 (3)
N9A—C5A—C4A127.4 (4)C7B—C8B—C13B117.2 (3)
N9A—C5A—C6A110.4 (3)O25B—C10B—N9B121.5 (4)
C4A—C5A—C6A122.2 (4)N9B—C10B—C11B116.4 (4)
C1A—C6A—C5A120.7 (4)O25B—C10B—C11B122.1 (4)
C5A—C6A—C7A110.8 (4)C10B—C11B—C12B118.7 (4)
C1A—C6A—C7A127.9 (4)O24B—C12B—C13B113.8 (3)
C6A—C7A—C8A102.1 (4)C11B—C12B—C13B109.2 (4)
C6A—C7A—C16A117.5 (3)O24B—C12B—C11B105.4 (4)
C8A—C7A—C16A114.3 (3)C12B—C13B—C14B118.8 (4)
C8A—C7A—C17A111.6 (3)C8B—C13B—C12B106.6 (3)
C6A—C7A—C17A111.5 (3)C8B—C13B—C14B112.8 (3)
C16A—C7A—C17A100.3 (3)C13B—C14B—C21B114.8 (4)
N9A—C8A—C13A105.4 (3)C15B—C14B—C21B109.4 (4)
C7A—C8A—C13A118.2 (3)C13B—C14B—C15B106.1 (4)
N9A—C8A—C7A105.3 (3)C14B—C15B—C16B109.0 (4)
O25A—C10A—N9A122.3 (4)N19B—C16B—C15B111.5 (4)
O25A—C10A—C11A121.6 (4)C7B—C16B—C15B114.6 (4)
N9A—C10A—C11A116.0 (4)N19B—C16B—C7B105.1 (4)
C10A—C11A—C12A116.6 (4)C7B—C17B—C18B102.6 (4)
O24A—C12A—C13A114.2 (4)N19B—C18B—C17B104.4 (4)
C11A—C12A—C13A110.2 (4)N19B—C20B—C21B111.0 (4)
O24A—C12A—C11A105.4 (4)C14B—C21B—C22B123.0 (4)
C12A—C13A—C14A119.1 (4)C14B—C21B—C20B113.2 (4)
C8A—C13A—C12A107.9 (3)C20B—C21B—C22B123.7 (4)
C8A—C13A—C14A112.4 (4)C21B—C22B—C23B124.1 (4)
C15A—C14A—C21A109.3 (4)O24B—C23B—C22B112.1 (4)
C13A—C14A—C15A106.8 (4)C2B—C1B—H1B120.00
C13A—C14A—C21A114.9 (4)C6B—C1B—H1B120.00
C14A—C15A—C16A109.0 (4)C3B—C4B—H4B121.00
C7A—C16A—C15A113.9 (4)C5B—C4B—H4B121.00
N19A—C16A—C15A111.3 (3)C13B—C8B—H8B110.00
N19A—C16A—C7A104.9 (3)N9B—C8B—H8B110.00
C7A—C17A—C18A101.9 (3)C7B—C8B—H8B110.00
N19A—C18A—C17A104.3 (3)H91W—O9W—H92W122
N19A—C20A—C21A111.8 (4)C12B—C11B—H11D108.00
C14A—C21A—C20A114.5 (4)H11C—C11B—H11D107.00
C14A—C21A—C22A122.9 (5)C12B—C11B—H11C108.00
C20A—C21A—C22A122.4 (5)C10B—C11B—H11C108.00
C21A—C22A—C23A122.3 (5)C10B—C11B—H11D108.00
O24A—C23A—C22A111.4 (5)C11B—C12B—H12B109.00
C6A—C1A—H1A121.00O24B—C12B—H12B109.00
C2A—C1A—H1A121.00C13B—C12B—H12B109.00
C5A—C4A—H4A121.00C8B—C13B—H13B106.00
C3A—C4A—H4A121.00C12B—C13B—H13B106.00
C13A—C8A—H8A109.00C14B—C13B—H13B106.00
C7A—C8A—H8A109.00C15B—C14B—H14B109.00
N9A—C8A—H8A109.00C21B—C14B—H14B109.00
H81W—O8W—H82W94C13B—C14B—H14B109.00
C10A—C11A—H11A108.00C16B—C15B—H15C110.00
C12A—C11A—H11A108.00C14B—C15B—H15C110.00
C10A—C11A—H11B108.00C14B—C15B—H15D110.00
C12A—C11A—H11B108.00H15C—C15B—H15D108.00
H11A—C11A—H11B107.00C16B—C15B—H15D110.00
O24A—C12A—H12A109.00C15B—C16B—H16B108.00
C11A—C12A—H12A109.00C7B—C16B—H16B109.00
C13A—C12A—H12A109.00N19B—C16B—H16B108.00
C12A—C13A—H13A105.00C7B—C17B—H17C111.00
C14A—C13A—H13A105.00C7B—C17B—H17D111.00
C8A—C13A—H13A105.00C18B—C17B—H17C111.00
C15A—C14A—H14A109.00H17C—C17B—H17D109.00
C13A—C14A—H14A109.00C18B—C17B—H17D111.00
C21A—C14A—H14A109.00N19B—C18B—H18C111.00
C16A—C15A—H15A110.00N19B—C18B—H18D111.00
C16A—C15A—H15B110.00C17B—C18B—H18D111.00
H15A—C15A—H15B108.00H18C—C18B—H18D109.00
C14A—C15A—H15B110.00C17B—C18B—H18C111.00
C14A—C15A—H15A110.00C21B—C20B—H20D109.00
N19A—C16A—H16A109.00H20C—C20B—H20D108.00
C15A—C16A—H16A109.00C21B—C20B—H20C110.00
C7A—C16A—H16A109.00N19B—C20B—H20C109.00
C7A—C17A—H17B111.00N19B—C20B—H20D109.00
C7A—C17A—H17A111.00C21B—C22B—H22B118.00
H17A—C17A—H17B109.00C23B—C22B—H22B118.00
C18A—C17A—H17A111.00O24B—C23B—H23C109.00
C18A—C17A—H17B111.00O24B—C23B—H23D109.00
C17A—C18A—H18A111.00H23C—C23B—H23D108.00
C17A—C18A—H18B111.00C22B—C23B—H23C109.00
H18A—C18A—H18B109.00C22B—C23B—H23D109.00
N19A—C18A—H18A111.00O2B—C25B—H25A110.00
N19A—C18A—H18B111.00H25A—C25B—H25B109.00
N19A—C20A—H20A109.00O2B—C25B—H25B109.00
H20A—C20A—H20B108.00O2B—C25B—H25C110.00
C21A—C20A—H20A109.00H25B—C25B—H25C109.00
C21A—C20A—H20B109.00H25A—C25B—H25C110.00
N19A—C20A—H20B109.00O3B—C35B—H35F110.00
C21A—C22A—H22A119.00O3B—C35B—H35E109.00
C23A—C22A—H22A119.00H35E—C35B—H35F109.00
O24A—C23A—H23B109.00H35D—C35B—H35E109.00
H23A—C23A—H23B108.00H35D—C35B—H35F109.00
C22A—C23A—H23A109.00O3B—C35B—H35D109.00
O24A—C23A—H23A109.00H17W—O12W—H18W115
C25A—O2A—C2A—C1A1.1 (5)C7A—C8A—C13A—C12A172.6 (3)
C25A—O2A—C2A—C3A177.5 (4)O25A—C10A—C11A—C12A142.0 (4)
C35A—O3A—C3A—C2A175.7 (4)N9A—C10A—C11A—C12A39.4 (5)
C35A—O3A—C3A—C4A4.9 (5)C10A—C11A—C12A—C13A9.1 (6)
C23A—O24A—C12A—C13A66.6 (5)C10A—C11A—C12A—O24A132.8 (4)
C23A—O24A—C12A—C11A172.3 (4)C11A—C12A—C13A—C8A43.9 (5)
C12A—O24A—C23A—C22A88.3 (5)O24A—C12A—C13A—C8A74.6 (4)
C25B—O2B—C2B—C1B0.4 (5)C11A—C12A—C13A—C14A173.6 (4)
C25B—O2B—C2B—C3B178.9 (3)O24A—C12A—C13A—C14A55.1 (5)
C35B—O3B—C3B—C4B1.9 (5)C12A—C13A—C14A—C21A65.7 (5)
C35B—O3B—C3B—C2B179.1 (3)C8A—C13A—C14A—C21A61.9 (5)
C12B—O24B—C23B—C22B87.3 (5)C12A—C13A—C14A—C15A173.0 (4)
C23B—O24B—C12B—C11B169.4 (3)C8A—C13A—C14A—C15A59.4 (5)
C23B—O24B—C12B—C13B71.0 (5)C15A—C14A—C21A—C20A0.8 (6)
C5A—N9A—C8A—C7A11.3 (4)C13A—C14A—C21A—C22A56.5 (6)
C8A—N9A—C5A—C6A1.9 (4)C15A—C14A—C21A—C22A176.5 (5)
C10A—N9A—C5A—C6A156.9 (4)C13A—C14A—C15A—C16A69.1 (5)
C8A—N9A—C5A—C4A178.9 (4)C21A—C14A—C15A—C16A55.7 (5)
C5A—N9A—C8A—C13A114.3 (3)C13A—C14A—C21A—C20A119.1 (5)
C10A—N9A—C8A—C7A168.2 (3)C14A—C15A—C16A—C7A57.6 (5)
C10A—N9A—C5A—C4A24.0 (6)C14A—C15A—C16A—N19A60.7 (5)
C5A—N9A—C10A—O25A17.5 (6)C7A—C17A—C18A—N19A40.7 (4)
C5A—N9A—C10A—C11A163.8 (4)N19A—C20A—C21A—C14A51.8 (5)
C10A—N9A—C8A—C13A42.6 (4)N19A—C20A—C21A—C22A123.9 (5)
C8A—N9A—C10A—C11A11.3 (5)C20A—C21A—C22A—C23A175.0 (5)
C8A—N9A—C10A—O25A170.0 (3)C14A—C21A—C22A—C23A0.4 (8)
C16A—N19A—C18A—C17A19.9 (5)C21A—C22A—C23A—O24A65.8 (7)
C16A—N19A—C20A—C21A47.5 (5)C2B—C1B—C6B—C7B174.3 (3)
C20A—N19A—C16A—C15A7.8 (6)C6B—C1B—C2B—C3B2.2 (5)
C20A—N19A—C16A—C7A115.8 (4)C6B—C1B—C2B—O2B179.4 (3)
C18A—N19A—C16A—C15A131.8 (4)C2B—C1B—C6B—C5B1.7 (5)
C18A—N19A—C16A—C7A8.2 (5)C1B—C2B—C3B—C4B1.6 (5)
C18A—N19A—C20A—C21A74.6 (5)C1B—C2B—C3B—O3B179.4 (3)
C20A—N19A—C18A—C17A145.1 (4)O2B—C2B—C3B—C4B179.9 (3)
C10B—N9B—C5B—C4B19.1 (6)O2B—C2B—C3B—O3B0.8 (5)
C8B—N9B—C5B—C4B175.5 (3)C2B—C3B—C4B—C5B0.4 (5)
C10B—N9B—C5B—C6B159.0 (4)O3B—C3B—C4B—C5B179.4 (3)
C10B—N9B—C8B—C7B169.7 (4)C3B—C4B—C5B—C6B0.1 (5)
C8B—N9B—C10B—O25B174.5 (4)C3B—C4B—C5B—N9B177.8 (3)
C5B—N9B—C8B—C13B113.2 (4)N9B—C5B—C6B—C1B178.8 (3)
C5B—N9B—C8B—C7B11.1 (4)C4B—C5B—C6B—C1B0.6 (5)
C8B—N9B—C5B—C6B2.6 (4)C4B—C5B—C6B—C7B174.3 (3)
C5B—N9B—C10B—O25B20.2 (7)N9B—C5B—C6B—C7B7.5 (4)
C8B—N9B—C10B—C11B6.5 (6)C5B—C6B—C7B—C8B13.8 (4)
C10B—N9B—C8B—C13B45.4 (5)C5B—C6B—C7B—C17B105.1 (4)
C5B—N9B—C10B—C11B160.8 (4)C1B—C6B—C7B—C16B47.6 (5)
C20B—N19B—C16B—C15B7.9 (5)C1B—C6B—C7B—C17B68.1 (5)
C20B—N19B—C16B—C7B116.7 (4)C1B—C6B—C7B—C8B173.0 (3)
C18B—N19B—C16B—C15B132.2 (4)C5B—C6B—C7B—C16B139.2 (4)
C16B—N19B—C20B—C21B49.1 (5)C8B—C7B—C16B—C15B33.7 (5)
C18B—N19B—C20B—C21B73.4 (5)C6B—C7B—C8B—C13B101.9 (4)
C16B—N19B—C18B—C17B18.7 (5)C6B—C7B—C8B—N9B14.4 (3)
C18B—N19B—C16B—C7B7.6 (5)C17B—C7B—C16B—N19B30.5 (5)
C20B—N19B—C18B—C17B143.8 (4)C6B—C7B—C16B—C15B85.4 (5)
C2A—C1A—C6A—C5A0.5 (5)C6B—C7B—C16B—N19B151.9 (4)
C6A—C1A—C2A—C3A2.1 (5)C8B—C7B—C17B—C18B80.3 (4)
C6A—C1A—C2A—O2A179.4 (3)C16B—C7B—C17B—C18B41.8 (4)
C2A—C1A—C6A—C7A170.2 (3)C17B—C7B—C16B—C15B153.2 (4)
O2A—C2A—C3A—O3A0.3 (5)C17B—C7B—C8B—C13B138.5 (4)
C1A—C2A—C3A—C4A2.3 (5)C16B—C7B—C8B—C13B24.2 (5)
C1A—C2A—C3A—O3A178.3 (3)C6B—C7B—C17B—C18B165.8 (4)
O2A—C2A—C3A—C4A179.0 (3)C17B—C7B—C8B—N9B105.2 (4)
O3A—C3A—C4A—C5A179.8 (3)C8B—C7B—C16B—N19B89.0 (4)
C2A—C3A—C4A—C5A0.9 (5)C16B—C7B—C8B—N9B140.6 (3)
C3A—C4A—C5A—N9A179.8 (3)C7B—C8B—C13B—C14B38.6 (5)
C3A—C4A—C5A—C6A0.7 (5)N9B—C8B—C13B—C12B73.2 (4)
C4A—C5A—C6A—C1A0.9 (6)N9B—C8B—C13B—C14B154.7 (4)
N9A—C5A—C6A—C1A179.9 (3)C7B—C8B—C13B—C12B170.7 (3)
C4A—C5A—C6A—C7A170.4 (3)O25B—C10B—C11B—C12B148.2 (5)
N9A—C5A—C6A—C7A8.8 (4)N9B—C10B—C11B—C12B32.8 (6)
C5A—C6A—C7A—C16A141.0 (4)C10B—C11B—C12B—C13B2.8 (6)
C5A—C6A—C7A—C8A15.2 (4)C10B—C11B—C12B—O24B125.4 (4)
C5A—C6A—C7A—C17A104.1 (4)O24B—C12B—C13B—C14B59.3 (5)
C1A—C6A—C7A—C17A66.4 (5)O24B—C12B—C13B—C8B69.4 (4)
C1A—C6A—C7A—C8A174.3 (3)C11B—C12B—C13B—C14B176.8 (4)
C1A—C6A—C7A—C16A48.5 (6)C11B—C12B—C13B—C8B48.1 (4)
C6A—C7A—C8A—C13A101.9 (4)C8B—C13B—C14B—C15B60.3 (4)
C17A—C7A—C8A—C13A138.8 (3)C12B—C13B—C14B—C21B65.1 (5)
C8A—C7A—C16A—C15A35.0 (5)C12B—C13B—C14B—C15B174.0 (3)
C16A—C7A—C17A—C18A44.4 (4)C8B—C13B—C14B—C21B60.7 (5)
C17A—C7A—C16A—N19A32.6 (4)C13B—C14B—C15B—C16B69.8 (4)
C17A—C7A—C8A—N9A103.9 (3)C15B—C14B—C21B—C20B1.8 (5)
C6A—C7A—C16A—C15A84.6 (5)C13B—C14B—C21B—C22B54.7 (7)
C6A—C7A—C8A—N9A15.4 (3)C13B—C14B—C21B—C20B120.9 (5)
C16A—C7A—C8A—N9A143.3 (3)C21B—C14B—C15B—C16B54.5 (5)
C6A—C7A—C16A—N19A153.5 (4)C15B—C14B—C21B—C22B173.8 (5)
C8A—C7A—C17A—C18A77.0 (4)C14B—C15B—C16B—N19B61.4 (4)
C6A—C7A—C17A—C18A169.5 (4)C14B—C15B—C16B—C7B57.8 (5)
C17A—C7A—C16A—C15A154.5 (3)C7B—C17B—C18B—N19B37.8 (4)
C16A—C7A—C8A—C13A26.0 (5)N19B—C20B—C21B—C22B120.8 (5)
C8A—C7A—C16A—N19A86.9 (4)N19B—C20B—C21B—C14B54.7 (5)
N9A—C8A—C13A—C12A70.2 (4)C14B—C21B—C22B—C23B2.3 (8)
N9A—C8A—C13A—C14A156.4 (3)C20B—C21B—C22B—C23B172.8 (5)
C7A—C8A—C13A—C14A39.2 (5)C21B—C22B—C23B—O24B61.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O4Wi0.911.902.813 (8)179
O1W—H12W···O6W0.712.122.776 (6)154
O2W—H21W···O6Wii0.891.852.739 (6)179
O2W—H22W···O4W0.821.982.769 (6)162
O3W—H31W···O8Wiii0.921.772.688 (6)179
O3W—H32W···O25B0.901.922.811 (7)179
O4W—H41W···O9Wiv0.901.832.731 (7)179
O4W—H42W···N19A0.921.862.742 (7)158
O5W—H51W···O25Bv0.862.162.942 (8)150
O5W—H52W···O8W0.911.892.798 (8)179
O6W—H61W···O25A0.971.782.746 (5)176
O6W—H62W···O6Wvi0.832.292.756 (5)116
O7W—H71W···O2B0.932.272.986 (5)133
O7W—H71W···O3B0.932.263.096 (6)148
O7W—H72W···O3Wvii0.911.842.746 (8)179
O8W—H81W···N19B0.901.812.714 (5)180
O8W—H82W···O2Wviii0.911.822.727 (6)179
O9W—H91W···O3A0.872.162.987 (6)158
O9W—H92W···O7Wiii0.961.932.797 (7)149
O10W—H13W···O1W0.892.012.907 (11)179
O10W—H14W···O24Avi0.901.812.711 (11)179
O11W—H15W···O1W0.891.892.777 (11)179
O11W—H16W···O24Avi0.882.193.069 (11)179
O12W—H17W···O5Wiii0.901.752.646 (19)179
O12W—H18W···O5Wix0.892.263.154 (19)179
C1A—H1A···O2W0.952.563.472 (7)160
C4A—H4A···O25A0.952.382.903 (6)114
C4B—H4B···O25B0.952.442.957 (6)114
C8B—H8B···O24B1.002.582.996 (5)105
C12A—H12A···O7W1.002.553.546 (7)172
C23A—H23B···O2Aviii0.992.543.371 (6)141
C35B—H35E···O12W0.982.502.996 (15)111
Symmetry codes: (i) x+1, y1, z+1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z; (v) x+1/2, y1/2, z+2; (vi) x+1, y, z+1; (vii) x, y1, z; (viii) x1/2, y1/2, z; (ix) x+1/2, y+1/2, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC23H26N2O4·4H2OC23H26N2O4·5.25H2O
Mr466.52489.0
Crystal system, space groupOrthorhombic, P212121Monoclinic, C2
Temperature (K)130130
a, b, c (Å)7.555 (2), 11.531 (3), 26.492 (8)23.351 (5), 12.200 (3), 16.972 (4)
α, β, γ (°)90, 90, 9090, 96.202 (4), 90
V3)2307.9 (11)4806.7 (19)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.50 × 0.25 × 0.050.35 × 0.30 × 0.15
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Bruker CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed reflections
11874, 2346, 1727 [F2 > 2σ(F2)]12710, 4461, 3673 [I > 2σ(I)]
Rint0.0660.098
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.084, 0.89 0.066, 0.173, 1.01
No. of reflections23464461
No. of parameters301621
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.210.49, 0.28

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 1999), SHELXTL?? (Bruker, 1997) and WinGX (Farrugia, 1999), SHELXS97 (Sheldrick, 1997) and WinGX (Farrugia, 1999), SHELXTL?? and WinGX, SHELXL97 (Sheldrick, 1997) and WinGX, PLATON (Spek, 2003), PLATON.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O2Wi0.891.922.791 (4)166
O1W—H12W···O3W0.921.842.749 (4)172
O2W—H21W···O1W0.831.912.736 (4)170
O2W—H22W···N19ii0.881.922.793 (3)173
O3W—H31W···O250.901.912.819 (4)179
O3W—H32W···O4W0.891.902.790 (4)180
O4W—H41W···O24iii0.902.032.922 (3)172
O4W—H42W···O2Wiv0.861.942.794 (3)175
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y1/2, z+3/2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O4Wi0.911.902.813 (8)179
O1W—H12W···O6W0.712.122.776 (6)154
O2W—H21W···O6Wii0.891.852.739 (6)179
O2W—H22W···O4W0.821.982.769 (6)162
O3W—H31W···O8Wiii0.921.772.688 (6)179
O3W—H32W···O25B0.901.922.811 (7)179
O4W—H41W···O9Wiv0.901.832.731 (7)179
O4W—H42W···N19A0.921.862.742 (7)158
O5W—H51W···O25Bv0.862.162.942 (8)150
O5W—H52W···O8W0.911.892.798 (8)179
O6W—H61W···O25A0.971.782.746 (5)176
O6W—H62W···O6Wvi0.832.292.756 (5)116
O7W—H71W···O2B0.932.272.986 (5)133
O7W—H71W···O3B0.932.263.096 (6)148
O7W—H72W···O3Wvii0.911.842.746 (8)179
O8W—H81W···N19B0.901.812.714 (5)180
O8W—H82W···O2Wviii0.911.822.727 (6)179
O9W—H91W···O3A0.872.162.987 (6)158
O9W—H92W···O7Wiii0.961.932.797 (7)149
O10W—H13W···O1W0.892.012.907 (11)179
O10W—H14W···O24Avi0.901.812.711 (11)179
O11W—H15W···O1W0.891.892.777 (11)179
O11W—H16W···O24Avi0.882.193.069 (11)179
O12W—H17W···O5Wiii0.901.752.646 (19)179
O12W—H18W···O5Wix0.892.263.154 (19)179
Symmetry codes: (i) x+1, y1, z+1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z; (v) x+1/2, y1/2, z+2; (vi) x+1, y, z+1; (vii) x, y1, z; (viii) x1/2, y1/2, z; (ix) x+1/2, y+1/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds