Download citation
Download citation
link to html
In each of the zinc(II) complexes bis­(acetyl­acetonato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)zinc(II), [Zn(C5H7O2)2(C12H8N2)], (I), and bis­(acetyl­acetonato-κ2O,O′)(2,2′-bipyridine-κ2N,N′)zinc(II), [Zn(C5H7O2)2(C10H8N2)], (II), the metal center has a distorted octa­hedral coordination geometry. Compound (I) has crystallographically imposed twofold symmetry, with Z′ = 0.5. The presence of a rigid phenanthroline group precludes intra­molecular hydrogen bonding, whereas the rather flexible bipyridyl ligand is twisted to form an intra­molecular C—H...O inter­action [the chelated bipyridyl ligand is nonplanar, with the pyridyl rings inclined at an angle of 13.4 (1)°]. The two metal complexes are linked by dissimilar C—H...O inter­actions into one-dimensional chains. The present study demonstrates the distinct effects of two commonly used ligands, viz. 1,10-phenanthroline and 2,2′-bipyridine, on the structures of metal complexes and their assembly.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108003818/gg3140sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108003818/gg3140Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108003818/gg3140IIsup3.hkl
Contains datablock II

CCDC references: 682801; 682802

Comment top

The ligands 1,10-phenanthroline (phen) and 2,2'-bipyridine (bipy) are widely used in the design of metallorganic complexes, primarily because of their ability to form stable chelates and to coordinate with various metals (Lever, 2003). From the structural viewpoint, these heterocycles differ in their chelating ability mainly as a result of the difference in the geometry and conformation of the free molecules (Reyzer & Brodbelt, 1999; Oresmaa et al., 2002). Therefore, it is interesting to compare the effects of phen and bipy on metal coordination and more importantly on supramolecular assembly. Towards this aim, ZnII(acetylacetonate) (acac) complexes with phen or bipy have been prepared as bis(acetylacetonato-κ2O,O')(1,10-phenanthroline-κ2N,N')zinc(II), (I) and bis(acetylacetonato-κ2O,O')(2,2'-bipyridine-κ2N,N')-zinc(II), (II). These compounds are metal-organic chemical vapor deposition precursors for thin film growth (Williams, 1989; Neelgund et al., 2007, and references therein). The structures and packing of (I) and (II) are compared.

The molecules of both (I) and (II), with all adducts in a cis geometry, possess C2 point group symmetry. However, only in (I), which contains the rigid phen group, is it retained in the crystal (Z' = 1/2), with the Zn atom located on the twofold axis. The asymmetric unit comprises one acac and one-half of the phen ligand (Fig. 1). The bipyridyl ring in (II) is substantially distorted, resulting in non-retention of molecular symmetry. Recent database analysis has led to the conclusion that the C2 point group symmetry is conserved in about 60% of the reported cases (Pidcock et al., 2003).

The Zn—O bonds in (I) and (II) (Figs. 1, 2) that are trans to the N atoms [2.0441 (12) Å in (I) and 2.0422 (12)/2.0513 (13) Å in (II)] are shorter than those trans to O atoms [2.0853 (13) Å in (I) and 2.0675 (13)/2.0891 (14) Å in (II)]. A similar but opposite trans effect is observed in six-coordinate cobalt complexes (Pasko et al., 2004). The ZnII atoms have a distorted octahedral coordination environment, ligated to two acac ligands through the O atoms and a phen [in (I)] or bipy ligand [in (II)] through the N atoms. The bite distances and angles are as follows: O···O = 2.862 (2) and 2.875 (2)/2.888 (2) Å, with N···N = 2.707 (2) and 2.658 (2) Å in (I) and (II), respectively; O—Zn—O = 87.74 (5)° and 88.78 (6)/88.44 (6)°; N—Zn—N = 76.10 (7)° and 74.21 (6)°, in the same order. The differences in O···O and N···N bite distances as well as O—Zn—O and N—Zn—N bite angles give rise to the distortion from the regular octahedral geometry; (II), containing bipy, is slightly more distorted. The distorted octahedral geometry observed here closely resembles that observed in the analogous [M(acac)2(phen)] complexes with MnII, NiII and VnIII (Stephens, 1977; Steblyanko et al., 1992; Kavitha, Panchanatheswaran, Elsegood & Dale, 2006), and likewise in the [M(acac)2(bipy)] complexes of CoII and VnIII (Steblyanko et al., 1988; Kameniček et al., 1996; Kavitha, Panchanatheswaran, Low & Glidewell, 2006). The octahedral arrangement is the predominant configuration among six-coordinate transition metal complexes formed by bidentate mixed ligands. A low-energy trigonal–prismatic configuration is rare, as seen in [Mn(acac)2(bipy)] (van Gorkum et al., 2005). Compound (I) is isostructural with the MnII and NiII complexes (Stephens, 1977; Steblyanko et al., 1992).

The six-membered chelate ring formed by ZnII and O atoms in (II) is planar. In (I), the ring is slightly puckered and the dihedral angle between the Zn1/O1/O2 and O1/O2/C7–C9 planes, describing the amount of puckering, is 16.8 (1)°. The five-membered chelate ring of ZnII and bipyridyl N atoms is considerably nonplanar, giving rise to an overall nonplanar structure. The flanking pyridyl rings are inclined at a dihedral angle of 13.4 (1)°; the N1—C5—C6—N2 torsion angle is 12.6 (2)°. The dihedral angle in (I) between the acac (O1/O2/C7–C11) and phen (N1/C1–C6) planes is 78.2 (1)°. In (II), the angle between the O1/O2/C11–C15 and O3/O4/C16–C20 acac planes is 73.7</span>(1)°, and those between the acac planes and the two pyridyl rings range from 68.6 (1) to 85.0<span style=" font-weight:600;">(1)°.

The interactions in (I) and (II) are listed in Tables 1 and 2. The prominent effects of 1,10-phenanthroline and 2,2'-bipyridine on metal complexes are observed in their assembly. There are no intramolecular interactions in (I), presumably because of the rigidity of the phen group, and partly as a result of the crystal-imposed symmetry, preventing the donor and acceptor groups coming closer and forming non-bonded interactions. In (II), the bipyridyl ring is twisted to accommodate a C10—H10···O3 intramolecular hydrogen bond. The salient feature of the packing in (I) is the intermolecular linkage into a linear chain along the c axis via C1—H1···O2i hydrogen bonds, as shown in Fig. 3 [symmetry code: (i) -x, -y + 1, -z + 1]. In (II), C4—H4···O1i interactions [symmetry code: (i) x - 1/2, -y + 3/2, -z] are formed by bipy CH atoms, linking molecules into one-dimensional zigzag chains along the a-axis direction (Fig. 4). In addition, a short contact, associated with a methyl group [C14—H14C···O4ii; H···O = 2.40 Å, C···O = 3.360 (3) Å and C—H···O = 176°; symmetry code: (ii) x + 1, y, z], is present in (II).

Related literature top

For related literature, see: Flack (1983); Gorkum et al. (2005); Kameniček et al. (1996); Kavitha et al. (2006a, 2006b); Lever (2003); Lippert & Truter (1960); Montgomery & Lingafelter (1963); Oresmaa et al. (2002); Pasko et al. (2004); Pidcock et al. (2003); Reyzer & Brodbelt (1999); Steblyanko et al. (1988, 1992); Stephens (1977); Williams (1989).

Experimental top

Compounds (I) and (II) were synthesized from their precursor hydrate complex, i.e. aqua-bis(acetylacetonato)zinc(II) (Lippert & Truter, 1960; Montgomery & Lingafelter, 1963). Acetylacetone (10 mmol, 1.02 ml) was added to zinc acetate dihydrate (C4H6O4Zn·2H2O) solution (5 mmol, 1.099 g; 30% ethanol–water mixture). Potassium hydroxide (KOH) solution (10 mmol, 0.56 g; 30% ethanol–water mixture) was added gradually to achieve a pH of 6–7. After stirring at room temperature for 1 h, the mixture yielded a precipitate, which was filtered-off and dried in vacuum. The resulting product was recrystallized from ethanol, giving a pure hydrate complex. To obtain (I) and (II) from the respective hydrates, an ethanol solution of the hydrate was prepared and added in 1:1 molar ratio to ethanol solutions of 1,10-phenanthroline [for (I)] and 2,2'-bipyridine [for (II)], respectively. After stirring at room temperature for 10 min in the case of (I) and 12 h for (II), the adducted compounds precipitated out. The precipitates thus formed were filtered off, repeatedly washed with water and dried in vacuum [yields 30 and 82%; melting points 523 and 503 K, for (I) and (II), respectively]. Single crystals of (I) and (II) suitable for X-ray diffraction were grown by slow evaporation of solutions in methanol.

Refinement top

All H atoms were refined using a riding model and fixed individual displacement parameters [Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C)]. The methyl groups were allowed to rotate but not to tip. C—H distances were set at 0.93 Å for aromatic and 0.96 Å for methyl atoms.

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Version 6.1; Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Diamond (Brandenburg & Berndt, 1999) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The ZnII coordination complex with 1,10-phenanthroline in (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The ZnII coordination complex with 2,2'-bipyridine in (II). Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 3] Fig. 3. Intermolecular association of metal complexes via C—H···O hydrogen bonds into a one-dimensional chain along the [001] direction in (I). Only relevant H atoms are shown. Dashed lines represent hydrogen bonds. [Symmetry code: (i) -x, -y + 1, -z + 1.]
[Figure 4] Fig. 4. The intermolecular C—H···O hydrogen bonded one-dimensional zigzag chain of metal- omplexes along the [100] direction in (II). Dashed lines represent inter- and intramolecular hydrogen bonds. [Symmetry code: (i) x - 1/2, -y + 3/2, -z.]
(I) bis(acetylacetonato-κ2O,O')(1,10-phenanthroline-κ2N,N')zinc(II) top
Crystal data top
[Zn(C5H7O2)2(C12H8N2)]Dx = 1.486 Mg m3
Mr = 443.79Melting point: 523 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5903 reflections
a = 15.5576 (11) Åθ = 2.4–27.9°
b = 10.1598 (7) ŵ = 1.27 mm1
c = 12.5487 (9) ÅT = 110 K
V = 1983.5 (2) Å3Block, light pink
Z = 40.29 × 0.25 × 0.19 mm
F(000) = 920
Data collection top
Bruker SMART CCD area-detector
diffractometer
1953 independent reflections
Radiation source: fine-focus sealed tube1730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω–scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1819
Tmin = 0.709, Tmax = 0.793k = 1212
14212 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.8556P]
where P = (Fo2 + 2Fc2)/3
1953 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Zn(C5H7O2)2(C12H8N2)]V = 1983.5 (2) Å3
Mr = 443.79Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 15.5576 (11) ŵ = 1.27 mm1
b = 10.1598 (7) ÅT = 110 K
c = 12.5487 (9) Å0.29 × 0.25 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1953 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1730 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.793Rint = 0.033
14212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.09Δρmax = 0.74 e Å3
1953 reflectionsΔρmin = 0.25 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric·Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = -0.91147(0.00027) m2 = -0.00741(0.00052) m3 = -0.41130(0.00061) D = -1.34391(0.00564) Atom d s d/s (d/s)**2 N1 * 0.0053 0.0014 3.801 14.451 C1 * -0.0128 0.0017 - 7.454 55.566 C2 * -0.0054 0.0018 - 2.919 8.523 C3 * 0.0138 0.0017 8.012 64.197 C4 * 0.0045 0.0017 2.638 6.961 C5 * 0.0024 0.0017 1.417 2.008 C6 * -0.0140 0.0019 - 7.324 53.640 Zn1 0.0174 0.0001 174.358 30400.648 ============ Sum((d/s)**2) for starred atoms 205.346 Chi-squared at 95% for 4 degrees of freedom: 9.49 The group of atoms deviates significantly from planarity

Plane 2 m1 = 0.00384(0.00064) m2 = 0.85261(0.00023) m3 = -0.52253(0.00037) D = 2.07648(0.00190) Atom d s d/s (d/s)**2 O1 * 0.0070 0.0012 5.727 32.799 O2 * -0.0031 0.0012 - 2.531 6.408 C7 * -0.0113 0.0018 - 6.402 40.990 C8 * -0.0145 0.0020 - 7.425 55.128 C9 * -0.0064 0.0019 - 3.430 11.764 C10 * 0.0078 0.0021 3.785 14.327 C11 * 0.0234 0.0022 10.614 112.654 Zn1 0.4440 0.0003 1686.246 2843427.000 ============ Sum((d/s)**2) for starred atoms 274.069 Chi-squared at 95% for 4 degrees of freedom: 9.49 The group of atoms deviates significantly from planarity

Plane 3 m1 = -0.28263(0.00058) m2 = -0.76004(0.00040) m3 = 0.58520(0.00052) D = -1.87221(0.00342) Atom d s d/s (d/s)**2 Zn1 * 0.0000 0.0002 0.000 0.000 O1 * 0.0000 0.0012 0.000 0.000 O2 * 0.0000 0.0012 0.000 0.000 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 4 m1 = 0.01284(0.00088) m2 = 0.85196(0.00030) m3 = -0.52344(0.00048) D = 2.08502(0.00262) Atom d s d/s (d/s)**2 O1 * 0.0020 0.0012 1.656 2.744 O2 * -0.0020 0.0012 - 1.623 2.635 C7 * -0.0049 0.0018 - 2.788 7.772 C8 * 0.0002 0.0020 0.109 0.012 C9 * 0.0053 0.0019 2.803 7.856 C10 0.0190 0.0021 9.225 85.104 C11 0.0454 0.0022 20.551 422.358 Zn1 0.4295 0.0003 1632.229 2664170.250 ============ Sum((d/s)**2) for starred atoms 21.020 Chi-squared at 95% for 2 degrees of freedom: 5.99 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 78.16 (0.05) 101.84 (0.05) 1 3 88.71 (0.04) 91.29 (0.04) 1 4 78.62 (0.06) 101.38 (0.06) 2 3 17.28 (0.05) 162.72 (0.05) 2 4 0.52 (0.06) 179.48 (0.06) 3 4 16.77 (0.06) 163.23 (0.06)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.48021 (3)0.25000.01284 (12)
O10.05346 (8)0.34994 (12)0.14503 (10)0.0178 (3)
O20.11849 (8)0.48645 (12)0.32751 (10)0.0169 (3)
N10.03582 (9)0.65039 (14)0.34828 (11)0.0139 (3)
C10.06970 (11)0.64879 (17)0.44490 (14)0.0154 (4)
H10.07970.56790.47730.019*
C20.09114 (12)0.76380 (17)0.50069 (14)0.0167 (4)
H20.11520.75880.56840.020*
C30.07621 (11)0.88340 (17)0.45421 (14)0.0159 (4)
H30.09090.96040.48980.019*
C40.03839 (11)0.88967 (17)0.35200 (14)0.0145 (4)
C50.01946 (11)0.76887 (17)0.30216 (14)0.0135 (4)
C60.01815 (12)1.01083 (17)0.29822 (17)0.0165 (4)
H60.03061.09060.33120.020*
C70.13281 (12)0.33416 (17)0.12771 (15)0.0177 (4)
C80.19959 (12)0.38166 (19)0.19155 (16)0.0217 (4)
H80.25550.36380.16970.026*
C90.18932 (12)0.45414 (18)0.28598 (16)0.0180 (4)
C100.15548 (14)0.2600 (2)0.02708 (17)0.0275 (5)
H10A0.11850.18500.02000.041*
H10B0.21420.23130.03080.041*
H10C0.14820.31680.03340.041*
C110.26920 (13)0.5003 (2)0.34317 (17)0.0284 (5)
H11A0.28180.58930.32270.043*
H11B0.31670.44450.32450.043*
H11C0.25990.49650.41870.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01327 (18)0.01065 (19)0.01459 (19)0.0000.00075 (10)0.000
O10.0161 (6)0.0152 (6)0.0222 (7)0.0012 (5)0.0022 (5)0.0035 (5)
O20.0158 (7)0.0183 (6)0.0165 (7)0.0003 (5)0.0005 (5)0.0004 (5)
N10.0142 (7)0.0131 (7)0.0143 (8)0.0003 (6)0.0014 (6)0.0006 (6)
C10.0157 (9)0.0142 (8)0.0163 (9)0.0003 (7)0.0009 (7)0.0018 (7)
C20.0160 (9)0.0190 (9)0.0151 (9)0.0007 (7)0.0020 (7)0.0003 (7)
C30.0156 (9)0.0150 (9)0.0172 (9)0.0029 (7)0.0008 (7)0.0039 (7)
C40.0118 (8)0.0150 (8)0.0165 (9)0.0002 (6)0.0025 (7)0.0003 (7)
C50.0120 (8)0.0129 (9)0.0155 (9)0.0005 (6)0.0020 (7)0.0003 (7)
C60.0172 (9)0.0100 (9)0.0223 (10)0.0024 (6)0.0050 (8)0.0033 (7)
C70.0199 (9)0.0112 (8)0.0221 (9)0.0006 (7)0.0054 (7)0.0016 (7)
C80.0145 (9)0.0242 (10)0.0263 (11)0.0013 (7)0.0047 (8)0.0019 (8)
C90.0158 (9)0.0161 (9)0.0221 (9)0.0002 (7)0.0004 (8)0.0049 (8)
C100.0255 (11)0.0242 (10)0.0329 (11)0.0040 (8)0.0098 (9)0.0099 (9)
C110.0191 (11)0.0375 (12)0.0286 (12)0.0014 (8)0.0033 (9)0.0044 (9)
Geometric parameters (Å, º) top
Zn1—O12.0441 (12)C5—C41.409 (2)
Zn1—O1i2.0441 (12)C5—C5i1.442 (4)
Zn1—O2i2.0853 (13)C6—C6i1.336 (4)
Zn1—O22.0853 (13)C6—H60.9300
Zn1—N12.1957 (14)C7—C101.512 (3)
Zn1—N1i2.1957 (14)C8—C71.398 (3)
O1—C71.264 (2)C8—H80.9300
N1—C11.322 (2)C9—O21.262 (2)
N1—C51.360 (2)C9—C81.404 (3)
C1—C21.402 (2)C10—H10A0.9600
C1—H10.9300C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C21.368 (2)C11—C91.510 (3)
C3—H30.9300C11—H11A0.9600
C4—C31.413 (2)C11—H11B0.9600
C4—C61.439 (3)C11—H11C0.9600
O1—Zn1—O1i99.30 (7)C5—C4—C6119.43 (17)
O1—Zn1—O2i94.52 (5)C3—C4—C6123.75 (16)
O1i—Zn1—O2i87.74 (5)N1—C5—C4122.91 (16)
O1—Zn1—O287.74 (5)N1—C5—C5i117.70 (10)
O1i—Zn1—O294.52 (5)C4—C5—C5i119.39 (10)
O2i—Zn1—O2176.51 (7)C6i—C6—C4121.17 (11)
O1—Zn1—N1167.18 (5)C6i—C6—H6119.4
O1i—Zn1—N192.56 (5)C4—C6—H6119.4
O2i—Zn1—N190.78 (5)O1—C7—C8125.71 (17)
O2—Zn1—N186.47 (5)O1—C7—C10115.77 (17)
O1—Zn1—N1i92.56 (5)C8—C7—C10118.50 (17)
O1i—Zn1—N1i167.18 (5)C7—C8—C9125.46 (17)
O2i—Zn1—N1i86.47 (5)C7—C8—H8117.3
O2—Zn1—N1i90.78 (5)C9—C8—H8117.3
N1—Zn1—N1i76.10 (7)O2—C9—C8125.73 (17)
C9—O2—Zn1124.84 (12)O2—C9—C11116.19 (17)
C7—O1—Zn1126.19 (12)C8—C9—C11118.06 (17)
C1—N1—C5118.41 (15)C7—C10—H10A109.5
C1—N1—Zn1127.34 (12)C7—C10—H10B109.5
C5—N1—Zn1114.24 (11)H10A—C10—H10B109.5
N1—C1—C2122.84 (16)C7—C10—H10C109.5
N1—C1—H1118.6H10A—C10—H10C109.5
C2—C1—H1118.6H10B—C10—H10C109.5
C3—C2—C1119.15 (17)C9—C11—H11A109.5
C3—C2—H2120.4C9—C11—H11B109.5
C1—C2—H2120.4H11A—C11—H11B109.5
C2—C3—C4119.86 (16)C9—C11—H11C109.5
C2—C3—H3120.1H11A—C11—H11C109.5
C4—C3—H3120.1H11B—C11—H11C109.5
C5—C4—C3116.81 (16)
C8—C9—O2—Zn115.3 (3)C5—C4—C3—C21.2 (3)
C11—C9—O2—Zn1163.63 (13)C6—C4—C3—C2178.22 (17)
C1—N1—C5—C41.1 (3)C5—C4—C6—C6i0.1 (3)
Zn1—N1—C5—C4179.53 (13)C3—C4—C6—C6i179.6 (2)
C1—N1—C5—C5i178.50 (18)C4—C3—C2—C11.0 (3)
Zn1—N1—C5—C5i0.8 (2)N1—C1—C2—C30.4 (3)
N1—C5—C4—C30.2 (3)O2—C9—C8—C70.4 (3)
C5i—C5—C4—C3179.81 (18)C11—C9—C8—C7178.50 (18)
N1—C5—C4—C6179.30 (16)Zn1—O1—C7—C814.3 (3)
C5i—C5—C4—C60.3 (3)Zn1—O1—C7—C10164.06 (12)
C5—N1—C1—C21.4 (3)C9—C8—C7—O10.4 (3)
Zn1—N1—C1—C2179.33 (13)C9—C8—C7—C10178.75 (19)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2ii0.932.583.259 (2)130
Symmetry code: (ii) x, y+1, z+1.
(II) bis(acetylacetonato-κ2O,O')(2,2'-bipyridine-κ2N,N')zinc(II) top
Crystal data top
[Zn(C5H7O2)2(C10H8N2)]Dx = 1.431 Mg m3
Mr = 419.77Melting point: 503 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8341 reflections
a = 8.1594 (3) Åθ = 2.6–28.0°
b = 15.3466 (6) ŵ = 1.29 mm1
c = 15.5582 (6) ÅT = 110 K
V = 1948.18 (13) Å3Plate, light pink
Z = 40.25 × 0.23 × 0.18 mm
F(000) = 872
Data collection top
Bruker SMART CCD area-detector
diffractometer
3822 independent reflections
Radiation source: fine-focus sealed tube3690 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω–scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 109
Tmin = 0.737, Tmax = 0.799k = 1818
15162 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0214P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3822 reflectionsΔρmax = 0.25 e Å3
248 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 1632 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.027 (8)
Crystal data top
[Zn(C5H7O2)2(C10H8N2)]V = 1948.18 (13) Å3
Mr = 419.77Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1594 (3) ŵ = 1.29 mm1
b = 15.3466 (6) ÅT = 110 K
c = 15.5582 (6) Å0.25 × 0.23 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3690 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.799Rint = 0.026
15162 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.053Δρmax = 0.25 e Å3
S = 1.10Δρmin = 0.17 e Å3
3822 reflectionsAbsolute structure: Flack (1983), 1632 Friedel pairs
248 parametersAbsolute structure parameter: 0.027 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric·Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = -0.38593(0.00057) m2 = -0.08513(0.00059) m3 = -0.91859(0.00022) D = -5.86683(0.00424) Atom d s d/s (d/s)**2 O1 * -0.0020 0.0014 - 1.408 1.983 O2 * 0.0033 0.0014 2.369 5.610 C11 * 0.0034 0.0020 1.663 2.765 C12 * -0.0143 0.0022 - 6.496 42.201 C13 * -0.0072 0.0021 - 3.487 12.162 C14 * 0.0095 0.0023 4.074 16.594 C15 * 0.0088 0.0025 3.552 12.618 Zn1 0.0019 0.0002 11.066 122.461 ============ Sum((d/s)**2) for starred atoms 93.933 Chi-squared at 95% for 4 degrees of freedom: 9.49 The group of atoms deviates significantly from planarity

Plane 2 m1 = -0.16062(0.00051) m2 = 0.93233(0.00021) m3 = -0.32398(0.00072) D = 6.62557(0.00511) Atom d s d/s (d/s)**2 O3 * -0.0288 0.0012 - 23.297 542.751 O4 * 0.0368 0.0014 26.623 708.771 C16 * -0.0064 0.0019 - 3.387 11.470 C17 * 0.0042 0.0022 1.950 3.802 C18 * 0.0039 0.0020 1.908 3.642 C19 * 0.0615 0.0023 26.618 708.511 C20 * -0.0654 0.0023 - 27.932 780.184 Zn1 0.1422 0.0002 897.189 804947.938 ============ Sum((d/s)**2) for starred atoms 2759.130 Chi-squared at 95% for 4 degrees of freedom: 9.49 The group of atoms deviates significantly from planarity

Plane 3 m1 = -0.38424(0.00040) m2 = -0.08653(0.00055) m3 = -0.91917(0.00019) D = -5.86983(0.00597) Atom d s d/s (d/s)**2 Zn1 * 0.0000 0.0002 - 0.237 0.056 O1 * -0.0003 0.0014 - 0.194 0.038 O2 * 0.0044 0.0014 3.091 9.556 C11 * 0.0078 0.0020 3.848 14.804 C12 * -0.0087 0.0022 - 3.945 15.563 C13 * -0.0033 0.0021 - 1.591 2.530 C14 0.0162 0.0023 6.937 48.120 C15 0.0143 0.0025 5.774 33.336 ============ Sum((d/s)**2) for starred atoms 42.547 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 4 m1 = -0.16753(0.00052) m2 = 0.95032(0.00014) m3 = -0.26236(0.00036) D = 7.08307(0.00478) Atom d s d/s (d/s)**2 Zn1 * 0.0007 0.0002 4.590 21.067 O3 * -0.0507 0.0012 - 41.087 1688.175 O4 * -0.0439 0.0014 - 31.739 1007.385 C16 * 0.0438 0.0019 23.304 543.063 C17 * 0.0672 0.0022 30.928 956.526 C18 * 0.0028 0.0020 1.414 2.001 C19 0.1897 0.0023 81.860 6701.137 C20 - 0.0396 0.0023 - 16.993 288.766 ============ Sum((d/s)**2) for starred atoms 4218.216 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 5 m1 = 0.92036(0.00031) m2 = 0.24082(0.00090) m3 = -0.30813(0.00071) D = 6.56954(0.00752) Atom d s d/s (d/s)**2 N1 * -0.0033 0.0015 - 2.161 4.669 C1 * 0.0047 0.0021 2.209 4.881 C2 * 0.0034 0.0021 1.599 2.555 C3 * -0.0091 0.0021 - 4.440 19.716 C4 * 0.0085 0.0022 3.895 15.174 C5 * -0.0001 0.0020 - 0.064 0.004 Zn1 0.1189 0.0002 507.731 257790.422 ============ Sum((d/s)**2) for starred atoms 46.999 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 6 m1 = 0.80433(0.00047) m2 = 0.36721(0.00073) m3 = -0.46713(0.00070) D = 7.28342(0.00901) Atom d s d/s (d/s)**2 N2 * -0.0054 0.0016 - 3.362 11.303 C6 * 0.0042 0.0019 2.202 4.850 C7 * 0.0027 0.0021 1.266 1.602 C8 * -0.0064 0.0021 - 3.010 9.062 C9 * 0.0019 0.0020 0.946 0.896 C10 * 0.0055 0.0021 2.677 7.168 Zn1 - 0.5814 0.0002 - 2662.391 7088325.000 ============ Sum((d/s)**2) for starred atoms 34.880 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 73.73 (0.05) 106.27 (0.05) 1 3 0.13 (0.04) 179.87 (0.04) 1 4 77.01 (0.04) 102.99 (0.04) 1 5 84.68 (0.05) 95.32 (0.05) 1 6 84.98 (0.05) 95.02 (0.05) 2 3 73.81 (0.05) 106.19 (0.05) 2 4 3.70 (0.05) 176.30 (0.05) 2 5 79.83 (0.06) 100.17 (0.06) 2 6 68.62 (0.05) 111.38 (0.05) 3 4 77.10 (0.03) 102.90 (0.03) 3 5 84.76 (0.05) 95.24 (0.05) 3 6 84.92 (0.04) 95.08 (0.04) 4 5 81.05 (0.06) 98.95 (0.06) 4 6 70.32 (0.05) 109.68 (0.05) 5 6 13.43 (0.06) 166.57 (0.06)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.71706 (3)0.608007 (13)0.196796 (14)0.01776 (7)
O10.95077 (16)0.60929 (10)0.14546 (9)0.0256 (3)
O20.73234 (18)0.47547 (8)0.20545 (9)0.0256 (3)
O30.80033 (17)0.64553 (8)0.31557 (8)0.0245 (3)
O40.48224 (17)0.59764 (9)0.24932 (9)0.0239 (3)
N10.61829 (19)0.60529 (11)0.06548 (9)0.0179 (3)
N20.6534 (2)0.74427 (10)0.16571 (10)0.0185 (4)
C10.6216 (3)0.53525 (13)0.01494 (13)0.0228 (5)
H10.66220.48330.03720.027*
C20.5671 (3)0.53631 (14)0.06934 (14)0.0253 (5)
H20.57110.48640.10310.030*
C30.5068 (2)0.61340 (15)0.10174 (13)0.0256 (4)
H30.46720.61580.15770.031*
C40.5052 (3)0.68679 (13)0.05126 (13)0.0230 (5)
H40.46770.73960.07300.028*
C50.5612 (3)0.68063 (12)0.03354 (13)0.0182 (4)
C60.5645 (2)0.75621 (12)0.09333 (12)0.0185 (4)
C70.4808 (3)0.83324 (13)0.07770 (14)0.0234 (5)
H70.42010.84010.02760.028*
C80.4886 (3)0.89930 (14)0.13723 (14)0.0285 (5)
H80.43200.95110.12790.034*
C90.5810 (2)0.88836 (13)0.21109 (13)0.0252 (5)
H90.58890.93240.25190.030*
C100.6612 (3)0.80991 (12)0.22214 (13)0.0216 (5)
H100.72390.80230.27150.026*
C111.0402 (3)0.54333 (15)0.13142 (13)0.0261 (5)
C120.9994 (3)0.45638 (15)0.14958 (14)0.0302 (5)
H121.07810.41440.13730.036*
C130.8522 (3)0.42739 (13)0.18417 (13)0.0234 (5)
C141.2072 (3)0.56189 (17)0.09250 (15)0.0414 (6)
H14A1.20170.61410.05870.062*
H14B1.23920.51400.05650.062*
H14C1.28620.56930.13760.062*
C150.8256 (3)0.33046 (13)0.19778 (16)0.0348 (6)
H15A0.80970.31910.25790.052*
H15B0.91980.29900.17770.052*
H15C0.73050.31200.16640.052*
C160.7133 (3)0.66214 (12)0.38092 (13)0.0277 (5)
C170.5441 (3)0.64982 (14)0.38782 (15)0.0333 (6)
H170.49630.66440.44010.040*
C180.4394 (3)0.61777 (13)0.32415 (14)0.0269 (5)
C190.8036 (4)0.70167 (15)0.45617 (14)0.0422 (7)
H19A0.89990.66790.46820.063*
H19B0.73350.70190.50570.063*
H19C0.83480.76030.44240.063*
C200.2601 (3)0.60405 (15)0.34555 (17)0.0424 (6)
H20A0.19340.62900.30110.064*
H20B0.23540.63170.39930.064*
H20C0.23800.54280.34980.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01943 (12)0.01687 (10)0.01699 (11)0.00006 (9)0.00118 (10)0.00150 (9)
O10.0202 (8)0.0293 (7)0.0271 (8)0.0021 (7)0.0019 (6)0.0052 (7)
O20.0262 (8)0.0201 (7)0.0305 (8)0.0018 (6)0.0072 (8)0.0047 (6)
O30.0286 (8)0.0274 (7)0.0174 (7)0.0017 (6)0.0021 (7)0.0006 (6)
O40.0221 (8)0.0236 (7)0.0261 (8)0.0007 (6)0.0037 (6)0.0001 (6)
N10.0169 (9)0.0190 (8)0.0179 (8)0.0015 (7)0.0003 (7)0.0006 (7)
N20.0195 (9)0.0185 (8)0.0176 (8)0.0006 (7)0.0005 (7)0.0011 (7)
C10.0216 (12)0.0212 (10)0.0256 (12)0.0004 (9)0.0023 (10)0.0020 (9)
C20.0204 (11)0.0305 (11)0.0250 (12)0.0004 (10)0.0000 (10)0.0110 (10)
C30.0233 (11)0.0372 (11)0.0163 (10)0.0003 (10)0.0034 (9)0.0012 (10)
C40.0198 (12)0.0273 (11)0.0218 (11)0.0015 (9)0.0001 (9)0.0032 (9)
C50.0139 (11)0.0210 (10)0.0199 (11)0.0001 (8)0.0029 (9)0.0007 (8)
C60.0165 (10)0.0192 (9)0.0198 (10)0.0011 (8)0.0027 (9)0.0013 (8)
C70.0213 (12)0.0231 (10)0.0260 (12)0.0025 (9)0.0050 (10)0.0034 (9)
C80.0255 (12)0.0205 (10)0.0394 (13)0.0063 (10)0.0002 (10)0.0010 (10)
C90.0286 (11)0.0174 (9)0.0297 (12)0.0003 (9)0.0046 (9)0.0038 (10)
C100.0250 (12)0.0195 (10)0.0202 (11)0.0019 (8)0.0001 (9)0.0004 (8)
C110.0182 (11)0.0436 (12)0.0164 (11)0.0016 (10)0.0022 (9)0.0018 (10)
C120.0245 (12)0.0356 (12)0.0304 (13)0.0116 (11)0.0022 (11)0.0012 (10)
C130.0307 (12)0.0240 (10)0.0156 (11)0.0038 (9)0.0048 (10)0.0019 (8)
C140.0211 (12)0.0672 (17)0.0358 (13)0.0036 (13)0.0054 (12)0.0072 (12)
C150.0461 (15)0.0226 (10)0.0358 (13)0.0076 (9)0.0051 (13)0.0053 (11)
C160.0459 (14)0.0164 (9)0.0208 (11)0.0011 (10)0.0019 (12)0.0041 (8)
C170.0462 (16)0.0288 (11)0.0250 (13)0.0013 (11)0.0149 (11)0.0048 (10)
C180.0322 (12)0.0134 (9)0.0351 (13)0.0038 (9)0.0111 (10)0.0017 (9)
C190.068 (2)0.0352 (12)0.0231 (12)0.0069 (13)0.0033 (13)0.0063 (10)
C200.0372 (14)0.0316 (11)0.0584 (15)0.0013 (12)0.0236 (12)0.0040 (11)
Geometric parameters (Å, º) top
Zn1—O12.0675 (13)C8—C91.385 (3)
Zn1—O22.0422 (12)C9—C101.381 (3)
Zn1—O32.0513 (13)C9—H90.9300
Zn1—O42.0891 (14)C10—H100.9300
Zn1—N12.1967 (15)C11—C121.404 (3)
Zn1—N22.2083 (15)C11—C141.518 (3)
O1—C111.267 (2)C12—C131.389 (3)
O2—C131.269 (2)C12—H120.9300
O3—C161.266 (2)C13—C151.518 (3)
O4—C181.254 (2)C14—H14A0.9600
N1—C11.332 (2)C14—H14B0.9600
N1—C51.342 (2)C14—H14C0.9600
N2—C61.352 (2)C15—H15A0.9600
N2—C101.338 (2)C15—H15B0.9600
C1—C21.385 (3)C15—H15C0.9600
C1—H10.9300C16—C171.397 (3)
C2—C31.377 (3)C16—C191.511 (3)
C2—H20.9300C17—C181.398 (3)
C3—C41.373 (3)C17—H170.9300
C3—H30.9300C19—H19A0.9600
C4—C51.399 (3)C19—H19B0.9600
C4—H40.9300C19—H19C0.9600
C5—C61.487 (3)C18—C201.515 (3)
C6—C71.387 (3)C20—H20A0.9600
C7—C81.375 (3)C20—H20B0.9600
C7—H70.9300C20—H20C0.9600
C8—H80.9300
O1—Zn1—O288.78 (6)C13—C15—H15A109.5
O1—Zn1—O392.28 (6)C13—C15—H15B109.5
O1—Zn1—O4176.16 (6)H15A—C15—H15B109.5
O2—Zn1—O3101.54 (6)C13—C15—H15C109.5
O2—Zn1—O487.38 (6)H15A—C15—H15C109.5
O3—Zn1—O488.44 (6)H15B—C15—H15C109.5
O1—Zn1—N188.81 (6)C8—C7—C6119.2 (2)
O2—Zn1—N193.72 (6)C8—C7—H7120.4
O3—Zn1—N1164.72 (5)C6—C7—H7120.4
O4—Zn1—N191.48 (6)C3—C4—C5118.73 (19)
O1—Zn1—N297.08 (6)C3—C4—H4120.6
O2—Zn1—N2166.39 (6)C5—C4—H4120.6
O3—Zn1—N290.54 (5)N2—C10—C9123.53 (19)
O4—Zn1—N286.68 (6)N2—C10—H10118.2
N1—Zn1—N274.21 (6)C9—C10—H10118.2
C11—O1—Zn1126.16 (13)C7—C8—C9119.66 (19)
C13—O2—Zn1127.51 (13)C7—C8—H8120.2
C16—O3—Zn1126.44 (14)C9—C8—H8120.2
C18—O4—Zn1126.88 (14)O1—C11—C12126.1 (2)
C10—N2—C6118.03 (17)O1—C11—C14115.83 (19)
C10—N2—Zn1123.93 (13)C12—C11—C14118.1 (2)
C6—N2—Zn1115.91 (12)N1—C1—C2122.89 (19)
C1—N1—C5118.93 (17)N1—C1—H1118.6
C1—N1—Zn1123.84 (14)C2—C1—H1118.6
C5—N1—Zn1117.09 (13)O4—C18—C17125.0 (2)
N2—C6—C7121.72 (18)O4—C18—C20116.0 (2)
N2—C6—C5115.13 (17)C17—C18—C20118.9 (2)
C7—C6—C5123.14 (19)C16—C17—C18126.7 (2)
N1—C5—C4121.38 (18)C16—C17—H17116.7
N1—C5—C6115.74 (17)C18—C17—H17116.7
C4—C5—C6122.87 (18)C11—C14—H14A109.5
C4—C3—C2119.92 (19)C11—C14—H14B109.5
C4—C3—H3120.0H14A—C14—H14B109.5
C2—C3—H3120.0C11—C14—H14C109.5
O3—C16—C17126.1 (2)H14A—C14—H14C109.5
O3—C16—C19115.4 (2)H14B—C14—H14C109.5
C17—C16—C19118.5 (2)C16—C19—H19A109.5
C10—C9—C8117.84 (19)C16—C19—H19B109.5
C10—C9—H9121.1H19A—C19—H19B109.5
C8—C9—H9121.1C16—C19—H19C109.5
C13—C12—C11125.9 (2)H19A—C19—H19C109.5
C13—C12—H12117.0H19B—C19—H19C109.5
C11—C12—H12117.0C18—C20—H20A109.5
O2—C13—C12125.53 (19)C18—C20—H20B109.5
O2—C13—C15115.0 (2)H20A—C20—H20B109.5
C12—C13—C15119.43 (19)C18—C20—H20C109.5
C3—C2—C1118.13 (19)H20A—C20—H20C109.5
C3—C2—H2120.9H20B—C20—H20C109.5
C1—C2—H2120.9
C10—N2—C6—C71.1 (3)C2—C3—C4—C51.8 (3)
Zn1—N2—C6—C7163.03 (16)N1—C5—C4—C31.1 (3)
C10—N2—C6—C5179.97 (17)C6—C5—C4—C3179.97 (19)
Zn1—N2—C6—C515.9 (2)C6—N2—C10—C91.2 (3)
C1—N1—C5—C40.1 (3)Zn1—N2—C10—C9161.52 (16)
Zn1—N1—C5—C4176.01 (15)C8—C9—C10—N20.3 (3)
C1—N1—C5—C6178.88 (18)C6—C7—C8—C90.8 (3)
Zn1—N1—C5—C63.0 (2)C10—C9—C8—C70.7 (3)
N2—C6—C5—N112.6 (2)Zn1—O1—C11—C121.4 (3)
C7—C6—C5—N1166.34 (19)Zn1—O1—C11—C14179.55 (13)
N2—C6—C5—C4166.40 (19)C13—C12—C11—O11.7 (4)
C7—C6—C5—C414.7 (3)C13—C12—C11—C14179.2 (2)
Zn1—O3—C16—C176.9 (3)C5—N1—C1—C20.6 (3)
Zn1—O3—C16—C19170.93 (13)Zn1—N1—C1—C2176.21 (15)
Zn1—O2—C13—C120.4 (3)C3—C2—C1—N10.1 (3)
Zn1—O2—C13—C15179.53 (13)Zn1—O4—C18—C171.4 (3)
C11—C12—C13—O20.7 (4)Zn1—O4—C18—C20179.70 (13)
C11—C12—C13—C15178.4 (2)O3—C16—C17—C180.6 (4)
C4—C3—C2—C11.4 (3)C19—C16—C17—C18177.2 (2)
N2—C6—C7—C80.1 (3)O4—C18—C17—C162.4 (4)
C5—C6—C7—C8178.99 (19)C20—C18—C17—C16176.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O30.932.583.125 (2)118
C4—H4···O1i0.932.583.484 (3)164
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn(C5H7O2)2(C12H8N2)][Zn(C5H7O2)2(C10H8N2)]
Mr443.79419.77
Crystal system, space groupOrthorhombic, PbcnOrthorhombic, P212121
Temperature (K)110110
a, b, c (Å)15.5576 (11), 10.1598 (7), 12.5487 (9)8.1594 (3), 15.3466 (6), 15.5582 (6)
V3)1983.5 (2)1948.18 (13)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.271.29
Crystal size (mm)0.29 × 0.25 × 0.190.25 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.709, 0.7930.737, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
14212, 1953, 1730 15162, 3822, 3690
Rint0.0330.026
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.09 0.022, 0.053, 1.10
No. of reflections19533822
No. of parameters134248
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.250.25, 0.17
Absolute structure?Flack (1983), 1632 Friedel pairs
Absolute structure parameter?0.027 (8)

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXTL (Version 6.1; Sheldrick, 2008), Diamond (Brandenburg & Berndt, 1999) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.583.259 (2)130
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O30.932.583.125 (2)118
C4—H4···O1i0.932.583.484 (3)164
Symmetry code: (i) x1/2, y+3/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds