Download citation
Download citation
link to html
The solid-state structures of a series of seven substituted 3-methyl­idene-1H-indol-2(3H)-one derivatives have been determined by single-crystal X-ray diffraction and are compared in detail. Six of the structures {(3Z)-3-(1H-pyrrol-2-ylmethyl­idene)-1H-indol-2(3H)-one, C13H10N2O, (2a); (3Z)-3-(2-thienylmethyl­idene)-1H-indol-2(3H)-one, C13H9NOS, (2b); (3E)-3-(2-furylmethyl­idene)-1H-indol-2(3H)-one monohydrate, C13H9NO2·H2O, (3a); 3-(1-methyl­ethyl­idene)-1H-indol-2(3H)-one, C11H11NO, (4a); 3-cyclo­hexyl­idene-1H-indol-2(3H)-one, C14H15NO, (4c); and spiro­[1,3-dioxane-2,3′-indolin]-2′-one, C11H11NO3, (5)} display, as expected, inter­molecular hydrogen bonding (N—H...O=C) between the 1H-indol-2(3H)-one units. However, methyl 3-(1-methyl­ethyl­idene)-2-oxo-2,3-dihydro-1H-indole-1-carboxyl­ate, C13H13NO3, (4b), a carbamate analogue of (4a) lacking an N—H bond, displays no inter­molecular hydrogen bonding. The structure of (4a) contains three mol­ecules in the asymmetric unit, while (4b) and (4c) both contain two independent mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109054134/gg3207sup1.cif
Contains datablocks 2a, 2b, 3a, 4a, 4b, 4c, 5, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054134/gg32072asup2.hkl
Contains datablock 2a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054134/gg32072bsup3.hkl
Contains datablock 2b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054134/gg32073asup4.hkl
Contains datablock 3a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054134/gg32074asup5.hkl
Contains datablock 4a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054134/gg32074bsup6.hkl
Contains datablock 4b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054134/gg32074csup7.hkl
Contains datablock 4c

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054134/gg32075sup8.hkl
Contains datablock 5

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270109054134/gg3207sup9.pdf
Supplementary material

CCDC references: 719203; 719204; 719205; 719206; 719207; 719208; 743316

Comment top

Conformational restriction is a useful tactic employed in medicinal chemistry, which often leads to an improvement in the biological properties of a molecule by reducing entropy and contributing to enhanced binding to a receptor or enzyme. This extends to the presence of a conformational blocker, such as an ortho-substituent in 2-biphenyl derivatives, which hinders free rotation, or a strong hydrogen bond to `lock' two groups together into a favourable binding orientation. A strategically placed double bond [(E)- or (Z)-isomer] in the molecule also falls within this category, since it can drastically affect the activity or affinity of ligands binding to enzymes or receptors (Patrick, 2009; King, 2002). Sunitinib, (1), is a conformationally restricted clinically approved MRTKI (multi-receptor tyrosine kinase inhibitor) anticancer drug, combining a 1H-indol-2(3H)-one (oxindole) core with a (Z)-substituted 3-(1H-pyrrol-2-ylmethylidene) side chain (Fig. 1; Atkins et al., 2006). The pyrrole NH group in (1) forms an intramolecular hydrogen bond with the oxindole carbonyl group, evidenced in solution, by 1H NMR spectroscopy and in the co-crystal structure of (1) bound to an RTK (receptor tyrosine kinase) (Mohammadi et al., 1997). Compound (2a), a lead molecule in the design of (1), exhibits biological activity towards kinases [IC50 = 0.39 mM, PDGF (platelet-derived growth factor)], whereas the 1-methyl-pyrrole analogue (E)-(3b) exhibits drastically reduced biological activity (IC50 > 100 mM) towards PDGF (Sun et al., 1998; Boiadjiev & Lightner, 2003).

Given the strong correlation between stereochemistry and kinase inhibitory action within this series of molecules, we have undertaken a structural study of oxindole analogues in the solid phase to complement the extensive prior studies undertaken in solution (Sun et al., 1998). Our investigation of compounds (2)–(4) by Raman and FT–IR spectroscopy (Spencer, Dines et al., 2009), supported by theoretical calculations (Kausar et al., 2009; Bell et al., 2007), has been facilitated by structure determinations from single-crystal X-ray diffraction analysis, reported here. The molecules selected for this study can be subdivided into several categories:

(i) Heterocycle-substituted analogues (2), found to exist exclusively as the (Z)-isomer in solution.

(ii) Heterocycle-substituted analogues (3), found to exist exclusively as the (E)-isomer in solution.

(iii) Simple symmetrically substituted analogues (4) and (5), obtained in order to provide a fingerprint region for the FT–IR and Raman studies, especially (4a), given that the parent methylidene compound (4d) is reported to be unstable in solution (Rossiter, 2002).

The analogues (2)–(4) were synthesized by a standard Knoevenagel condensation of oxindole with a variety of aldehydes or ketones under both thermal (oil bath; Sun et al., 1998, 2003; Maskell et al., 2007) and microwave conditions (Villemin & Martin, 1998; Zhang & Go, 2009) (see Experimental and supplementary information for details of synthetic optimization studies and extraction/purification procedures). Compound (4b) was synthesized from (4a) by reaction with dimethyl carbonate (Trost et al., 2007). Compound (5) was purchased from Maybridge Chemicals. Crystals of (2a), (2b), (3a), (4a)–(4c) and (5), of suitable quality for analysis by single-crystal X-ray diffraction, were grown from dichloromethane/hexane. The molecular structures are shown in Figs. 2–8, while selected bond lengths and angles are given in Table 1. The structure of (5) determined at room temperature has been published previously (De & Kitagawa, 1991). The geometry of the structure reported here, determined at 120 K, corresponds very closely with that of the previously reported structure.

In the following discussion, atom Xy refers also to X100+y and X200+y in structures where Z' is greater than 1 [(4a)–(4c)].

The geometry of the oxindole portion of the molecules is generally very similar for all seven structures, and compares closely with oxindole fragments found in a search of the Cambridge Structural Database (CSD, Version 5.30 with Nov 2008 and Feb 2009 updates; Allen, 2002). However, the only structure in which atom N1 is substituted, (4b), displays significantly longer N1—C1 and N1—C4 distances, shorter O1—C1 distances and smaller C1—N1—C4 angles compared with the other six structures (Table 1). Also, the only structure in which atom C2 is sp3 hybridized, (5), displays significantly longer C1—C2 and C2—C3 bond lengths compared with the other six structures.

By comparing the six structures in which atom C2 is sp2 hybridized we have observed differences in the heterocycle-substituted analogues (2a), (2b) and (3a), where atom C10 is sp2 hybridized, compared with structures (4a), (4b) and (4c), where atom C10 is sp3 hybridized. It is interesting to note that, while structures (2a), (2b) and (3a) are all in the orthorhombic crystal system and all have just one molecule in the asymmetric unit (Z' = 1), the remaining structures all occupy lower-symmetry crystal systems and have Z' > 1 [Z' = 3 for (4a), and Z' = 2 for (4b) and (4c)]. The heterocycle-substituted oxindoles determined by Boiadjiev & Lightner (2003), (3Z)-[(4,5-dimethylpyrrol-2-yl)-methylidenyl]-indolin-2-one and (3E)-[(1-methylpyrrol-2-yl)-methylidenyl]-indolin-2-one, also have Z' = 1. However, a search of the CSD revealed that this trend is not observed in all substituted oxindoles and we must thus conclude that the fact that (4a)–(4c) have Z' > 1 is based on a number of different factors.

In addition to the more obvious geometric differences between the heterocycle-substituted analogues and structures (4a), (4b) and (4c), it is found that the average C1—C2 bond distance in (4a) and (4c) [1.509 (2) Å] is significantly longer than that in (2a), (2b) and (3a) [1.488 (2) Å], while in (4b) (in which atom N1 is substituted) it is only slightly longer at 1.490 (8) Å. In the heterocycle-substituted oxindoles determined by Boiadjiev & Lightner (2003), the average of the equivalent of the C1—C2 bond distance is 1.474 (3) Å, shorter than in any of the seven structures reported here. In turn, the average of the equivalent distance to N1—C1 reported by Boiadjiev & Lightner is somewhat longer [1.372 (3) Å] than the average for (2a), (2b), (3a), (4a), (4c) and (5) [1.359 (5) Å]. It is postulated that these differences arise from the differing temperatures at which the single-crystal X-ray data sets were collected, 298 K for the Boiadjiev & Lightner structures and 120 K for those reported here.

The solid-state structures agree with the results from solution NMR studies (see supplementary information) in that structures (2a) and (2b) exist as (Z)-isomers [average C1—C2—C9 bond angle = 128.6 (2)°] while (3a) exists as the (E)-isomer [C1—C2—C9 = 118.9 (2)°]. These angles compare well with the equivalent angles in the (Z)- and (E)-isomers reported by Boiadjiev & Lightner (2003), 128.3 (3) and 117.5 (5)°, respectively. The formation of the (Z)-isomers in (2a) and (2b) can be attributed to intramolecular N—H···O [(2a)] and O···S (Réthoré et al., 2007) [(2b)] interactions, while in (3a) the lack of a suitable group to form an intramolecular interaction with atom O1, combined with the formation of a weak C—H···O contact (C8—H8···O2), makes the adoption of the (E)-isomer more favourable (Table 3).

The oxindole portion of all seven structures is highly planar, while the entire molecule does not generally deviate far from planarity for (2a), (2b), (3a), (4a) and (4b), and this seems to be related to the formation of intramolecular interactions between groups in the oxindole and substituent portions of the molecules (Tables 1 and 3, and Table S3 in the supplementary information). By contrast, the (E)-isomer reported by Boiadjiev & Lightner (2003) has no suitable groups with which to form intramolecular interactions and the molecule is much more twisted than in the structures reported here, with the angle between the planes through the oxindole and substituent portions being approximately 30° (cf. Table S3). In (4c) the formation of weak intramolecular C—H···O interactions involving atoms C14 and C114 (Table 3) corresponds with an average C1—C2—C9—C10 torsion angle which is relatively close to 180° (Table 1). It seems that the formation of even weak C—H···O interactions has a significant effect on the conformation of these molecules in the solid state.

Structures (2a), (2b), (3a), (4a), (4c) and (5) are also affected by the formation of intermolecular hydrogen bonds involving the oxindole N—H and CO, units which lead to the formation of molecular dimers in every case (Figs. 9—11, Figs. S1–S4 in the supplementary information, and Table 2). The hydrogen-bonding motif leading to the formation of the molecular dimers can be described as an R22(8) ring (Bernstein et al., 1995). Analysis of Fig. 11 shows that, while the dimers formed in (3a), (4a) and (4c) are fairly planar [not taking into account the conformation of the cyclohexyl rings in (4c)], the molecules forming the dimers in (2a), (2b) and (5) are quite staggered with respect to one another. This is borne out by analysis of the N—H···O hydrogen-bond angles (Table 2). While the average for the interactions in (2a), (2b) and (5) is 163 (3)°, the average for those in (3a), (4a)and (4c) is significantly larger at 172 (3)°.

Structure (3a) is the only one of the seven to incorporate a molecule of solvent in the crystal structure. This water molecule is involved in hydrogen bonding both to the oxindole CO group and to other water molecules (Fig. 9 and Table 2). The molecular dimers in this structure are connected with one another via ππ stacking interactions (Hunter & Sanders, 1990), the parallel dimer planes being separated by 3.3 Å, while atom O1 and the N1/C1–C4 ring form a lone pair–π interaction (Mooibroek et al., 2008) (O1···ring centroid = 3.2 Å and C1—O1···ring centroid = 92°). This stacking of dimers leads to the formation of columns along the (010) direction which are connected to one another in the (100) direction via hydrogen bonding with the water molecules (Fig. 12).

The delocalized bonding and planar nature of these molecules mean that the other six structures also exhibit varying degrees of ππ stacking interactions, with interplanar distances ranging from 3.1 Å in (4c) to approximately 3.6 Å in (2b) (Figs. S5–S10 in the supplementary information).

In conclusion, the X-ray single-crystal structure determinations described here have brought to light a number of interesting properties in oxindoles in the solid phase, including high Z' values and inter- and intramolecular hydrogen bonding. This offers the potential for synthesizing oxindoles with extended molecular architectures and biological properties (Spencer, Mendham et al., 2009) and will be of continuing invaluable assistance to theoretical calculations (Kausar et al., 2009).

Experimental top

The starting materials for the syntheses of the title compounds were purchased from commercial sources (Sigma–Aldrich, Fisher, Fluorochem, Frontier Scientific) and used without further purification. All reactions were carried out in air, and commercial grade solvents and materials were used except where specified. Elemental analyses were performed on a CE Instruments Eager 300 apparatus.

Synthetic and purification procedure for (2a). 1,3-Dihydro-2H-indol-2-one (oxindole) (0.319 g, 2.40 mmol) and 1H-pyrrole-2-carbaldehyde (0.190 g, 2.00 mmol) were added to EtOH (5 ml) with 2–3 drops of piperidine as a catalyst. The reaction mixture was refluxed until complete by thin-layer chromatographic (TLC) monitoring, which equates to approximately 3 h. The reaction mixture was cooled to room temperature and, on further cooling with ice, afforded a precipitate. The crude product was obtained by filtration and washed with cold EtOH. Product (2a) was purified by column chromatography on silica with chloroform–methanol (90:10 v/v) as eluant. Further purification was achieved by recrystallization from a solution in CH2Cl2 and crystals of sufficient quality for X-ray diffraction analysis were obtained by the diffusion of hexane into a CH2Cl2 solution. Crystals of (2a) were obtained as a yellow solid (yield 0.420 g, 84%; m.p. 483–486 K). Analysis, found: C 73.0, H 4.9, N 13.6%; C13H10N2O.0.05CH2Cl2 requires: C 73.1, H 4.7, N 13.1%. [Is 0.05CH2Cl2 solvent present in crystal?]

Synthetic and purification procedure for (2b). Oxindole (0.133 g, 1.00 mmol) and thiophene-2-carbaldehyde (0.159 g, 1.20 mmol) were reacted, and purification and crystallization were achieved as for (2a), except that hexane–ethyl acetate (50:50 v/v) was used as eluant during chromatographic purification. Crystals of (2b) were obtained as a yellow solid (yield 0.178 g, 79%; m.p. 463–466 K). Analysis, found: C 68.9, H 4.2, N 6.2%; C13H9NOS requires: C 68.7, H 4.0, N 6.2%.

Synthetic and purification procedure for (3a). Oxindole (0.133 g, 1.00 mmol) and 2-furaldehyde (0.115 g, 1.20 mmol) were reacted, and purification and crystallization were achieved as for (2a), except that hexane–ethyl acetate (50:50 v/v) was used as eluant for chromatographic purification. Crystals of (3a) were obtained as a yellow solid [yield 0.166 g, 79%; m.p. 443–446 K (literature value 451 K; Villemin & Martin, 1998)]. Analysis, found: C 67.9, H 4.7, N 6.8%; C13H11NO3.H2O requires: C 68.1, H 4.8, N 6.1%.

Synthetic and purification procedure for (4a). Oxindole (0.133 g, 1.00 mmol) and acetone (7.90 g, 136 mmol) were reacted, and purification and crystallization were achieved as for (2a), except that chloroform–ethyl acetate (50:50 v/v) was used as eluant. Crystals of (4a) were obtained as an orange solid (yield 0.158 g, 92%; m.p. 459–461 K). Analysis, found: C 76.2, H 6.5, N 8.3%; C11H11NO requires: C 76.3, H 6.4, N 8.1%.

Synthetic and purification procedure for (4b). Compound (4b) was made according to the published route (Trost et al., 2007). [Recrystallisation from which solvent?] [m.p. 341–342 K (literature value 341–343 K)]. Analysis, found: C 76.4, H 5.7, N 5.9%; C13H13NO3requires: C 76.2, H 5.7, N 6.0%.

Synthetic and purification procedure for (4c). Oxindole (0.319 g, 2.40 mmol) and cyclohexanone (0.196 g, 2.00 mmol) were reacted, and purification and crystallization were achieved as for (2a), except that chloroform–ethyl acetate (50:50 v/v) was used as eluant. Crystals of (4c) were obtained as a brown solid [yield 0.450 g, 88%; m.p. 458–460 K (literature value 464 K (Villemin & Martin, 1998)]. Analysis, found: C 75.8, H 6.9, N 6.3%; C14H15NO.0.1CH2Cl2 requires: C 76.3, H 6.9, N 6.3%. [Is 0.1CH2Cl2 solvent present in crystal?]

Synthetic and purification procedure for (5). Compound (5) was purchased from Maybridge Chemicals and crystals of sufficient quality for X-ray diffraction analysis were obtained by the diffusion of hexane into a CH2Cl2 solution.

Microwave-mediated syntheses of analogues (2)–(4). Oxindole (1 mmol), the aldehyde or ketone (1.5 equivalents), ethanol (5 ml) and piperidine (2 drops) were placed in a sealable microwave tube and heated to 423 K for 30 min using continuous cooling (Pmax) in a CEM Discover unit. After cooling the reaction mixture, the crude product was subjected to the same work up as for the thermal-mediated route.

Refinement top

The water H atoms in (3a) were located in an electron-density map and their positions refined subject to O—H distance [0.85 (2)Å] and H···H [1.37 (2)Å] distance restraints, with Uiso(H) = 1.5Ueq(O). All other H atoms were added at calculated positions and refined using a riding model, with C—H = 0.95Å for aromatic, 0.99Å for methylene or 0.98Å for methyl H atoms and N—H = 0.88Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for aromatic, methylene and N-bound H atoms. In structure (4a), the R factor is a little high (7.9%). All other indicators of structural quality are good and there is no indication of any twinning or disorder in the structure. It is thought that the explanation may lie in the fact that the variation in the intensities of the diffraction peaks seems to be larger than usual, although the authors cannot be sure that this is the cause.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Version 2.01; Farrugia, 1997) and Mercury (Version 1.4.2; Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Examples of oxindoles tested for anticancer activity.
[Figure 2] Fig. 2. The molecular structure of (2a), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the intramolecular hydrogen bond.
[Figure 3] Fig. 3. The molecular structure of (2b), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the intramolecular hydrogen bond.
[Figure 4] Fig. 4. The molecular structure of (3a), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.
[Figure 5] Fig. 5. The molecules of (4a), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.
[Figure 6] Fig. 6. The molecules of (4b), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 7] Fig. 7. The molecules of (4c), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 8] Fig. 8. The molecular structure of (5), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 9] Fig. 9. A view of the hydrogen-bonded dimer and hydrogen bonding (narrow lines) involving the solvent water molecule in the structure of (3a). [Symmetry codes: (i) 1 - x, -1 - y, -z; (ii) 1/2 - x, 1/2 + y, z.]
[Figure 10] Fig. 10. A view of the two hydrogen-bonded dimers (narrow lines) formed in the structure of (4a). [Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) -1 + x, y, z.]
[Figure 11] Fig. 11. Side views of the hydrogen-bonded dimers (narrow lines) formed in the structures of (2a), (2b), (3a), (4a), (4c) and (5).
[Figure 12] Fig. 12. The packing of the molecular dimers in (3a). C atoms are shown in black, N in blue, O in red and H in gold. [Colour will not be visible in the printed version of the journal - please revise caption or add a key to the figure]
(2a) (3Z)-3-(1H-pyrrol-2-ylmethylidene)-1H-indol- 2(3H)-one top
Crystal data top
C13H10N2OF(000) = 880
Mr = 210.23Dx = 1.343 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P (2a)c (2a)bCell parameters from 23500 reflections
a = 14.6031 (6) Åθ = 2.9–27.5°
b = 6.2725 (3) ŵ = 0.09 mm1
c = 22.6997 (12) ÅT = 120 K
V = 2079.25 (17) Å3Plate, yellow
Z = 80.28 × 0.10 × 0.01 mm
Data collection top
Bruker Nonius Roper CCD camera on κ-goniostat
diffractometer
1828 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.3°
ϕ and ω scansh = 1715
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 77
Tmin = 0.976, Tmax = 0.999l = 2727
15759 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0367P)2 + 1.4244P]
where P = (Fo2 + 2Fc2)/3
1828 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H10N2OV = 2079.25 (17) Å3
Mr = 210.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.6031 (6) ŵ = 0.09 mm1
b = 6.2725 (3) ÅT = 120 K
c = 22.6997 (12) Å0.28 × 0.10 × 0.01 mm
Data collection top
Bruker Nonius Roper CCD camera on κ-goniostat
diffractometer
1828 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1412 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.999Rint = 0.085
15759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
1828 reflectionsΔρmin = 0.22 e Å3
145 parameters
Special details top

Experimental. SADABS was used to perform the Absorption correction. Estimated minimum and maximum transmission from SADABS: 0.6100 and 0.7456. The given Tmin and Tmax were generated using the SHELX SIZE command.

NMR spectra were measured on a Jeol EX270 spectrometer at 270 MHz (1H) and 68 MHz (13C) in CDCl3. High-resolution mass spectra were performed by the EPSRC facility, Swansea University, Wales. 1H NMR (270 MHz, CDCl3, δ, p.p.m.): 13.26 (1H, s), 7.68 (1H, s), 7.47 (2H, dd, J = 6.24 Hz, J = 7.70 Hz), 7.20–7.03 (3H, m), 6.89 (1H, d, J = 7.70 Hz), 6.78 (1H, m), 6.39 (1H, m). 13C NMR (75 MHz, CDCl3, δ, p.p.m.): 169.6, 137.7, 130.0, 126.8, 126.7, 125.6, 125.4, 121.9, 120.6, 118.1, 116.3, 111.7, 109.4. IR (KBr, ν, cm-1): 3034, 1672,1349, 1040, 740. HRMS: m/z calculated for C13H11N2O (MH+) 211.0866; found 211.0868.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42080 (14)0.2332 (3)0.46443 (9)0.0211 (5)
C20.37404 (13)0.4387 (3)0.45202 (9)0.0191 (5)
C30.36448 (13)0.5425 (3)0.50957 (9)0.0186 (5)
C40.40375 (13)0.4076 (3)0.55179 (9)0.0188 (5)
C50.40700 (13)0.4582 (3)0.61097 (9)0.0221 (5)
H50.43470.36530.63880.027*
C60.36794 (14)0.6511 (4)0.62817 (10)0.0255 (5)
H60.36830.68990.66860.031*
C70.32856 (14)0.7878 (4)0.58724 (9)0.0247 (5)
H70.30230.91840.60010.030*
C80.32708 (13)0.7356 (3)0.52748 (9)0.0219 (5)
H80.30090.83050.49950.026*
C90.34741 (13)0.5206 (3)0.39925 (9)0.0209 (5)
H90.31610.65300.40200.025*
C100.35810 (13)0.4434 (3)0.34065 (9)0.0228 (5)
C110.33119 (15)0.5405 (4)0.28777 (10)0.0281 (5)
H110.29980.67250.28410.034*
C120.35874 (16)0.4083 (4)0.24160 (10)0.0315 (6)
H120.34960.43420.20080.038*
C130.40153 (15)0.2338 (4)0.26588 (9)0.0299 (6)
H130.42730.11790.24460.036*
N10.43597 (11)0.2248 (3)0.52342 (7)0.0204 (4)
H10.46280.11760.54150.025*
N20.40075 (12)0.2551 (3)0.32536 (7)0.0257 (5)
H20.42400.16270.35040.031*
O10.44323 (9)0.0872 (2)0.42984 (6)0.0249 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0212 (11)0.0212 (12)0.0209 (11)0.0002 (9)0.0005 (9)0.0018 (10)
C20.0180 (10)0.0174 (11)0.0218 (11)0.0003 (8)0.0007 (8)0.0008 (9)
C30.0160 (10)0.0190 (11)0.0208 (11)0.0024 (8)0.0004 (8)0.0014 (9)
C40.0166 (10)0.0172 (11)0.0227 (11)0.0016 (8)0.0019 (8)0.0011 (9)
C50.0227 (11)0.0225 (12)0.0211 (11)0.0002 (9)0.0004 (9)0.0020 (9)
C60.0264 (12)0.0263 (12)0.0237 (12)0.0022 (10)0.0021 (9)0.0023 (10)
C70.0250 (12)0.0207 (12)0.0283 (13)0.0020 (9)0.0016 (9)0.0048 (10)
C80.0202 (11)0.0195 (11)0.0259 (12)0.0016 (9)0.0017 (9)0.0030 (9)
C90.0186 (10)0.0188 (11)0.0255 (12)0.0011 (9)0.0005 (9)0.0012 (10)
C100.0228 (12)0.0225 (12)0.0232 (12)0.0003 (9)0.0010 (9)0.0030 (10)
C110.0325 (13)0.0256 (13)0.0261 (12)0.0020 (10)0.0024 (10)0.0060 (10)
C120.0435 (14)0.0313 (14)0.0199 (12)0.0002 (11)0.0005 (10)0.0050 (11)
C130.0397 (14)0.0312 (13)0.0189 (12)0.0023 (11)0.0016 (10)0.0018 (10)
N10.0268 (10)0.0157 (9)0.0187 (10)0.0052 (7)0.0009 (7)0.0035 (7)
N20.0344 (11)0.0226 (10)0.0201 (10)0.0062 (8)0.0015 (8)0.0033 (8)
O10.0340 (9)0.0204 (8)0.0204 (8)0.0077 (7)0.0011 (6)0.0013 (7)
Geometric parameters (Å, º) top
C1—O11.250 (2)C7—H70.9500
C1—N11.358 (3)C8—H80.9500
C1—C21.486 (3)C9—C101.424 (3)
C2—C91.360 (3)C9—H90.9500
C2—C31.467 (3)C10—N21.380 (3)
C3—C81.389 (3)C10—C111.402 (3)
C3—C41.401 (3)C11—C121.395 (3)
C4—C51.381 (3)C11—H110.9500
C4—N11.396 (3)C12—C131.376 (3)
C5—C61.394 (3)C12—H120.9500
C5—H50.9500C13—N21.357 (3)
C6—C71.389 (3)C13—H130.9500
C6—H60.9500N1—H10.8800
C7—C81.396 (3)N2—H20.8800
O1—C1—N1123.26 (19)C7—C8—H8120.6
O1—C1—C2129.56 (19)C2—C9—C10131.5 (2)
N1—C1—C2107.17 (18)C2—C9—H9114.3
C9—C2—C3126.11 (19)C10—C9—H9114.3
C9—C2—C1128.77 (19)N2—C10—C11106.43 (18)
C3—C2—C1105.08 (17)N2—C10—C9125.15 (19)
C8—C3—C4119.17 (19)C11—C10—C9128.4 (2)
C8—C3—C2133.25 (19)C12—C11—C10107.7 (2)
C4—C3—C2107.57 (18)C12—C11—H11126.1
C5—C4—N1128.72 (19)C10—C11—H11126.1
C5—C4—C3122.71 (19)C13—C12—C11107.6 (2)
N1—C4—C3108.57 (17)C13—C12—H12126.2
C4—C5—C6117.25 (19)C11—C12—H12126.2
C4—C5—H5121.4N2—C13—C12108.4 (2)
C6—C5—H5121.4N2—C13—H13125.8
C7—C6—C5121.2 (2)C12—C13—H13125.8
C7—C6—H6119.4C1—N1—C4111.60 (17)
C5—C6—H6119.4C1—N1—H1124.2
C6—C7—C8120.8 (2)C4—N1—H1124.2
C6—C7—H7119.6C13—N2—C10109.79 (18)
C8—C7—H7119.6C13—N2—H2125.1
C3—C8—C7118.86 (19)C10—N2—H2125.1
C3—C8—H8120.6
O1—C1—C2—C92.7 (4)C2—C3—C8—C7179.7 (2)
N1—C1—C2—C9178.0 (2)C6—C7—C8—C31.0 (3)
O1—C1—C2—C3179.1 (2)C3—C2—C9—C10175.3 (2)
N1—C1—C2—C30.2 (2)C1—C2—C9—C102.6 (4)
C9—C2—C3—C81.7 (4)C2—C9—C10—N20.3 (4)
C1—C2—C3—C8180.0 (2)C2—C9—C10—C11177.8 (2)
C9—C2—C3—C4177.68 (19)N2—C10—C11—C120.3 (2)
C1—C2—C3—C40.6 (2)C9—C10—C11—C12178.0 (2)
C8—C3—C4—C50.0 (3)C10—C11—C12—C130.1 (3)
C2—C3—C4—C5179.53 (18)C11—C12—C13—N20.1 (3)
C8—C3—C4—N1179.74 (17)O1—C1—N1—C4179.59 (19)
C2—C3—C4—N10.7 (2)C2—C1—N1—C40.2 (2)
N1—C4—C5—C6178.78 (19)C5—C4—N1—C1179.7 (2)
C3—C4—C5—C60.9 (3)C3—C4—N1—C10.6 (2)
C4—C5—C6—C70.9 (3)C12—C13—N2—C100.3 (3)
C5—C6—C7—C80.1 (3)C11—C10—N2—C130.4 (2)
C4—C3—C8—C71.0 (3)C9—C10—N2—C13178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.992.841 (2)162
N2—H2···O10.881.892.668 (2)147
Symmetry code: (i) x+1, y, z+1.
(2b) (3Z)-3-(2-thienylmethylidene)-1H-indol-2(3H)-one top
Crystal data top
C13H9NOSF(000) = 944
Mr = 227.27Dx = 1.399 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n (2a)bCell parameters from 46939 reflections
a = 11.9297 (5) Åθ = 2.9–27.5°
b = 10.8294 (6) ŵ = 0.27 mm1
c = 16.6986 (9) ÅT = 120 K
V = 2157.32 (19) Å3Slab, yellow
Z = 80.16 × 0.08 × 0.04 mm
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
2463 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2024 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.052
Detector resolution: 4096x4096pixels / 62x62mm pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1411
Tmin = 0.958, Tmax = 0.989l = 2121
18202 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0321P)2 + 3.5864P]
where P = (Fo2 + 2Fc2)/3
2463 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C13H9NOSV = 2157.32 (19) Å3
Mr = 227.27Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 11.9297 (5) ŵ = 0.27 mm1
b = 10.8294 (6) ÅT = 120 K
c = 16.6986 (9) Å0.16 × 0.08 × 0.04 mm
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
2463 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2024 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.989Rint = 0.052
18202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
2463 reflectionsΔρmin = 0.42 e Å3
145 parameters
Special details top

Experimental. SADABS was used to perform the Absorption correction. Parameter refinement on 16643 reflections reduced R(int) from 0.0936 to 0.0503. Ratio of minimum to maximum apparent transmission: 0.728929. The given Tmin and Tmax were generated using the SHELX SIZE command.

NMR spectra were measured on a Jeol EX270 spectrometer at 270 MHz (1H) and 68 MHz (13C) in CDCl3. High-resolution mass spectra were performed by the EPSRC facility, Swansea University, Wales. 1H NMR (270 MHz, DMSO-d6, δ, p.p.m.): 10.59 (1H, s), 8.10 (1H, s), 7.94–7.87 (2H, m), 7.68 (1H, d, J = 7.34 Hz), 7.24–7.19 (2H, m), 7.01–6.83 (2H, m). 13C NMR (75 MHz, CDCl3, δ, p.p.m.): 167.9, 137.7, 137.0, 133.6, 129.6, 128.4, 127.4,124.8, 123.7, 121.9, 121.7, 118.9, 109.6. IR (KBr, ν, cm-1): 3100, 1685, 1466, 1201, 716. HRMS: m/z calculated for C13H10NOS (MH+) 228.0480, found 228.0478.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65085 (19)0.4162 (2)0.50015 (13)0.0220 (5)
C20.77266 (18)0.3870 (2)0.49670 (13)0.0205 (5)
C30.81959 (19)0.4731 (2)0.43817 (13)0.0213 (5)
C40.73267 (19)0.5500 (2)0.41174 (13)0.0222 (5)
C50.7500 (2)0.6466 (2)0.35913 (13)0.0259 (5)
H50.69020.69860.34260.031*
C60.8587 (2)0.6644 (2)0.33141 (14)0.0271 (5)
H60.87380.73060.29570.033*
C70.9461 (2)0.5871 (2)0.35508 (14)0.0262 (5)
H71.01910.59990.33390.031*
C80.92779 (19)0.4912 (2)0.40940 (14)0.0240 (5)
H80.98770.43960.42630.029*
C90.83039 (18)0.3019 (2)0.53926 (13)0.0206 (4)
H90.90730.29790.52480.025*
C100.80113 (19)0.2164 (2)0.60130 (14)0.0232 (5)
C110.8803 (2)0.1355 (2)0.63514 (14)0.0264 (5)
H110.95640.13160.61870.032*
C120.8344 (2)0.0609 (2)0.69595 (15)0.0311 (6)
H120.87570.00010.72430.037*
C130.7241 (2)0.0860 (2)0.70963 (16)0.0321 (6)
H130.68050.04510.74920.039*
N10.63252 (16)0.51210 (19)0.44863 (12)0.0239 (4)
H10.56660.54580.43970.029*
O10.57703 (13)0.36550 (16)0.54084 (10)0.0275 (4)
S10.67228 (5)0.19836 (6)0.64842 (4)0.02905 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0207 (11)0.0237 (11)0.0217 (11)0.0010 (9)0.0000 (9)0.0040 (9)
C20.0182 (10)0.0245 (11)0.0188 (10)0.0027 (9)0.0001 (8)0.0042 (9)
C30.0219 (11)0.0237 (11)0.0182 (10)0.0012 (9)0.0011 (9)0.0018 (9)
C40.0210 (11)0.0242 (11)0.0215 (10)0.0002 (9)0.0019 (9)0.0052 (9)
C50.0296 (12)0.0258 (12)0.0224 (11)0.0025 (10)0.0000 (10)0.0018 (9)
C60.0343 (13)0.0247 (12)0.0223 (11)0.0044 (10)0.0019 (10)0.0015 (9)
C70.0247 (12)0.0323 (12)0.0216 (11)0.0084 (10)0.0009 (9)0.0029 (10)
C80.0187 (10)0.0304 (12)0.0229 (11)0.0025 (10)0.0007 (9)0.0029 (9)
C90.0165 (10)0.0226 (10)0.0226 (11)0.0013 (9)0.0008 (8)0.0042 (9)
C100.0217 (11)0.0232 (11)0.0246 (12)0.0019 (9)0.0001 (9)0.0049 (9)
C110.0312 (13)0.0209 (11)0.0269 (12)0.0030 (10)0.0044 (10)0.0020 (9)
C120.0383 (14)0.0243 (12)0.0307 (13)0.0006 (11)0.0027 (11)0.0021 (10)
C130.0373 (14)0.0266 (12)0.0324 (13)0.0068 (11)0.0003 (11)0.0041 (11)
N10.0171 (9)0.0278 (10)0.0270 (10)0.0029 (8)0.0007 (8)0.0018 (8)
O10.0190 (8)0.0303 (9)0.0333 (9)0.0001 (7)0.0040 (7)0.0036 (7)
S10.0240 (3)0.0318 (3)0.0313 (3)0.0043 (2)0.0023 (2)0.0053 (3)
Geometric parameters (Å, º) top
C1—O11.240 (3)C7—H70.9500
C1—N11.366 (3)C8—H80.9500
C1—C21.488 (3)C9—C101.432 (3)
C2—C91.352 (3)C9—H90.9500
C2—C31.463 (3)C10—C111.407 (3)
C3—C81.391 (3)C10—S11.738 (2)
C3—C41.401 (3)C11—C121.408 (3)
C4—C51.382 (3)C11—H110.9500
C4—N11.405 (3)C12—C131.364 (4)
C5—C61.390 (3)C12—H120.9500
C5—H50.9500C13—S11.705 (3)
C6—C71.394 (4)C13—H130.9500
C6—H60.9500N1—H10.8800
C7—C81.396 (3)
O1—C1—N1124.6 (2)C3—C8—H8120.9
O1—C1—C2128.3 (2)C7—C8—H8120.9
N1—C1—C2107.08 (19)C2—C9—C10134.1 (2)
C9—C2—C3126.2 (2)C2—C9—H9112.9
C9—C2—C1128.5 (2)C10—C9—H9112.9
C3—C2—C1105.29 (19)C11—C10—C9122.0 (2)
C8—C3—C4119.7 (2)C11—C10—S1109.97 (18)
C8—C3—C2132.5 (2)C9—C10—S1128.01 (18)
C4—C3—C2107.83 (19)C10—C11—C12112.7 (2)
C5—C4—C3122.6 (2)C10—C11—H11123.6
C5—C4—N1128.8 (2)C12—C11—H11123.6
C3—C4—N1108.5 (2)C13—C12—C11112.4 (2)
C4—C5—C6117.2 (2)C13—C12—H12123.8
C4—C5—H5121.4C11—C12—H12123.8
C6—C5—H5121.4C12—C13—S1113.1 (2)
C5—C6—C7121.3 (2)C12—C13—H13123.5
C5—C6—H6119.4S1—C13—H13123.5
C7—C6—H6119.4C1—N1—C4111.20 (19)
C6—C7—C8120.9 (2)C1—N1—H1124.4
C6—C7—H7119.5C4—N1—H1124.4
C8—C7—H7119.5C13—S1—C1091.79 (12)
C3—C8—C7118.3 (2)
O1—C1—C2—C92.7 (4)C2—C3—C8—C7177.1 (2)
N1—C1—C2—C9177.5 (2)C6—C7—C8—C31.2 (3)
O1—C1—C2—C3178.9 (2)C3—C2—C9—C10175.6 (2)
N1—C1—C2—C30.9 (2)C1—C2—C9—C102.6 (4)
C9—C2—C3—C81.4 (4)C2—C9—C10—C11179.3 (2)
C1—C2—C3—C8179.9 (2)C2—C9—C10—S13.3 (4)
C9—C2—C3—C4176.4 (2)C9—C10—C11—C12179.0 (2)
C1—C2—C3—C42.1 (2)S1—C10—C11—C121.2 (3)
C8—C3—C4—C51.8 (3)C10—C11—C12—C131.4 (3)
C2—C3—C4—C5176.4 (2)C11—C12—C13—S11.0 (3)
C8—C3—C4—N1179.3 (2)O1—C1—N1—C4179.6 (2)
C2—C3—C4—N12.5 (2)C2—C1—N1—C40.6 (2)
C3—C4—C5—C61.1 (3)C5—C4—N1—C1176.8 (2)
N1—C4—C5—C6179.8 (2)C3—C4—N1—C12.0 (3)
C4—C5—C6—C70.7 (3)C12—C13—S1—C100.3 (2)
C5—C6—C7—C81.9 (4)C11—C10—S1—C130.53 (19)
C4—C3—C8—C70.6 (3)C9—C10—S1—C13178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.992.835 (2)160
Symmetry code: (i) x+1, y+1, z+1.
(3a) (3E)-3-(2-furylmethylidene)-1H-indol-2(3H)-one monohydrate top
Crystal data top
C13H9NO2·H2OF(000) = 960
Mr = 229.23Dx = 1.413 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n (2a)bCell parameters from 8716 reflections
a = 19.2250 (7) Åθ = 2.9–27.5°
b = 5.0503 (3) ŵ = 0.10 mm1
c = 22.1886 (14) ÅT = 120 K
V = 2154.3 (2) Å3Rod, yellow
Z = 80.30 × 0.06 × 0.04 mm
Data collection top
Bruker Nonius Roper CCD camera on κ-goniostat
diffractometer
1881 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.7°
ϕ and ω scansh = 2220
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 66
Tmin = 0.970, Tmax = 0.996l = 2226
13065 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0432P)2 + 1.1222P]
where P = (Fo2 + 2Fc2)/3
1881 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H9NO2·H2OV = 2154.3 (2) Å3
Mr = 229.23Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 19.2250 (7) ŵ = 0.10 mm1
b = 5.0503 (3) ÅT = 120 K
c = 22.1886 (14) Å0.30 × 0.06 × 0.04 mm
Data collection top
Bruker Nonius Roper CCD camera on κ-goniostat
diffractometer
1881 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1355 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.996Rint = 0.085
13065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0523 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.24 e Å3
1881 reflectionsΔρmin = 0.25 e Å3
160 parameters
Special details top

Experimental. SADABS was used to perform the Absorption correction. Estimated minimum and maximum transmission from SADABS: 0.5997 and 0.7456. The given Tmin and Tmax were generated using the SHELX SIZE command.

NMR spectra were measured on a Jeol EX270 spectrometer at 270 MHz (1H) and 68 MHz (13C) in CDCl3. High-resolution mass spectra were performed by the EPSRC facility, Swansea University, Wales. 1H NMR (270 MHz, CDCl3, δ, p.p.m.): 8.46 (1H, d, J = 7.70 Hz), 7.77 (2H, s), 7.45 (1H, s), 7.07 (1H, pseudo t, J = 7.70 Hz), 6.90 (2H, m), 6.63 (1H, m). 13C NMR (75 MHz, CDCl3, δ, p.p.m.): 171.0,151.4, 145.9, 141.2, 129.4, 125.1, 122.5, 122.13, 122.0, 120.5, 120.0, 113.1,109.8. IR (KBr, ν, cm-1): 3139, 1702, 1227, 1031, 745. HRMS: m/z calculated for C13H12NO3 (MH+) 212.0706, found 212.0706.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47350 (11)0.1896 (5)0.05249 (11)0.0217 (6)
C20.47019 (11)0.0306 (4)0.09706 (11)0.0204 (6)
C30.53956 (11)0.0371 (5)0.12558 (11)0.0218 (6)
C40.57891 (11)0.1658 (5)0.09850 (11)0.0208 (6)
C50.64777 (11)0.2112 (5)0.11202 (11)0.0237 (6)
H50.67320.34850.09280.028*
C60.67857 (11)0.0483 (5)0.15485 (12)0.0247 (6)
H60.72610.07380.16500.030*
C70.64096 (12)0.1510 (5)0.18295 (11)0.0233 (6)
H70.66290.25890.21240.028*
C80.57162 (11)0.1945 (5)0.16843 (11)0.0221 (6)
H80.54630.33180.18780.027*
C90.41034 (11)0.1692 (5)0.10262 (11)0.0226 (6)
H90.37540.11640.07480.027*
C100.38905 (11)0.3767 (5)0.14126 (11)0.0221 (6)
C110.32701 (11)0.5065 (5)0.14502 (11)0.0241 (6)
H110.28740.47770.12030.029*
C120.33264 (12)0.6919 (5)0.19250 (12)0.0262 (6)
H120.29750.81030.20600.031*
C130.39748 (12)0.6683 (5)0.21495 (12)0.0266 (6)
H130.41560.77070.24730.032*
N10.53748 (9)0.2997 (4)0.05613 (9)0.0235 (5)
H10.55130.43680.03480.028*
O10.42676 (8)0.2639 (3)0.01749 (7)0.0254 (4)
O20.43349 (8)0.4766 (3)0.18474 (7)0.0260 (4)
O1010.27917 (10)0.2601 (4)0.00470 (12)0.0518 (6)
H1W0.2631 (15)0.100 (4)0.0018 (16)0.078*
H2W0.3234 (9)0.246 (6)0.0087 (16)0.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0231 (12)0.0214 (13)0.0206 (14)0.0017 (11)0.0038 (11)0.0052 (11)
C20.0226 (12)0.0185 (13)0.0202 (13)0.0031 (10)0.0033 (10)0.0022 (11)
C30.0223 (11)0.0207 (13)0.0223 (14)0.0011 (10)0.0040 (11)0.0036 (11)
C40.0231 (12)0.0209 (13)0.0184 (13)0.0029 (10)0.0006 (11)0.0031 (11)
C50.0232 (12)0.0207 (13)0.0271 (15)0.0029 (11)0.0035 (11)0.0018 (12)
C60.0201 (12)0.0243 (14)0.0298 (16)0.0020 (11)0.0000 (11)0.0049 (12)
C70.0241 (12)0.0196 (13)0.0263 (15)0.0028 (10)0.0027 (11)0.0009 (12)
C80.0241 (12)0.0203 (13)0.0220 (14)0.0002 (11)0.0016 (10)0.0001 (11)
C90.0221 (12)0.0239 (13)0.0218 (14)0.0028 (10)0.0017 (11)0.0041 (12)
C100.0244 (12)0.0213 (13)0.0207 (14)0.0028 (10)0.0007 (11)0.0004 (11)
C110.0199 (12)0.0274 (14)0.0251 (15)0.0015 (10)0.0033 (11)0.0031 (12)
C120.0279 (13)0.0236 (14)0.0269 (15)0.0061 (11)0.0046 (12)0.0005 (12)
C130.0335 (14)0.0224 (13)0.0240 (15)0.0055 (11)0.0049 (12)0.0049 (12)
N10.0242 (10)0.0212 (11)0.0251 (12)0.0020 (9)0.0001 (9)0.0043 (10)
O10.0255 (8)0.0254 (9)0.0253 (10)0.0014 (7)0.0014 (8)0.0017 (8)
O20.0247 (9)0.0263 (9)0.0270 (10)0.0013 (8)0.0011 (8)0.0041 (8)
O1010.0301 (10)0.0355 (12)0.0899 (18)0.0023 (9)0.0163 (11)0.0086 (12)
Geometric parameters (Å, º) top
C1—O11.246 (3)C8—H80.9500
C1—N11.352 (3)C9—C101.414 (3)
C1—C21.489 (3)C9—H90.9500
C2—C91.353 (3)C10—C111.364 (3)
C2—C31.477 (3)C10—O21.384 (3)
C3—C81.384 (3)C11—C121.414 (4)
C3—C41.408 (3)C11—H110.9500
C4—C51.377 (3)C12—C131.348 (3)
C4—N11.406 (3)C12—H120.9500
C5—C61.389 (3)C13—O21.366 (3)
C5—H50.9500C13—H130.9500
C6—C71.387 (3)N1—H10.8800
C6—H60.9500O101—H1W0.870 (18)
C7—C81.389 (3)O101—H2W0.858 (17)
C7—H70.9500
O1—C1—N1124.7 (2)C3—C8—H8120.1
O1—C1—C2127.4 (2)C7—C8—H8120.1
N1—C1—C2107.8 (2)C2—C9—C10133.2 (2)
C9—C2—C3135.9 (2)C2—C9—H9113.4
C9—C2—C1118.9 (2)C10—C9—H9113.4
C3—C2—C1105.23 (19)C11—C10—O2108.8 (2)
C8—C3—C4118.2 (2)C11—C10—C9130.3 (2)
C8—C3—C2135.2 (2)O2—C10—C9120.9 (2)
C4—C3—C2106.6 (2)C10—C11—C12107.3 (2)
C5—C4—N1127.6 (2)C10—C11—H11126.4
C5—C4—C3123.0 (2)C12—C11—H11126.4
N1—C4—C3109.33 (19)C13—C12—C11106.7 (2)
C4—C5—C6117.4 (2)C13—C12—H12126.6
C4—C5—H5121.3C11—C12—H12126.6
C6—C5—H5121.3C12—C13—O2110.5 (2)
C7—C6—C5121.0 (2)C12—C13—H13124.8
C7—C6—H6119.5O2—C13—H13124.8
C5—C6—H6119.5C1—N1—C4111.0 (2)
C6—C7—C8120.7 (2)C1—N1—H1124.5
C6—C7—H7119.6C4—N1—H1124.5
C8—C7—H7119.6C13—O2—C10106.72 (17)
C3—C8—C7119.7 (2)H1W—O101—H2W106 (2)
O1—C1—C2—C91.2 (4)C2—C3—C8—C7176.7 (2)
N1—C1—C2—C9178.9 (2)C6—C7—C8—C30.2 (3)
O1—C1—C2—C3178.9 (2)C3—C2—C9—C103.1 (5)
N1—C1—C2—C31.1 (2)C1—C2—C9—C10176.8 (2)
C9—C2—C3—C82.4 (5)C2—C9—C10—C11179.0 (3)
C1—C2—C3—C8177.7 (3)C2—C9—C10—O20.4 (4)
C9—C2—C3—C4179.9 (3)O2—C10—C11—C120.4 (3)
C1—C2—C3—C40.1 (2)C9—C10—C11—C12178.4 (2)
C8—C3—C4—C51.1 (4)C10—C11—C12—C130.5 (3)
C2—C3—C4—C5177.0 (2)C11—C12—C13—O20.4 (3)
C8—C3—C4—N1179.3 (2)O1—C1—N1—C4178.1 (2)
C2—C3—C4—N11.3 (3)C2—C1—N1—C41.9 (3)
N1—C4—C5—C6178.5 (2)C5—C4—N1—C1176.1 (2)
C3—C4—C5—C60.6 (4)C3—C4—N1—C12.0 (3)
C4—C5—C6—C70.3 (4)C12—C13—O2—C100.2 (3)
C5—C6—C7—C80.7 (4)C11—C10—O2—C130.1 (3)
C4—C3—C8—C70.7 (3)C9—C10—O2—C13178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.952.828 (3)174
O101—H1W···O101ii0.87 (2)1.90 (2)2.7630 (15)172 (3)
O101—H2W···O10.86 (2)2.00 (2)2.852 (2)173 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x+1/2, y+1/2, z.
(4a) 3-(1-methylethylidene)-1H-indol-2(3H)-one top
Crystal data top
C11H11NOZ = 6
Mr = 173.21F(000) = 552
Triclinic, P1Dx = 1.316 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7504 (3) ÅCell parameters from 16164 reflections
b = 10.2281 (3) Åθ = 2.9–27.5°
c = 14.0530 (5) ŵ = 0.09 mm1
α = 95.766 (2)°T = 120 K
β = 107.842 (2)°Plate, light orange
γ = 96.617 (2)°0.30 × 0.08 × 0.04 mm
V = 1311.45 (7) Å3
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
5972 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode4122 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.059
Detector resolution: 4096x4096pixels / 62x62mm pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1213
Tmin = 0.975, Tmax = 0.997l = 1818
21390 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0214P)2 + 2.3372P]
where P = (Fo2 + 2Fc2)/3
5972 reflections(Δ/σ)max < 0.001
358 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C11H11NOγ = 96.617 (2)°
Mr = 173.21V = 1311.45 (7) Å3
Triclinic, P1Z = 6
a = 9.7504 (3) ÅMo Kα radiation
b = 10.2281 (3) ŵ = 0.09 mm1
c = 14.0530 (5) ÅT = 120 K
α = 95.766 (2)°0.30 × 0.08 × 0.04 mm
β = 107.842 (2)°
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
5972 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
4122 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.997Rint = 0.059
21390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.08Δρmax = 0.36 e Å3
5972 reflectionsΔρmin = 0.31 e Å3
358 parameters
Special details top

Experimental. SADABS was used to perform the Absorption correction. Parameter refinement on 16695 reflections reduced R(int) from 0.1392 to 0.0541. Ratio of minimum to maximum apparent transmission: 0.857568. The given Tmin and Tmax were generated using the SHELX SIZE command.

NMR spectra were measured on a Jeol EX270 spectrometer at 270 MHz (1H) and 68 MHz (13C) in CDCl3. High-resolution mass spectra were performed by the EPSRC facility, Swansea University, Wales. 1H NMR (270 MHz, CDCl3, δ, p.p.m.): 7.91 (1H, s), 7.53–6.83 (4H, m), 2.61 (3H, s), 2.38 (3H, s). 13C NMR (75 MHz, CDCl3, δ, p.p.m.): 169.6, 155.5, 139.3, 127.5, 124.3, 123.6, 123.0, 121.5, 109.3, 25.2, 23.1. IR (KBr, ν, cm-1): 3154, 1674, 1271, 817. HRMS: m/z calculated for C11H12NO (MH+) 174.0913, found 174.0912.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9147 (3)0.0015 (2)0.3484 (2)0.0191 (5)
C20.8145 (3)0.0030 (2)0.24248 (19)0.0185 (5)
C30.6692 (3)0.0080 (2)0.25253 (19)0.0185 (5)
C40.6851 (3)0.0091 (2)0.3554 (2)0.0198 (6)
C50.5695 (3)0.0098 (3)0.3926 (2)0.0250 (6)
H50.58360.01130.46260.030*
C60.4314 (3)0.0084 (3)0.3239 (2)0.0277 (6)
H60.34970.00880.34710.033*
C70.4125 (3)0.0065 (3)0.2220 (2)0.0266 (6)
H70.31750.00490.17620.032*
C80.5304 (3)0.0068 (3)0.1855 (2)0.0240 (6)
H80.51590.00620.11540.029*
C90.8559 (3)0.0002 (2)0.1591 (2)0.0214 (6)
C100.7509 (3)0.0086 (3)0.0571 (2)0.0263 (6)
H10A0.66920.06460.03960.040*
H10B0.80080.00210.00640.040*
H10C0.71400.09360.05870.040*
C111.0083 (3)0.0114 (3)0.1595 (2)0.0293 (7)
H11A1.07060.01320.22880.044*
H11B1.04650.06500.13330.044*
H11C1.00720.09370.11680.044*
N10.8302 (2)0.0067 (2)0.40969 (17)0.0210 (5)
H10.86350.00830.47560.025*
O11.0469 (2)0.00082 (18)0.37839 (14)0.0229 (4)
C1011.1804 (3)0.3134 (2)0.67501 (19)0.0190 (5)
C1021.0822 (3)0.3172 (2)0.5693 (2)0.0193 (5)
C1030.9363 (3)0.3213 (2)0.57864 (19)0.0192 (6)
C1040.9502 (3)0.3190 (2)0.6811 (2)0.0212 (6)
C1050.8340 (3)0.3202 (3)0.7174 (2)0.0257 (6)
H1050.84720.31900.78710.031*
C1060.6973 (3)0.3231 (3)0.6493 (2)0.0280 (6)
H1060.61550.32400.67240.034*
C1070.6796 (3)0.3249 (3)0.5477 (2)0.0291 (6)
H1070.58540.32690.50190.035*
C1080.7983 (3)0.3238 (3)0.5115 (2)0.0268 (6)
H1080.78480.32470.44170.032*
C1091.1276 (3)0.3190 (2)0.4874 (2)0.0213 (6)
C1101.0276 (3)0.3347 (3)0.3856 (2)0.0314 (7)
H11D0.97030.24820.35160.047*
H11E1.08550.36870.34480.047*
H11F0.96180.39730.39370.047*
C1111.2798 (3)0.3054 (3)0.4896 (2)0.0290 (7)
H11G1.33390.28120.55490.043*
H11H1.32840.39010.48020.043*
H11I1.27660.23600.43530.043*
N1011.0952 (2)0.3153 (2)0.73532 (17)0.0216 (5)
H1011.12770.31430.80090.026*
O1011.3130 (2)0.31170 (18)0.70609 (14)0.0242 (4)
C2011.3470 (3)0.3250 (2)0.9789 (2)0.0202 (6)
C2021.4479 (3)0.3417 (2)1.0863 (2)0.0194 (5)
C2031.5959 (3)0.3479 (2)1.0787 (2)0.0200 (6)
C2041.5804 (3)0.3330 (2)0.9751 (2)0.0202 (6)
C2051.6974 (3)0.3345 (3)0.9397 (2)0.0243 (6)
H2051.68350.32300.86930.029*
C2061.8367 (3)0.3533 (3)1.0099 (2)0.0258 (6)
H2061.91940.35580.98750.031*
C2071.8552 (3)0.3686 (3)1.1127 (2)0.0279 (6)
H2071.95090.38131.15980.033*
C2081.7363 (3)0.3658 (3)1.1479 (2)0.0246 (6)
H2081.75060.37591.21830.030*
C2091.4052 (3)0.3485 (2)1.1693 (2)0.0204 (6)
C2101.5128 (3)0.3655 (3)1.2744 (2)0.0283 (6)
H21A1.56840.29111.28110.043*
H21B1.46030.36741.32370.043*
H21C1.57970.44921.28670.043*
C2111.2486 (3)0.3408 (3)1.1650 (2)0.0288 (6)
H21D1.18570.32611.09440.043*
H21E1.23460.42431.19900.043*
H21F1.22320.26701.19900.043*
N2011.4328 (2)0.3184 (2)0.91886 (17)0.0212 (5)
H2011.39920.30630.85240.025*
O2011.2127 (2)0.31515 (18)0.94666 (14)0.0236 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0227 (16)0.0159 (12)0.0172 (13)0.0025 (10)0.0047 (12)0.0009 (9)
C20.0196 (14)0.0179 (12)0.0153 (13)0.0030 (10)0.0013 (11)0.0031 (9)
C30.0204 (15)0.0188 (12)0.0145 (13)0.0038 (10)0.0030 (11)0.0026 (9)
C40.0190 (15)0.0206 (12)0.0172 (13)0.0028 (10)0.0020 (11)0.0026 (10)
C50.0243 (16)0.0324 (15)0.0173 (14)0.0020 (11)0.0061 (12)0.0026 (11)
C60.0214 (16)0.0337 (15)0.0275 (16)0.0061 (12)0.0065 (13)0.0041 (12)
C70.0165 (15)0.0352 (15)0.0226 (15)0.0046 (11)0.0017 (12)0.0037 (12)
C80.0241 (16)0.0306 (14)0.0142 (13)0.0067 (11)0.0009 (12)0.0026 (10)
C90.0229 (15)0.0187 (12)0.0206 (14)0.0013 (10)0.0050 (12)0.0022 (10)
C100.0279 (17)0.0350 (15)0.0145 (14)0.0060 (12)0.0036 (13)0.0050 (11)
C110.0231 (16)0.0440 (17)0.0203 (15)0.0032 (13)0.0065 (13)0.0054 (12)
N10.0183 (12)0.0288 (12)0.0128 (11)0.0034 (9)0.0004 (10)0.0038 (9)
O10.0204 (11)0.0277 (10)0.0184 (10)0.0041 (8)0.0024 (9)0.0043 (7)
C1010.0228 (15)0.0174 (12)0.0156 (13)0.0018 (10)0.0045 (12)0.0033 (9)
C1020.0210 (15)0.0185 (12)0.0169 (13)0.0036 (10)0.0035 (11)0.0038 (9)
C1030.0211 (15)0.0177 (12)0.0184 (14)0.0035 (10)0.0055 (12)0.0027 (10)
C1040.0222 (15)0.0212 (12)0.0176 (14)0.0040 (10)0.0025 (12)0.0025 (10)
C1050.0250 (16)0.0336 (15)0.0195 (14)0.0065 (12)0.0078 (13)0.0037 (11)
C1060.0244 (16)0.0354 (16)0.0251 (16)0.0045 (12)0.0097 (13)0.0032 (12)
C1070.0236 (16)0.0343 (16)0.0265 (16)0.0054 (12)0.0034 (13)0.0046 (12)
C1080.0256 (17)0.0320 (15)0.0205 (15)0.0048 (12)0.0042 (13)0.0035 (11)
C1090.0240 (15)0.0208 (13)0.0184 (14)0.0051 (11)0.0052 (12)0.0033 (10)
C1100.0361 (19)0.0384 (16)0.0184 (15)0.0067 (13)0.0061 (14)0.0061 (12)
C1110.0301 (17)0.0365 (16)0.0239 (16)0.0072 (13)0.0121 (14)0.0078 (12)
N1010.0196 (13)0.0301 (12)0.0140 (11)0.0053 (9)0.0026 (10)0.0048 (9)
O1010.0180 (11)0.0323 (10)0.0204 (10)0.0054 (8)0.0031 (8)0.0040 (8)
C2010.0246 (16)0.0179 (12)0.0177 (14)0.0027 (10)0.0061 (12)0.0028 (10)
C2020.0199 (14)0.0176 (12)0.0180 (14)0.0033 (10)0.0023 (11)0.0025 (10)
C2030.0212 (15)0.0186 (12)0.0179 (14)0.0015 (10)0.0037 (12)0.0021 (10)
C2040.0221 (15)0.0192 (12)0.0199 (14)0.0054 (10)0.0062 (12)0.0045 (10)
C2050.0264 (17)0.0290 (14)0.0187 (14)0.0046 (11)0.0079 (13)0.0066 (11)
C2060.0211 (16)0.0299 (14)0.0282 (16)0.0031 (11)0.0105 (13)0.0052 (11)
C2070.0209 (16)0.0313 (15)0.0280 (16)0.0021 (12)0.0035 (13)0.0037 (12)
C2080.0268 (16)0.0274 (14)0.0174 (14)0.0047 (11)0.0041 (12)0.0025 (10)
C2090.0240 (15)0.0177 (12)0.0181 (13)0.0011 (10)0.0057 (12)0.0021 (9)
C2100.0246 (16)0.0399 (16)0.0159 (14)0.0002 (12)0.0020 (12)0.0026 (11)
C2110.0259 (17)0.0395 (16)0.0203 (15)0.0024 (12)0.0082 (13)0.0011 (12)
N2010.0201 (13)0.0276 (12)0.0146 (11)0.0055 (9)0.0027 (10)0.0043 (9)
O2010.0169 (11)0.0314 (10)0.0201 (10)0.0045 (8)0.0024 (8)0.0038 (8)
Geometric parameters (Å, º) top
C1—O11.232 (3)C107—C1081.401 (4)
C1—N11.363 (3)C107—H1070.9500
C1—C21.512 (4)C108—H1080.9500
C2—C91.351 (4)C109—C1111.497 (4)
C2—C31.472 (4)C109—C1101.500 (4)
C3—C81.390 (4)C110—H11D0.9800
C3—C41.404 (3)C110—H11E0.9800
C4—C51.381 (4)C110—H11F0.9800
C4—N11.391 (3)C111—H11G0.9800
C5—C61.393 (4)C111—H11H0.9800
C5—H50.9500C111—H11I0.9800
C6—C71.384 (4)N101—H1010.8800
C6—H60.9500C201—O2011.235 (3)
C7—C81.395 (4)C201—N2011.360 (3)
C7—H70.9500C201—C2021.509 (4)
C8—H80.9500C202—C2091.351 (4)
C9—C111.502 (4)C202—C2031.474 (4)
C9—C101.502 (4)C203—C2081.394 (4)
C10—H10A0.9800C203—C2041.408 (4)
C10—H10B0.9800C204—C2051.376 (4)
C10—H10C0.9800C204—N2011.396 (3)
C11—H11A0.9800C205—C2061.390 (4)
C11—H11B0.9800C205—H2050.9500
C11—H11C0.9800C206—C2071.390 (4)
N1—H10.8800C206—H2060.9500
C101—O1011.234 (3)C207—C2081.391 (4)
C101—N1011.357 (3)C207—H2070.9500
C101—C1021.508 (4)C208—H2080.9500
C102—C1091.355 (4)C209—C2111.502 (4)
C102—C1031.473 (4)C209—C2101.507 (4)
C103—C1081.391 (4)C210—H21A0.9800
C103—C1041.407 (4)C210—H21B0.9800
C104—C1051.378 (4)C210—H21C0.9800
C104—N1011.393 (3)C211—H21D0.9800
C105—C1061.388 (4)C211—H21E0.9800
C105—H1050.9500C211—H21F0.9800
C106—C1071.386 (4)N201—H2010.8800
C106—H1060.9500
O1—C1—N1124.2 (2)C103—C108—C107119.4 (3)
O1—C1—C2129.4 (2)C103—C108—H108120.3
N1—C1—C2106.4 (2)C107—C108—H108120.3
C9—C2—C3129.6 (2)C102—C109—C111123.7 (3)
C9—C2—C1125.2 (2)C102—C109—C110122.2 (3)
C3—C2—C1105.3 (2)C111—C109—C110114.1 (2)
C8—C3—C4118.2 (2)C109—C110—H11D109.5
C8—C3—C2134.9 (2)C109—C110—H11E109.5
C4—C3—C2106.8 (2)H11D—C110—H11E109.5
C5—C4—N1127.3 (2)C109—C110—H11F109.5
C5—C4—C3123.0 (3)H11D—C110—H11F109.5
N1—C4—C3109.8 (2)H11E—C110—H11F109.5
C4—C5—C6117.7 (3)C109—C111—H11G109.5
C4—C5—H5121.1C109—C111—H11H109.5
C6—C5—H5121.1H11G—C111—H11H109.5
C7—C6—C5120.5 (3)C109—C111—H11I109.5
C7—C6—H6119.8H11G—C111—H11I109.5
C5—C6—H6119.8H11H—C111—H11I109.5
C6—C7—C8121.2 (3)C101—N101—C104112.0 (2)
C6—C7—H7119.4C101—N101—H101124.0
C8—C7—H7119.4C104—N101—H101124.0
C3—C8—C7119.4 (3)O201—C201—N201124.0 (2)
C3—C8—H8120.3O201—C201—C202129.6 (2)
C7—C8—H8120.3N201—C201—C202106.4 (2)
C2—C9—C11123.7 (3)C209—C202—C203129.5 (3)
C2—C9—C10121.9 (3)C209—C202—C201125.1 (2)
C11—C9—C10114.4 (2)C203—C202—C201105.4 (2)
C9—C10—H10A109.5C208—C203—C204118.2 (2)
C9—C10—H10B109.5C208—C203—C202135.0 (2)
H10A—C10—H10B109.5C204—C203—C202106.8 (2)
C9—C10—H10C109.5C205—C204—N201127.9 (2)
H10A—C10—H10C109.5C205—C204—C203122.8 (3)
H10B—C10—H10C109.5N201—C204—C203109.3 (2)
C9—C11—H11A109.5C204—C205—C206118.2 (3)
C9—C11—H11B109.5C204—C205—H205120.9
H11A—C11—H11B109.5C206—C205—H205120.9
C9—C11—H11C109.5C207—C206—C205120.2 (3)
H11A—C11—H11C109.5C207—C206—H206119.9
H11B—C11—H11C109.5C205—C206—H206119.9
C1—N1—C4111.7 (2)C206—C207—C208121.3 (3)
C1—N1—H1124.1C206—C207—H207119.4
C4—N1—H1124.1C208—C207—H207119.4
O101—C101—N101123.8 (2)C207—C208—C203119.4 (3)
O101—C101—C102129.5 (2)C207—C208—H208120.3
N101—C101—C102106.7 (2)C203—C208—H208120.3
C109—C102—C103130.4 (3)C202—C209—C211123.4 (3)
C109—C102—C101124.5 (2)C202—C209—C210122.0 (3)
C103—C102—C101105.1 (2)C211—C209—C210114.6 (2)
C108—C103—C104118.0 (2)C209—C210—H21A109.5
C108—C103—C102135.0 (2)C209—C210—H21B109.5
C104—C103—C102107.0 (2)H21A—C210—H21B109.5
C105—C104—N101127.7 (3)C209—C210—H21C109.5
C105—C104—C103123.0 (3)H21A—C210—H21C109.5
N101—C104—C103109.3 (2)H21B—C210—H21C109.5
C104—C105—C106118.2 (3)C209—C211—H21D109.5
C104—C105—H105120.9C209—C211—H21E109.5
C106—C105—H105120.9H21D—C211—H21E109.5
C107—C106—C105120.4 (3)C209—C211—H21F109.5
C107—C106—H106119.8H21D—C211—H21F109.5
C105—C106—H106119.8H21E—C211—H21F109.5
C106—C107—C108121.0 (3)C201—N201—C204112.0 (2)
C106—C107—H107119.5C201—N201—H201124.0
C108—C107—H107119.5C204—N201—H201124.0
O1—C1—C2—C90.9 (4)C104—C105—C106—C1070.0 (4)
N1—C1—C2—C9179.4 (2)C105—C106—C107—C1080.0 (4)
O1—C1—C2—C3179.1 (2)C104—C103—C108—C1070.5 (4)
N1—C1—C2—C30.6 (3)C102—C103—C108—C107178.7 (3)
C9—C2—C3—C82.8 (5)C106—C107—C108—C1030.2 (4)
C1—C2—C3—C8177.3 (3)C103—C102—C109—C111175.9 (3)
C9—C2—C3—C4180.0 (3)C101—C102—C109—C1115.6 (4)
C1—C2—C3—C40.1 (3)C103—C102—C109—C1103.9 (4)
C8—C3—C4—C50.5 (4)C101—C102—C109—C110174.6 (2)
C2—C3—C4—C5178.2 (2)O101—C101—N101—C104179.1 (2)
C8—C3—C4—N1178.4 (2)C102—C101—N101—C1040.4 (3)
C2—C3—C4—N10.7 (3)C105—C104—N101—C101179.2 (3)
N1—C4—C5—C6178.2 (3)C103—C104—N101—C1010.7 (3)
C3—C4—C5—C60.5 (4)O201—C201—C202—C2090.2 (4)
C4—C5—C6—C70.1 (4)N201—C201—C202—C209178.0 (2)
C5—C6—C7—C80.4 (4)O201—C201—C202—C203179.9 (3)
C4—C3—C8—C70.1 (4)N201—C201—C202—C2031.9 (3)
C2—C3—C8—C7176.8 (3)C209—C202—C203—C2082.2 (5)
C6—C7—C8—C30.5 (4)C201—C202—C203—C208177.9 (3)
C3—C2—C9—C11177.0 (3)C209—C202—C203—C204178.6 (3)
C1—C2—C9—C113.1 (4)C201—C202—C203—C2041.2 (3)
C3—C2—C9—C102.9 (4)C208—C203—C204—C2050.4 (4)
C1—C2—C9—C10177.0 (2)C202—C203—C204—C205179.7 (2)
O1—C1—N1—C4179.7 (2)C208—C203—C204—N201179.2 (2)
C2—C1—N1—C41.0 (3)C202—C203—C204—N2010.2 (3)
C5—C4—N1—C1177.7 (3)N201—C204—C205—C206178.6 (2)
C3—C4—N1—C11.2 (3)C203—C204—C205—C2060.8 (4)
O101—C101—C102—C1090.3 (4)C204—C205—C206—C2070.7 (4)
N101—C101—C102—C109178.8 (2)C205—C206—C207—C2080.1 (4)
O101—C101—C102—C103178.5 (2)C206—C207—C208—C2030.3 (4)
N101—C101—C102—C1030.0 (3)C204—C203—C208—C2070.2 (4)
C109—C102—C103—C1082.5 (5)C202—C203—C208—C207178.9 (3)
C101—C102—C103—C108178.8 (3)C203—C202—C209—C211179.9 (2)
C109—C102—C103—C104179.1 (3)C201—C202—C209—C2110.3 (4)
C101—C102—C103—C1040.4 (3)C203—C202—C209—C2100.3 (4)
C108—C103—C104—C1050.5 (4)C201—C202—C209—C210179.8 (2)
C102—C103—C104—C105179.2 (2)O201—C201—N201—C204179.8 (2)
C108—C103—C104—N101179.3 (2)C202—C201—N201—C2041.9 (3)
C102—C103—C104—N1010.6 (3)C205—C204—N201—C201178.4 (3)
N101—C104—C105—C106179.6 (3)C203—C204—N201—C2011.1 (3)
C103—C104—C105—C1060.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.982.859 (3)174
N101—H101···O2010.881.962.837 (3)176
N201—H201···O1010.881.982.848 (3)170
Symmetry code: (i) x+2, y, z+1.
(4b) 3-(1-methylethylidene)-2-oxo-2,3-dihydro-1H-indole-1-carboxylate top
Crystal data top
C13H13NO3F(000) = 976
Mr = 231.24Dx = 1.373 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11877 reflections
a = 10.6939 (2) Åθ = 2.9–27.5°
b = 17.2595 (4) ŵ = 0.10 mm1
c = 12.7714 (3) ÅT = 120 K
β = 108.322 (1)°Block, colourless
V = 2237.73 (8) Å30.36 × 0.30 × 0.18 mm
Z = 8
Data collection top
Bruker Nonius Roper CCD camera on κ-goniostat
diffractometer
5129 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2222
Tmin = 0.966, Tmax = 0.983l = 1616
26778 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.8778P]
where P = (Fo2 + 2Fc2)/3
5129 reflections(Δ/σ)max = 0.021
313 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C13H13NO3V = 2237.73 (8) Å3
Mr = 231.24Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.6939 (2) ŵ = 0.10 mm1
b = 17.2595 (4) ÅT = 120 K
c = 12.7714 (3) Å0.36 × 0.30 × 0.18 mm
β = 108.322 (1)°
Data collection top
Bruker Nonius Roper CCD camera on κ-goniostat
diffractometer
5129 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3809 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.983Rint = 0.052
26778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
5129 reflectionsΔρmin = 0.35 e Å3
313 parameters
Special details top

Experimental. SADABS was used to perform the Absorption correction. Estimated minimum and maximum transmission from SADABS: 0.6574 and 0.7456. The given Tmin and Tmax were generated using the SHELX SIZE command.

NMR spectra were measured on a Jeol EX270 spectrometer at 270 MHz (1H) and 68 MHz (13C) in CDCl3. High-resolution mass spectra were performed by the EPSRC facility, Swansea University, Wales. 1H NMR (270 MHz, CDCl3, δ, p.p.m.): 7.94 (1H, d, J = 7.90 Hz), 7.51 (1H, d, J = 7.7 Hz), 7.14 (1H, m), 7.11 (1H, m), 3.97 (3H, s), 2.55 (3H, s), 2.35 (3H, s).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74065 (15)0.22350 (9)0.00211 (12)0.0190 (3)
C20.72748 (15)0.30957 (9)0.00312 (12)0.0186 (3)
C30.64105 (15)0.32442 (9)0.06970 (12)0.0181 (3)
C40.59946 (14)0.25290 (9)0.10028 (12)0.0178 (3)
C50.51359 (15)0.24725 (9)0.16159 (13)0.0217 (3)
H50.48540.19830.17980.026*
C60.47014 (16)0.31614 (9)0.19559 (13)0.0232 (4)
H60.41110.31410.23770.028*
C70.51169 (15)0.38756 (9)0.16905 (13)0.0231 (3)
H70.48210.43370.19440.028*
C80.59594 (15)0.39227 (9)0.10593 (13)0.0210 (3)
H80.62290.44140.08740.025*
C90.78645 (15)0.35945 (9)0.04882 (12)0.0207 (3)
C100.76996 (18)0.44575 (10)0.04229 (16)0.0310 (4)
H10A0.67610.45890.07000.046*
H10B0.81650.47190.08720.046*
H10C0.80650.46270.03460.046*
C110.87076 (17)0.33390 (10)0.11676 (14)0.0278 (4)
H11A0.91800.28650.08520.042*
H11B0.93440.37470.11690.042*
H11C0.81490.32380.19260.042*
C120.64527 (16)0.11346 (9)0.08047 (12)0.0206 (3)
C130.72488 (19)0.01248 (9)0.08182 (16)0.0311 (4)
H13A0.73860.01890.16090.047*
H13B0.79210.04170.06120.047*
H13C0.63730.03180.03980.047*
N10.66103 (13)0.19181 (7)0.05907 (10)0.0190 (3)
O10.80282 (12)0.18523 (6)0.04791 (9)0.0257 (3)
O20.56148 (13)0.09040 (7)0.11740 (12)0.0348 (3)
O30.73471 (12)0.06927 (6)0.05741 (10)0.0283 (3)
C1010.55129 (15)0.63537 (9)0.22129 (12)0.0192 (3)
C1020.59758 (15)0.70995 (9)0.18884 (12)0.0188 (3)
C1030.53483 (15)0.77124 (9)0.23422 (12)0.0187 (3)
C1040.46156 (15)0.73652 (9)0.29574 (12)0.0183 (3)
C1050.39122 (16)0.77967 (10)0.34964 (13)0.0244 (4)
H1050.34230.75530.39100.029*
C1060.39472 (17)0.86001 (10)0.34109 (14)0.0284 (4)
H1060.34770.89100.37760.034*
C1070.46537 (17)0.89569 (10)0.28054 (15)0.0280 (4)
H1070.46610.95060.27600.034*
C1080.53524 (16)0.85203 (9)0.22639 (13)0.0242 (4)
H1080.58290.87690.18440.029*
C1090.68425 (15)0.71469 (9)0.13126 (12)0.0207 (3)
C1100.72756 (18)0.79174 (10)0.09968 (14)0.0271 (4)
H10D0.65240.81770.04700.041*
H10E0.79700.78370.06580.041*
H10F0.76150.82400.16570.041*
C1110.74405 (17)0.64527 (10)0.09521 (14)0.0265 (4)
H11D0.75860.60460.15130.040*
H11E0.82840.65970.08560.040*
H11F0.68430.62600.02510.040*
C1120.41321 (15)0.60294 (9)0.34463 (12)0.0215 (3)
C1130.3678 (2)0.47259 (11)0.37137 (16)0.0412 (5)
H13D0.40600.47440.45180.062*
H13E0.38080.42090.34490.062*
H13F0.27330.48380.35050.062*
N1010.47180 (13)0.65450 (7)0.28953 (10)0.0186 (3)
O1010.57215 (12)0.56998 (6)0.19634 (10)0.0278 (3)
O1020.35200 (14)0.62361 (8)0.40430 (12)0.0389 (3)
O1030.43198 (14)0.53012 (7)0.32211 (11)0.0358 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0208 (7)0.0184 (8)0.0172 (7)0.0004 (6)0.0052 (6)0.0002 (6)
C20.0180 (7)0.0178 (8)0.0175 (7)0.0008 (6)0.0023 (6)0.0004 (6)
C30.0175 (7)0.0176 (8)0.0169 (7)0.0005 (6)0.0024 (6)0.0014 (6)
C40.0180 (7)0.0169 (8)0.0161 (7)0.0011 (6)0.0021 (6)0.0018 (6)
C50.0223 (8)0.0212 (8)0.0217 (7)0.0011 (6)0.0068 (6)0.0001 (6)
C60.0205 (8)0.0257 (9)0.0250 (8)0.0017 (7)0.0096 (7)0.0002 (7)
C70.0231 (8)0.0216 (8)0.0244 (8)0.0046 (7)0.0072 (7)0.0021 (6)
C80.0222 (8)0.0163 (8)0.0236 (8)0.0015 (6)0.0058 (6)0.0007 (6)
C90.0193 (7)0.0207 (8)0.0206 (7)0.0003 (6)0.0040 (6)0.0010 (6)
C100.0369 (10)0.0190 (9)0.0434 (10)0.0007 (7)0.0218 (8)0.0034 (7)
C110.0318 (9)0.0269 (9)0.0290 (9)0.0007 (7)0.0156 (7)0.0024 (7)
C120.0244 (8)0.0165 (8)0.0205 (7)0.0016 (6)0.0064 (6)0.0016 (6)
C130.0426 (10)0.0142 (8)0.0433 (10)0.0011 (7)0.0235 (9)0.0029 (7)
N10.0234 (7)0.0156 (7)0.0190 (6)0.0001 (5)0.0081 (5)0.0012 (5)
O10.0321 (6)0.0201 (6)0.0298 (6)0.0024 (5)0.0168 (5)0.0024 (5)
O20.0369 (7)0.0202 (6)0.0565 (8)0.0038 (5)0.0278 (7)0.0011 (6)
O30.0389 (7)0.0152 (6)0.0380 (7)0.0041 (5)0.0225 (6)0.0038 (5)
C1010.0191 (7)0.0211 (8)0.0179 (7)0.0015 (6)0.0066 (6)0.0011 (6)
C1020.0187 (7)0.0193 (8)0.0171 (7)0.0022 (6)0.0037 (6)0.0013 (6)
C1030.0169 (7)0.0193 (8)0.0171 (7)0.0011 (6)0.0013 (6)0.0014 (6)
C1040.0176 (7)0.0175 (8)0.0183 (7)0.0004 (6)0.0036 (6)0.0005 (6)
C1050.0255 (8)0.0239 (9)0.0247 (8)0.0016 (7)0.0093 (7)0.0003 (7)
C1060.0287 (9)0.0251 (9)0.0314 (9)0.0064 (7)0.0093 (7)0.0030 (7)
C1070.0278 (9)0.0183 (8)0.0350 (9)0.0022 (7)0.0055 (7)0.0002 (7)
C1080.0232 (8)0.0197 (8)0.0280 (8)0.0023 (7)0.0055 (7)0.0028 (7)
C1090.0197 (7)0.0247 (8)0.0161 (7)0.0046 (6)0.0033 (6)0.0001 (6)
C1100.0314 (9)0.0276 (9)0.0255 (8)0.0104 (7)0.0135 (7)0.0013 (7)
C1110.0266 (8)0.0304 (9)0.0267 (8)0.0026 (7)0.0143 (7)0.0010 (7)
C1120.0232 (8)0.0227 (8)0.0189 (7)0.0029 (6)0.0072 (6)0.0011 (6)
C1130.0705 (14)0.0260 (10)0.0400 (11)0.0228 (10)0.0360 (11)0.0060 (8)
N1010.0215 (6)0.0168 (6)0.0199 (6)0.0009 (5)0.0098 (5)0.0016 (5)
O1010.0384 (7)0.0182 (6)0.0328 (6)0.0005 (5)0.0199 (5)0.0009 (5)
O1020.0531 (8)0.0287 (7)0.0510 (8)0.0040 (6)0.0396 (7)0.0068 (6)
O1030.0628 (9)0.0191 (6)0.0397 (7)0.0127 (6)0.0364 (7)0.0053 (5)
Geometric parameters (Å, º) top
C1—O11.2104 (19)C101—O1011.2124 (19)
C1—N11.433 (2)C101—N1011.434 (2)
C1—C21.496 (2)C101—C1021.484 (2)
C2—C91.357 (2)C102—C1091.355 (2)
C2—C31.462 (2)C102—C1031.466 (2)
C3—C81.400 (2)C103—C1081.398 (2)
C3—C41.408 (2)C103—C1041.406 (2)
C4—C51.385 (2)C104—C1051.386 (2)
C4—N11.4283 (19)C104—N1011.424 (2)
C5—C61.395 (2)C105—C1061.392 (2)
C5—H50.9500C105—H1050.9500
C6—C71.388 (2)C106—C1071.384 (3)
C6—H60.9500C106—H1060.9500
C7—C81.387 (2)C107—C1081.389 (2)
C7—H70.9500C107—H1070.9500
C8—H80.9500C108—H1080.9500
C9—C111.501 (2)C109—C1111.497 (2)
C9—C101.505 (2)C109—C1101.504 (2)
C10—H10A0.9800C110—H10D0.9800
C10—H10B0.9800C110—H10E0.9800
C10—H10C0.9800C110—H10F0.9800
C11—H11A0.9800C111—H11D0.9800
C11—H11B0.9800C111—H11E0.9800
C11—H11C0.9800C111—H11F0.9800
C12—O21.204 (2)C112—O1021.204 (2)
C12—O31.327 (2)C112—O1031.319 (2)
C12—N11.400 (2)C112—N1011.399 (2)
C13—O31.4560 (19)C113—O1031.458 (2)
C13—H13A0.9800C113—H13D0.9800
C13—H13B0.9800C113—H13E0.9800
C13—H13C0.9800C113—H13F0.9800
O1—C1—N1124.48 (14)O101—C101—N101124.55 (14)
O1—C1—C2129.59 (15)O101—C101—C102128.97 (15)
N1—C1—C2105.92 (13)N101—C101—C102106.47 (13)
C9—C2—C3130.47 (15)C109—C102—C103130.33 (15)
C9—C2—C1122.92 (14)C109—C102—C101123.31 (15)
C3—C2—C1106.60 (13)C103—C102—C101106.32 (13)
C8—C3—C4118.03 (14)C108—C103—C104118.68 (15)
C8—C3—C2133.29 (14)C108—C103—C102132.78 (15)
C4—C3—C2108.68 (13)C104—C103—C102108.54 (14)
C5—C4—C3122.82 (14)C105—C104—C103122.24 (15)
C5—C4—N1128.37 (14)C105—C104—N101128.70 (15)
C3—C4—N1108.81 (13)C103—C104—N101109.05 (13)
C4—C5—C6117.45 (15)C104—C105—C106117.65 (16)
C4—C5—H5121.3C104—C105—H105121.2
C6—C5—H5121.3C106—C105—H105121.2
C7—C6—C5121.17 (15)C107—C106—C105121.32 (16)
C7—C6—H6119.4C107—C106—H106119.3
C5—C6—H6119.4C105—C106—H106119.3
C8—C7—C6120.67 (15)C106—C107—C108120.69 (16)
C8—C7—H7119.7C106—C107—H107119.7
C6—C7—H7119.7C108—C107—H107119.7
C7—C8—C3119.83 (15)C107—C108—C103119.42 (16)
C7—C8—H8120.1C107—C108—H108120.3
C3—C8—H8120.1C103—C108—H108120.3
C2—C9—C11123.52 (15)C102—C109—C111123.36 (15)
C2—C9—C10121.33 (15)C102—C109—C110121.32 (15)
C11—C9—C10115.14 (14)C111—C109—C110115.32 (14)
C9—C10—H10A109.5C109—C110—H10D109.5
C9—C10—H10B109.5C109—C110—H10E109.5
H10A—C10—H10B109.5H10D—C110—H10E109.5
C9—C10—H10C109.5C109—C110—H10F109.5
H10A—C10—H10C109.5H10D—C110—H10F109.5
H10B—C10—H10C109.5H10E—C110—H10F109.5
C9—C11—H11A109.5C109—C111—H11D109.5
C9—C11—H11B109.5C109—C111—H11E109.5
H11A—C11—H11B109.5H11D—C111—H11E109.5
C9—C11—H11C109.5C109—C111—H11F109.5
H11A—C11—H11C109.5H11D—C111—H11F109.5
H11B—C11—H11C109.5H11E—C111—H11F109.5
O2—C12—O3125.04 (15)O102—C112—O103124.80 (15)
O2—C12—N1123.08 (15)O102—C112—N101123.25 (15)
O3—C12—N1111.86 (14)O103—C112—N101111.94 (14)
O3—C13—H13A109.5O103—C113—H13D109.5
O3—C13—H13B109.5O103—C113—H13E109.5
H13A—C13—H13B109.5H13D—C113—H13E109.5
O3—C13—H13C109.5O103—C113—H13F109.5
H13A—C13—H13C109.5H13D—C113—H13F109.5
H13B—C13—H13C109.5H13E—C113—H13F109.5
C12—N1—C4122.91 (13)C112—N101—C104123.36 (13)
C12—N1—C1127.14 (13)C112—N101—C101127.16 (13)
C4—N1—C1109.94 (12)C104—N101—C101109.47 (12)
C12—O3—C13113.82 (13)C112—O103—C113115.50 (14)
O1—C1—C2—C91.4 (3)O101—C101—C102—C1096.4 (3)
N1—C1—C2—C9177.93 (13)N101—C101—C102—C109174.45 (13)
O1—C1—C2—C3179.77 (15)O101—C101—C102—C103175.36 (15)
N1—C1—C2—C30.90 (15)N101—C101—C102—C1033.78 (15)
C9—C2—C3—C83.5 (3)C109—C102—C103—C1085.7 (3)
C1—C2—C3—C8177.82 (16)C101—C102—C103—C108176.29 (16)
C9—C2—C3—C4176.70 (15)C109—C102—C103—C104174.79 (15)
C1—C2—C3—C42.02 (16)C101—C102—C103—C1043.27 (16)
C8—C3—C4—C51.8 (2)C108—C103—C104—C1050.7 (2)
C2—C3—C4—C5178.29 (13)C102—C103—C104—C105179.63 (14)
C8—C3—C4—N1177.50 (13)C108—C103—C104—N101178.14 (13)
C2—C3—C4—N12.36 (16)C102—C103—C104—N1011.49 (16)
C3—C4—C5—C61.5 (2)C103—C104—C105—C1060.1 (2)
N1—C4—C5—C6177.76 (14)N101—C104—C105—C106178.53 (14)
C4—C5—C6—C70.1 (2)C104—C105—C106—C1070.3 (2)
C5—C6—C7—C81.2 (2)C105—C106—C107—C1080.1 (3)
C6—C7—C8—C30.8 (2)C106—C107—C108—C1030.6 (2)
C4—C3—C8—C70.7 (2)C104—C103—C108—C1071.0 (2)
C2—C3—C8—C7179.51 (15)C102—C103—C108—C107179.52 (15)
C3—C2—C9—C11178.52 (14)C103—C102—C109—C111177.02 (14)
C1—C2—C9—C110.0 (2)C101—C102—C109—C1110.7 (2)
C3—C2—C9—C101.0 (3)C103—C102—C109—C1102.6 (2)
C1—C2—C9—C10179.52 (14)C101—C102—C109—C110179.62 (14)
O2—C12—N1—C413.9 (2)O102—C112—N101—C1042.0 (2)
O3—C12—N1—C4164.77 (13)O103—C112—N101—C104177.23 (13)
O2—C12—N1—C1167.99 (15)O102—C112—N101—C101176.86 (15)
O3—C12—N1—C113.3 (2)O103—C112—N101—C1013.9 (2)
C5—C4—N1—C122.7 (2)C105—C104—N101—C1123.2 (2)
C3—C4—N1—C12176.59 (13)C103—C104—N101—C112178.06 (13)
C5—C4—N1—C1178.90 (14)C105—C104—N101—C101177.81 (15)
C3—C4—N1—C11.80 (16)C103—C104—N101—C1010.98 (16)
O1—C1—N1—C122.8 (2)O101—C101—N101—C1124.8 (2)
C2—C1—N1—C12177.79 (13)C102—C101—N101—C112176.01 (13)
O1—C1—N1—C4178.85 (14)O101—C101—N101—C104176.20 (14)
C2—C1—N1—C40.51 (15)C102—C101—N101—C1042.98 (16)
O2—C12—O3—C130.6 (2)O102—C112—O103—C1132.5 (3)
N1—C12—O3—C13178.09 (13)N101—C112—O103—C113176.69 (15)
(4c) 3-cyclohexylidene-1H-indol-2(3H)-one top
Crystal data top
C14H15NOZ = 4
Mr = 213.27F(000) = 456
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3732 (1) ÅCell parameters from 12338 reflections
b = 13.4962 (4) Åθ = 2.9–27.5°
c = 15.8088 (5) ŵ = 0.08 mm1
α = 95.389 (1)°T = 120 K
β = 98.498 (2)°Needle, light brown
γ = 101.201 (2)°0.85 × 0.08 × 0.06 mm
V = 1103.32 (5) Å3
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
4997 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3778 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.059
Detector resolution: 4096x4096pixels / 62x62mm pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1717
Tmin = 0.935, Tmax = 0.995l = 2020
18503 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0002P)2 + 1.4948P]
where P = (Fo2 + 2Fc2)/3
4997 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H15NOγ = 101.201 (2)°
Mr = 213.27V = 1103.32 (5) Å3
Triclinic, P1Z = 4
a = 5.3732 (1) ÅMo Kα radiation
b = 13.4962 (4) ŵ = 0.08 mm1
c = 15.8088 (5) ÅT = 120 K
α = 95.389 (1)°0.85 × 0.08 × 0.06 mm
β = 98.498 (2)°
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
4997 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3778 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.995Rint = 0.059
18503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.07Δρmax = 0.33 e Å3
4997 reflectionsΔρmin = 0.24 e Å3
289 parameters
Special details top

Experimental. SADABS was used to perform the Absorption correction. Parameter refinement on 15813 reflections reduced R(int) from 0.1450 to 0.0586. Ratio of minimum to maximum apparent transmission: 0.870535. The given Tmin and Tmax were generated using the SHELX SIZE command.

The crystals were long needles which shattered when cut. Thus it was necessary to mount a much longer crystal than would be ideal.

NMR spectra were measured on a Jeol EX270 spectrometer at 270 MHz (1H) and 68 MHz (13C) in CDCl3. High-resolution mass spectra were performed by the EPSRC facility, Swansea University, Wales. 1H NMR (270 MHz, CDCl3, δ, p.p.m.): 7.72 (1H, s), 7.61 (1H, d, J = 7.70 Hz), 7.19–7.13 (1H, m), 7.01–6.95 (1H, m), 6.82 (1H, d, J = 7.70 Hz), 3.34 (2H, t, J = 6.60 Hz, J = 5.50 Hz), 2.86 (2H, t, J = 6.60 Hz, J = 5.87 Hz), 1.84–1.69 (6H, m). 13C NMR (75 MHz, CDCl3, δ, p.p.m.): DEPT: 127.5, 123.7, 121.5, 109.3 (CH), 33.1, 30.0, 28.1, 27.8, 25.7 (CH2). IR (KBr, ν, cm-1): 3170, 2936, 1684, 1351, 1221, 747. HRMS: m/z calculated for C14H16NO(MH+) 214.1226, found 214.1230.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2267 (4)0.49598 (18)0.07719 (13)0.0215 (5)
C21.0170 (4)0.46698 (17)0.12946 (13)0.0197 (4)
C30.9590 (4)0.35410 (17)0.11870 (14)0.0215 (5)
C41.1289 (4)0.32256 (17)0.06723 (14)0.0219 (5)
C51.1335 (5)0.22196 (18)0.04454 (15)0.0265 (5)
H51.25300.20340.01050.032*
C60.9566 (5)0.14822 (18)0.07327 (15)0.0273 (5)
H60.95590.07820.05920.033*
C70.7826 (5)0.17608 (18)0.12201 (15)0.0274 (5)
H70.66230.12490.14070.033*
C80.7811 (4)0.27834 (18)0.14421 (15)0.0256 (5)
H80.65810.29640.17690.031*
C90.9254 (4)0.53507 (17)0.17809 (14)0.0218 (5)
C100.7413 (5)0.50503 (19)0.23890 (16)0.0296 (5)
H10A0.69470.42990.23500.035*
H10B0.58170.53010.22240.035*
C110.8652 (5)0.55019 (18)0.33175 (15)0.0264 (5)
H11A0.74060.53180.37090.032*
H11B1.01730.52100.34960.032*
C120.9474 (4)0.66549 (17)0.33919 (15)0.0242 (5)
H12A1.03600.69260.39870.029*
H12B0.79330.69530.32720.029*
C131.1275 (4)0.69620 (17)0.27574 (15)0.0243 (5)
H13A1.29070.67380.29240.029*
H13B1.16810.77130.27850.029*
C141.0064 (4)0.64885 (17)0.18258 (15)0.0241 (5)
H14A0.85480.67760.16310.029*
H14B1.13290.66580.14380.029*
N11.2855 (4)0.40804 (14)0.04460 (12)0.0234 (4)
H11.40690.40530.01320.028*
O11.3379 (3)0.58122 (12)0.06518 (10)0.0255 (4)
C1010.7052 (4)0.05891 (16)0.44320 (15)0.0208 (5)
C1020.4930 (4)0.08886 (16)0.38401 (14)0.0202 (5)
C1030.4658 (4)0.02215 (16)0.30140 (14)0.0211 (5)
C1040.6567 (4)0.03585 (16)0.31196 (15)0.0220 (5)
C1050.6866 (5)0.10715 (18)0.24781 (16)0.0271 (5)
H1050.81980.14410.25640.033*
C1060.5157 (5)0.12313 (18)0.17030 (16)0.0295 (5)
H1060.53310.17100.12470.035*
C1070.3196 (5)0.06953 (18)0.15912 (15)0.0281 (5)
H1070.20180.08230.10630.034*
C1080.2931 (4)0.00282 (17)0.22444 (15)0.0246 (5)
H1080.15750.03860.21620.030*
C1090.3749 (4)0.16534 (16)0.40503 (14)0.0211 (5)
C1100.1966 (5)0.20541 (17)0.33968 (15)0.0269 (5)
H11C0.01790.18620.35070.032*
H11D0.20160.17380.28100.032*
C1110.2739 (5)0.32120 (17)0.34438 (15)0.0269 (5)
H11E0.44210.33960.32500.032*
H11F0.14480.34560.30480.032*
C1120.2938 (5)0.37387 (17)0.43536 (15)0.0263 (5)
H11G0.12260.36040.45320.032*
H11H0.35080.44840.43650.032*
C1130.4856 (4)0.33473 (17)0.49802 (15)0.0239 (5)
H11I0.49180.36730.55730.029*
H11J0.65960.35340.48290.029*
C1140.4086 (4)0.21904 (17)0.49482 (14)0.0225 (5)
H11K0.54280.19510.53260.027*
H11L0.24540.20140.51740.027*
N1010.7970 (3)0.01058 (14)0.39543 (12)0.0236 (4)
H1010.92930.03650.41480.028*
O1010.7941 (3)0.09076 (12)0.51969 (10)0.0255 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0207 (11)0.0299 (13)0.0141 (10)0.0050 (9)0.0036 (8)0.0044 (9)
C20.0192 (10)0.0233 (11)0.0153 (10)0.0011 (8)0.0025 (8)0.0027 (9)
C30.0213 (11)0.0259 (12)0.0157 (10)0.0031 (9)0.0005 (8)0.0024 (9)
C40.0217 (11)0.0261 (12)0.0167 (11)0.0040 (9)0.0010 (8)0.0032 (9)
C50.0283 (12)0.0288 (13)0.0226 (12)0.0090 (10)0.0033 (9)0.0002 (10)
C60.0345 (13)0.0235 (12)0.0217 (12)0.0050 (10)0.0003 (10)0.0017 (10)
C70.0288 (12)0.0240 (12)0.0262 (12)0.0012 (10)0.0027 (10)0.0042 (10)
C80.0243 (12)0.0286 (13)0.0229 (12)0.0016 (9)0.0056 (9)0.0033 (10)
C90.0187 (11)0.0253 (12)0.0198 (11)0.0008 (9)0.0029 (8)0.0027 (9)
C100.0281 (13)0.0290 (13)0.0318 (13)0.0011 (10)0.0150 (10)0.0007 (10)
C110.0308 (13)0.0281 (13)0.0240 (12)0.0105 (10)0.0099 (10)0.0050 (10)
C120.0231 (11)0.0272 (12)0.0224 (12)0.0066 (9)0.0040 (9)0.0014 (9)
C130.0231 (11)0.0212 (12)0.0287 (13)0.0045 (9)0.0064 (9)0.0017 (10)
C140.0262 (12)0.0249 (12)0.0232 (12)0.0062 (9)0.0082 (9)0.0046 (9)
N10.0217 (10)0.0268 (10)0.0226 (10)0.0038 (8)0.0093 (8)0.0019 (8)
O10.0274 (8)0.0260 (9)0.0242 (8)0.0026 (7)0.0109 (7)0.0049 (7)
C1010.0183 (10)0.0171 (11)0.0273 (12)0.0022 (8)0.0042 (9)0.0067 (9)
C1020.0177 (10)0.0191 (11)0.0232 (11)0.0003 (8)0.0030 (8)0.0073 (9)
C1030.0190 (11)0.0190 (11)0.0251 (12)0.0017 (8)0.0049 (9)0.0055 (9)
C1040.0177 (11)0.0193 (11)0.0286 (12)0.0013 (8)0.0047 (9)0.0055 (9)
C1050.0257 (12)0.0232 (12)0.0347 (14)0.0048 (9)0.0120 (10)0.0049 (10)
C1060.0352 (14)0.0228 (12)0.0304 (13)0.0026 (10)0.0121 (11)0.0002 (10)
C1070.0309 (13)0.0277 (13)0.0227 (12)0.0001 (10)0.0031 (10)0.0040 (10)
C1080.0232 (11)0.0239 (12)0.0258 (12)0.0034 (9)0.0025 (9)0.0044 (10)
C1090.0195 (11)0.0195 (11)0.0233 (11)0.0021 (8)0.0015 (9)0.0058 (9)
C1100.0278 (12)0.0233 (12)0.0274 (13)0.0066 (9)0.0038 (10)0.0037 (10)
C1110.0309 (13)0.0230 (12)0.0269 (13)0.0075 (10)0.0003 (10)0.0063 (10)
C1120.0281 (12)0.0212 (12)0.0300 (13)0.0071 (9)0.0025 (10)0.0055 (10)
C1130.0245 (11)0.0240 (12)0.0236 (12)0.0060 (9)0.0043 (9)0.0029 (9)
C1140.0245 (11)0.0210 (11)0.0232 (12)0.0052 (9)0.0041 (9)0.0077 (9)
N1010.0190 (9)0.0232 (10)0.0297 (11)0.0072 (8)0.0024 (8)0.0059 (8)
O1010.0241 (8)0.0261 (9)0.0255 (9)0.0063 (7)0.0014 (7)0.0050 (7)
Geometric parameters (Å, º) top
C1—O11.234 (3)C101—O1011.236 (3)
C1—N11.361 (3)C101—N1011.360 (3)
C1—C21.507 (3)C101—C1021.508 (3)
C2—C91.354 (3)C102—C1091.353 (3)
C2—C31.483 (3)C102—C1031.486 (3)
C3—C81.390 (3)C103—C1081.386 (3)
C3—C41.408 (3)C103—C1041.407 (3)
C4—C51.377 (3)C104—C1051.381 (3)
C4—N11.399 (3)C104—N1011.396 (3)
C5—C61.395 (3)C105—C1061.390 (3)
C5—H50.9500C105—H1050.9500
C6—C71.380 (3)C106—C1071.389 (3)
C6—H60.9500C106—H1060.9500
C7—C81.393 (3)C107—C1081.396 (3)
C7—H70.9500C107—H1070.9500
C8—H80.9500C108—H1080.9500
C9—C141.504 (3)C109—C1141.501 (3)
C9—C101.505 (3)C109—C1101.514 (3)
C10—C111.535 (3)C110—C1111.529 (3)
C10—H10A0.9900C110—H11C0.9900
C10—H10B0.9900C110—H11D0.9900
C11—C121.521 (3)C111—C1121.523 (3)
C11—H11A0.9900C111—H11E0.9900
C11—H11B0.9900C111—H11F0.9900
C12—C131.524 (3)C112—C1131.527 (3)
C12—H12A0.9900C112—H11G0.9900
C12—H12B0.9900C112—H11H0.9900
C13—C141.543 (3)C113—C1141.530 (3)
C13—H13A0.9900C113—H11I0.9900
C13—H13B0.9900C113—H11J0.9900
C14—H14A0.9900C114—H11K0.9900
C14—H14B0.9900C114—H11L0.9900
N1—H10.8800N101—H1010.8800
O1—C1—N1123.3 (2)O101—C101—N101123.7 (2)
O1—C1—C2129.5 (2)O101—C101—C102129.4 (2)
N1—C1—C2107.13 (18)N101—C101—C102106.85 (19)
C9—C2—C3131.1 (2)C109—C102—C103130.7 (2)
C9—C2—C1124.0 (2)C109—C102—C101124.5 (2)
C3—C2—C1104.83 (18)C103—C102—C101104.66 (18)
C8—C3—C4117.2 (2)C108—C103—C104118.1 (2)
C8—C3—C2135.8 (2)C108—C103—C102134.7 (2)
C4—C3—C2106.95 (19)C104—C103—C102107.06 (19)
C5—C4—N1127.1 (2)C105—C104—N101127.8 (2)
C5—C4—C3123.4 (2)C105—C104—C103122.9 (2)
N1—C4—C3109.48 (19)N101—C104—C103109.2 (2)
C4—C5—C6117.6 (2)C104—C105—C106117.9 (2)
C4—C5—H5121.2C104—C105—H105121.1
C6—C5—H5121.2C106—C105—H105121.1
C7—C6—C5120.6 (2)C107—C106—C105120.4 (2)
C7—C6—H6119.7C107—C106—H106119.8
C5—C6—H6119.7C105—C106—H106119.8
C6—C7—C8120.8 (2)C106—C107—C108120.9 (2)
C6—C7—H7119.6C106—C107—H107119.5
C8—C7—H7119.6C108—C107—H107119.5
C3—C8—C7120.3 (2)C103—C108—C107119.7 (2)
C3—C8—H8119.9C103—C108—H108120.2
C7—C8—H8119.9C107—C108—H108120.2
C2—C9—C14124.7 (2)C102—C109—C114123.5 (2)
C2—C9—C10123.3 (2)C102—C109—C110123.0 (2)
C14—C9—C10111.85 (19)C114—C109—C110113.48 (19)
C9—C10—C11110.14 (19)C109—C110—C111111.26 (19)
C9—C10—H10A109.6C109—C110—H11C109.4
C11—C10—H10A109.6C111—C110—H11C109.4
C9—C10—H10B109.6C109—C110—H11D109.4
C11—C10—H10B109.6C111—C110—H11D109.4
H10A—C10—H10B108.1H11C—C110—H11D108.0
C12—C11—C10110.90 (19)C112—C111—C110111.86 (19)
C12—C11—H11A109.5C112—C111—H11E109.2
C10—C11—H11A109.5C110—C111—H11E109.2
C12—C11—H11B109.5C112—C111—H11F109.2
C10—C11—H11B109.5C110—C111—H11F109.2
H11A—C11—H11B108.0H11E—C111—H11F107.9
C11—C12—C13110.63 (19)C111—C112—C113110.08 (19)
C11—C12—H12A109.5C111—C112—H11G109.6
C13—C12—H12A109.5C113—C112—H11G109.6
C11—C12—H12B109.5C111—C112—H11H109.6
C13—C12—H12B109.5C113—C112—H11H109.6
H12A—C12—H12B108.1H11G—C112—H11H108.2
C12—C13—C14111.61 (19)C112—C113—C114110.81 (19)
C12—C13—H13A109.3C112—C113—H11I109.5
C14—C13—H13A109.3C114—C113—H11I109.5
C12—C13—H13B109.3C112—C113—H11J109.5
C14—C13—H13B109.3C114—C113—H11J109.5
H13A—C13—H13B108.0H11I—C113—H11J108.1
C9—C14—C13110.24 (18)C109—C114—C113112.15 (18)
C9—C14—H14A109.6C109—C114—H11K109.2
C13—C14—H14A109.6C113—C114—H11K109.2
C9—C14—H14B109.6C109—C114—H11L109.2
C13—C14—H14B109.6C113—C114—H11L109.2
H14A—C14—H14B108.1H11K—C114—H11L107.9
C1—N1—C4111.54 (18)C101—N101—C104111.99 (18)
C1—N1—H1124.2C101—N101—H101124.0
C4—N1—H1124.2C104—N101—H101124.0
O1—C1—C2—C94.4 (4)O101—C101—C102—C1095.8 (4)
N1—C1—C2—C9173.8 (2)N101—C101—C102—C109171.8 (2)
O1—C1—C2—C3179.2 (2)O101—C101—C102—C103178.0 (2)
N1—C1—C2—C32.6 (2)N101—C101—C102—C1034.5 (2)
C9—C2—C3—C88.3 (4)C109—C102—C103—C10812.0 (4)
C1—C2—C3—C8175.7 (2)C101—C102—C103—C108172.1 (2)
C9—C2—C3—C4174.0 (2)C109—C102—C103—C104172.8 (2)
C1—C2—C3—C42.0 (2)C101—C102—C103—C1043.1 (2)
C8—C3—C4—C52.7 (3)C108—C103—C104—C1053.2 (3)
C2—C3—C4—C5179.1 (2)C102—C103—C104—C105179.4 (2)
C8—C3—C4—N1177.43 (19)C108—C103—C104—N101175.44 (19)
C2—C3—C4—N10.7 (2)C102—C103—C104—N1010.8 (2)
N1—C4—C5—C6179.1 (2)N101—C104—C105—C106177.0 (2)
C3—C4—C5—C61.1 (3)C103—C104—C105—C1061.4 (3)
C4—C5—C6—C70.6 (3)C104—C105—C106—C1070.9 (3)
C5—C6—C7—C80.6 (4)C105—C106—C107—C1081.4 (4)
C4—C3—C8—C72.7 (3)C104—C103—C108—C1072.7 (3)
C2—C3—C8—C7179.8 (2)C102—C103—C108—C107177.6 (2)
C6—C7—C8—C31.1 (4)C106—C107—C108—C1030.5 (3)
C3—C2—C9—C14179.5 (2)C103—C102—C109—C114174.2 (2)
C1—C2—C9—C144.1 (3)C101—C102—C109—C11410.6 (3)
C3—C2—C9—C103.6 (4)C103—C102—C109—C1106.2 (4)
C1—C2—C9—C10171.7 (2)C101—C102—C109—C110169.0 (2)
C2—C9—C10—C11118.1 (2)C102—C109—C110—C111128.4 (2)
C14—C9—C10—C1158.3 (3)C114—C109—C110—C11151.2 (3)
C9—C10—C11—C1257.3 (3)C109—C110—C111—C11253.8 (3)
C10—C11—C12—C1355.9 (2)C110—C111—C112—C11357.1 (3)
C11—C12—C13—C1454.8 (2)C111—C112—C113—C11456.8 (2)
C2—C9—C14—C13119.5 (2)C102—C109—C114—C113127.6 (2)
C10—C9—C14—C1356.8 (2)C110—C109—C114—C11352.0 (2)
C12—C13—C14—C954.9 (2)C112—C113—C114—C10954.5 (2)
O1—C1—N1—C4179.4 (2)O101—C101—N101—C104178.0 (2)
C2—C1—N1—C42.2 (2)C102—C101—N101—C1044.3 (2)
C5—C4—N1—C1179.2 (2)C105—C104—N101—C101176.3 (2)
C3—C4—N1—C11.0 (2)C103—C104—N101—C1012.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.972.846 (2)171
N101—H101···O101ii0.881.982.850 (2)169
Symmetry codes: (i) x+3, y+1, z; (ii) x+2, y, z+1.
(5) spiro[1,3-dioxane-2,3'-indolin]-2'-one top
Crystal data top
C11H11NO3F(000) = 432
Mr = 205.21Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6650 reflections
a = 9.5406 (2) Åθ = 2.9–27.5°
b = 8.4295 (2) ŵ = 0.10 mm1
c = 12.4103 (3) ÅT = 120 K
β = 101.956 (2)°Block, colourless
V = 976.42 (4) Å30.50 × 0.40 × 0.36 mm
Z = 4
Data collection top
Bruker Nonius Roper CCD camera on κ-goniostat
diffractometer
2227 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1010
Tmin = 0.951, Tmax = 0.964l = 1616
12504 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.3966P]
where P = (Fo2 + 2Fc2)/3
2227 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H11NO3V = 976.42 (4) Å3
Mr = 205.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5406 (2) ŵ = 0.10 mm1
b = 8.4295 (2) ÅT = 120 K
c = 12.4103 (3) Å0.50 × 0.40 × 0.36 mm
β = 101.956 (2)°
Data collection top
Bruker Nonius Roper CCD camera on κ-goniostat
diffractometer
2227 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1885 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.964Rint = 0.032
12504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
2227 reflectionsΔρmin = 0.26 e Å3
136 parameters
Special details top

Experimental. SADABS was used to perform the Absorption correction. Estimated minimum and maximum transmission from SADABS: 0.6701 and 0.7456. The given Tmin and Tmax were generated using the SHELX SIZE command.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.82232 (13)0.13311 (15)0.46137 (10)0.0173 (3)
C20.70894 (13)0.27006 (14)0.43910 (9)0.0150 (3)
C30.77938 (13)0.39587 (14)0.51817 (9)0.0156 (3)
C40.91344 (13)0.34128 (14)0.57220 (9)0.0159 (3)
C51.00677 (13)0.43401 (15)0.64610 (10)0.0190 (3)
H51.09800.39540.68230.023*
C60.96138 (14)0.58679 (16)0.66535 (10)0.0213 (3)
H61.02310.65400.71540.026*
C70.82781 (14)0.64256 (16)0.61273 (11)0.0216 (3)
H70.79930.74690.62770.026*
C80.73439 (14)0.54706 (15)0.53783 (10)0.0189 (3)
H80.64300.58500.50170.023*
C90.49725 (14)0.11220 (16)0.38562 (10)0.0209 (3)
H9A0.40310.09100.40430.025*
H9B0.55020.01070.38940.025*
C100.47547 (14)0.17928 (17)0.27001 (10)0.0233 (3)
H10A0.42730.09990.21600.028*
H10B0.41430.27510.26370.028*
C110.62060 (14)0.22133 (16)0.24641 (10)0.0215 (3)
H11A0.67810.12380.24550.026*
H11B0.60820.27260.17330.026*
N10.93439 (11)0.18507 (13)0.53853 (8)0.0180 (2)
H11.01120.12810.56460.022*
O10.81223 (10)0.00212 (11)0.41678 (8)0.0250 (2)
O20.57725 (9)0.22394 (11)0.46401 (7)0.0179 (2)
O30.69446 (9)0.32872 (10)0.33099 (6)0.0176 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0184 (6)0.0169 (6)0.0164 (6)0.0033 (5)0.0032 (5)0.0014 (4)
C20.0155 (6)0.0151 (6)0.0146 (5)0.0027 (4)0.0034 (4)0.0019 (4)
C30.0174 (6)0.0166 (6)0.0135 (5)0.0010 (5)0.0051 (4)0.0008 (4)
C40.0184 (6)0.0154 (6)0.0149 (5)0.0020 (4)0.0056 (4)0.0014 (4)
C50.0181 (6)0.0220 (6)0.0167 (6)0.0003 (5)0.0034 (5)0.0012 (5)
C60.0239 (6)0.0217 (7)0.0189 (6)0.0038 (5)0.0062 (5)0.0035 (5)
C70.0250 (7)0.0182 (6)0.0231 (6)0.0024 (5)0.0085 (5)0.0033 (5)
C80.0189 (6)0.0186 (6)0.0197 (6)0.0037 (5)0.0055 (5)0.0003 (5)
C90.0203 (6)0.0198 (6)0.0209 (6)0.0023 (5)0.0003 (5)0.0014 (5)
C100.0247 (7)0.0229 (7)0.0192 (6)0.0002 (5)0.0028 (5)0.0014 (5)
C110.0277 (7)0.0224 (7)0.0133 (6)0.0036 (5)0.0018 (5)0.0022 (5)
N10.0175 (5)0.0156 (5)0.0192 (5)0.0049 (4)0.0004 (4)0.0003 (4)
O10.0245 (5)0.0174 (5)0.0296 (5)0.0064 (4)0.0021 (4)0.0060 (4)
O20.0164 (4)0.0211 (5)0.0165 (4)0.0012 (3)0.0041 (3)0.0011 (3)
O30.0206 (5)0.0188 (5)0.0131 (4)0.0020 (3)0.0030 (3)0.0015 (3)
Geometric parameters (Å, º) top
C1—O11.2298 (15)C7—C81.4012 (18)
C1—N11.3519 (16)C7—H70.9500
C1—C21.5670 (16)C8—H80.9500
C2—O21.4093 (15)C9—O21.4521 (14)
C2—O31.4096 (14)C9—C101.5158 (18)
C2—C31.5053 (16)C9—H9A0.9900
C3—C81.3825 (17)C9—H9B0.9900
C3—C41.3935 (17)C10—C111.5155 (19)
C4—C51.3807 (17)C10—H10A0.9900
C4—N11.4082 (16)C10—H10B0.9900
C5—C61.3950 (18)C11—O31.4530 (14)
C5—H50.9500C11—H11A0.9900
C6—C71.3880 (18)C11—H11B0.9900
C6—H60.9500N1—H10.8800
O1—C1—N1125.89 (11)C3—C8—H8121.0
O1—C1—C2126.53 (11)C7—C8—H8121.0
N1—C1—C2107.58 (10)O2—C9—C10110.01 (10)
O2—C2—O3112.93 (9)O2—C9—H9A109.7
O2—C2—C3110.45 (9)C10—C9—H9A109.7
O3—C2—C3108.41 (9)O2—C9—H9B109.7
O2—C2—C1111.85 (9)C10—C9—H9B109.7
O3—C2—C1110.75 (9)H9A—C9—H9B108.2
C3—C2—C1101.85 (9)C11—C10—C9108.58 (10)
C8—C3—C4120.47 (11)C11—C10—H10A110.0
C8—C3—C2130.65 (11)C9—C10—H10A110.0
C4—C3—C2108.81 (10)C11—C10—H10B110.0
C5—C4—C3122.27 (11)C9—C10—H10B110.0
C5—C4—N1127.94 (11)H10A—C10—H10B108.4
C3—C4—N1109.79 (10)O3—C11—C10109.39 (10)
C4—C5—C6117.13 (11)O3—C11—H11A109.8
C4—C5—H5121.4C10—C11—H11A109.8
C6—C5—H5121.4O3—C11—H11B109.8
C7—C6—C5121.29 (12)C10—C11—H11B109.8
C7—C6—H6119.4H11A—C11—H11B108.2
C5—C6—H6119.4C1—N1—C4111.91 (10)
C6—C7—C8120.89 (12)C1—N1—H1124.0
C6—C7—H7119.6C4—N1—H1124.0
C8—C7—H7119.6C2—O2—C9113.62 (9)
C3—C8—C7117.94 (11)C2—O3—C11113.97 (9)
O1—C1—C2—O261.07 (16)C5—C6—C7—C80.4 (2)
N1—C1—C2—O2119.21 (11)C4—C3—C8—C70.35 (18)
O1—C1—C2—O365.86 (16)C2—C3—C8—C7176.11 (12)
N1—C1—C2—O3113.87 (11)C6—C7—C8—C30.07 (19)
O1—C1—C2—C3179.02 (12)O2—C9—C10—C1155.40 (14)
N1—C1—C2—C31.26 (12)C9—C10—C11—O355.38 (13)
O2—C2—C3—C861.85 (16)O1—C1—N1—C4179.39 (12)
O3—C2—C3—C862.37 (16)C2—C1—N1—C40.33 (13)
C1—C2—C3—C8179.19 (12)C5—C4—N1—C1177.46 (12)
O2—C2—C3—C4121.37 (11)C3—C4—N1—C11.98 (14)
O3—C2—C3—C4114.41 (11)O3—C2—O2—C953.61 (13)
C1—C2—C3—C42.41 (12)C3—C2—O2—C9175.19 (9)
C8—C3—C4—C50.47 (18)C1—C2—O2—C972.13 (12)
C2—C3—C4—C5176.70 (11)C10—C9—O2—C254.98 (13)
C8—C3—C4—N1179.95 (10)O2—C2—O3—C1154.16 (13)
C2—C3—C4—N12.78 (13)C3—C2—O3—C11176.89 (9)
C3—C4—C5—C60.13 (18)C1—C2—O3—C1172.17 (12)
N1—C4—C5—C6179.52 (11)C10—C11—O3—C255.55 (13)
C4—C5—C6—C70.30 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.982.8435 (14)165
Symmetry code: (i) x+2, y, z+1.

Experimental details

(2a)(2b)(3a)(4a)
Crystal data
Chemical formulaC13H10N2OC13H9NOSC13H9NO2·H2OC11H11NO
Mr210.23227.27229.23173.21
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, PbcnOrthorhombic, PbcnTriclinic, P1
Temperature (K)120120120120
a, b, c (Å)14.6031 (6), 6.2725 (3), 22.6997 (12)11.9297 (5), 10.8294 (6), 16.6986 (9)19.2250 (7), 5.0503 (3), 22.1886 (14)9.7504 (3), 10.2281 (3), 14.0530 (5)
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9095.766 (2), 107.842 (2), 96.617 (2)
V3)2079.25 (17)2157.32 (19)2154.3 (2)1311.45 (7)
Z8886
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.090.270.100.09
Crystal size (mm)0.28 × 0.10 × 0.010.16 × 0.08 × 0.040.30 × 0.06 × 0.040.30 × 0.08 × 0.04
Data collection
DiffractometerBruker Nonius Roper CCD camera on κ-goniostat
diffractometer
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
Bruker Nonius Roper CCD camera on κ-goniostat
diffractometer
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Multi-scan
(SADABS; Sheldrick, 2007)
Multi-scan
(SADABS; Sheldrick, 2007)
Multi-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.976, 0.9990.958, 0.9890.970, 0.9960.975, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
15759, 1828, 1412 18202, 2463, 2024 13065, 1881, 1355 21390, 5972, 4122
Rint0.0850.0520.0850.059
(sin θ/λ)max1)0.5950.6490.5950.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.110, 1.05 0.054, 0.125, 1.09 0.052, 0.118, 1.06 0.079, 0.168, 1.08
No. of reflections1828246318815972
No. of parameters145145160358
No. of restraints0030
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.220.34, 0.420.24, 0.250.36, 0.31


(4b)(4c)(5)
Crystal data
Chemical formulaC13H13NO3C14H15NOC11H11NO3
Mr231.24213.27205.21
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Monoclinic, P21/c
Temperature (K)120120120
a, b, c (Å)10.6939 (2), 17.2595 (4), 12.7714 (3)5.3732 (1), 13.4962 (4), 15.8088 (5)9.5406 (2), 8.4295 (2), 12.4103 (3)
α, β, γ (°)90, 108.322 (1), 9095.389 (1), 98.498 (2), 101.201 (2)90, 101.956 (2), 90
V3)2237.73 (8)1103.32 (5)976.42 (4)
Z844
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.080.10
Crystal size (mm)0.36 × 0.30 × 0.180.85 × 0.08 × 0.060.50 × 0.40 × 0.36
Data collection
DiffractometerBruker Nonius Roper CCD camera on κ-goniostat
diffractometer
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
Bruker Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Multi-scan
(SADABS; Sheldrick, 2007)
Multi-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.966, 0.9830.935, 0.9950.951, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
26778, 5129, 3809 18503, 4997, 3778 12504, 2227, 1885
Rint0.0520.0590.032
(sin θ/λ)max1)0.6490.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.04 0.066, 0.135, 1.07 0.039, 0.103, 1.03
No. of reflections512949972227
No. of parameters313289136
No. of restraints000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.350.33, 0.240.25, 0.26

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Version 2.01; Farrugia, 1997) and Mercury (Version 1.4.2; Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected bond lengths (Å), angles (°) and torsion angles (°) from structures (2a), (2b), (3a), (4a)–(4c) and (5) top
(2a)(2b)(3a)(4a)a(4b)a(4c)a(5)
N1—C11.358 (3)1.366 (3)1.352 (3)1.360 (3)1.434 (1)1.361 (1)1.352 (2)
N1—C41.396 (3)1.405 (3)1.406 (3)1.393 (3)1.426 (3)1.398 (2)1.408 (2)
O1—C11.250 (2)1.240 (3)1.246 (3)1.234 (2)1.211 (1)1.235 (1)1.230 (2)
C1—C21.486 (3)1.488 (3)1.489 (3)1.510 (2)1.490 (8)1.508 (1)1.567 (2)
C2—C31.467 (3)1.463 (3)1.477 (3)1.473 (1)1.464 (3)1.485 (2)1.505 (2)
C3—C41.401 (3)1.401 (3)1.408 (3)1.406 (2)1.407 (1)1.408 (1)1.394 (2)
C2—C9/C2—O2b1.360 (3)1.352 (3)1.353 (3)1.352 (2)1.356 (1)1.354 (1)1.409 (2)
C9—C10/C2—O3b1.424 (3)1.432 (3)1.414 (3)1.503 (4)1.505 (1)1.510 (6)1.410 (1)
C1—N1—C4111.6 (2)111.2 (2)111.0 (2)111.9 (2)109.7 (3)111.8 (3)111.9 (1)
C1—C2—C9/C1—C2—O2b128.8 (2)128.5 (2)118.9 (2)124.9 (4)123.1 (3)124.3 (4)111.9 (1)
C2—C9—C10/C2—O2—C9b131.5 (2)134.1 (2)133.2 (2)122.0 (2)121.33 (1)123.2 (2)113.6 (1)
C1—C2—C9—C10/C1—C2—O2—C9b-2.6 (4)-2.6 (4)176.8 (2)-177 (3)179.6 (1)170 (2)-72.1 (1)
C2—C9—C10—X/C2—O2—C9—C10c0.3 (4)-3.3 (4)-0.4 (4)-55.0 (1)
Notes: (a) the reported values are averages of the parameters from the different crystallographically independent molecules in the asymmetric unit; (b) for structure (5), the second parameter is reported, while for the remaining six structures the first parameter is given; (c) in (2a), X = N2, in (2b) X = S1 and in (3a) X = O2, and the second parameter is reported for structure (5).
Intermolecular hydrogen-bonding interactions (Å, °) in (2a), (2b), (3a), (4a)–(4c) and (5) top
InteractionD—HH···AD···AD—H···ASymmetry code
(2a)N1—H1···O10.881.992.841 (2)162.4(-x + 1, -y, -z + 1)
(2b)N1—H1···O10.881.992.835 (2)160.4(-x + 1, -y + 1, -z + 1)
(3a)N1—H1···O10.881.952.828 (3)174.0(-x + 1, -y - 1, -z)
O101—H1W···O1010.87 (2)1.90 (2)2.763 (2)172 (3)(-x + 1/2, y + 1/2, z)
O101—H2W···O10.86 (2)2.00 (2)2.852 (2)173 (3)
(4a)N1—H1···O10.881.982.859 (3)174.2(-x + 2, -y, -z + 1)
N101—H101···O2010.881.962.837 (3)176.3
N201—H201···O1010.881.982.848 (3)169.5
(4c)N1—H1···O10.881.972.846 (2)170.5(-x + 3, -y + 1, -z)
N101—H101···O1010.881.982.850 (2)169.0(-x + 2, -y, -z + 1)
(5)N1—H1···O10.881.982.844 (1)165.4(-x + 2, -y, -z + 1)
Intramolecular hydrogen-bonding and weak interactions (Å, °) in (2a), (2b), (3a) and (4a)–(4c) top
StructureInteractionD—HH···AD···AD—H···A
(2a)N2—H2···O10.881.892.668 (2)147.3
(2b)S1···O12.792 (2)
(3a)C8—H8···O20.952.293.035 (3)135
(4a)C11—H11A···O10.982.182.970 (3)137
C111—H11G···O1010.982.192.953 (3)134
C211—H21D···O2010.982.162.961 (3)137
(4b)C5—H5···O20.952.272.845 (2)118
C105—H105···O1020.952.282.847 (2)118
C11—H11A···O10.982.272.879 (2)119
C111—H11D···O1010.982.322.869 (2)115
(4c)C14—H14B···O10.992.162.957 (3)136
C114—H11K···O1010.992.152.953 (3)137
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds