Download citation
Download citation
link to html
Three new palladium complexes containing a difunctional P,N-chelate, namely tris­(chloro­{[1-methyl-1-(6-methyl-2-pyridyl)ethoxy]diphenylphospine-κ2N,P}methyl­palladium(II)chloro­form solvate, 3[Pd(CH3)Cl(C21H22NOP)]·CHCl3, (III), dichloro­[2-(2,6-dimethyl­phen­yl)-6-(diphenyl­phosphinometh­yl)­pyridine-κ2N,P]palladium(II), [PdCl2(C26H24NP)], (IV), and chloro­[2-(2,6-dimethyl­phen­yl)-6-(diphenyl­phos­phino­meth­yl)pyridine-κ2N,P]methyl­palladium(II), [Pd(CH3)Cl(C26H24NP)], (V), are reported. Geometric data and the conformations of the ligands around the metal centers, as well as slight distortions of the Pd coordination environments from idealized square-planar geometry, are discussed and compared with the situations in related compounds. Non-conventional hydrogen-bond inter­actions (C—H...Cl) have been found in all three complexes. Compound (III) is the first six-membered chloro–meth­yl–phosphinite P,N-type PdII complex to be structurally characterized.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106001296/gg1299sup1.cif
Contains datablocks III, IV, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106001296/gg1299IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106001296/gg1299IVsup3.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106001296/gg1299Vsup4.hkl
Contains datablock V

CCDC references: 603175; 603176; 603177

Comment top

Ligands containing at least two chemically different donor functions and able to chelate a metal center are of considerable interest since they provide a way to influence selectively the bonding and/or reactivity of the other ligands, in particular those in trans positions (Braunstein & Naud, 2001). This concept as been successfully applied to ligands containing a P,O or a P,N donor set (Braunstein & Naud, 2001; Slone et al., 1999).

Phosphinite- and phosphinopyridine ligands find widespread applications in the coordination chemistry of the transition metals (Newcome or Newkome, 1993, and references therein; Chen et al., 2003a) and in homogeneous catalysis (Agbossou et al., 1998, and references therein; Espinet & Soulantica, 1999, and references therein; Bianchini & Meli, 2002, and references therein; Chen et al., 2003b; Braunstein, 2004, and references therein; Speiser et al., 2004a,b; Speiser et al., 2004). We have recently reported the synthesis of the ligands 2-ethyl-6-methyl-[1'-methyl-1'-oxy(diphenylphosphino)]pyridine, (I) (Speiser et al., 2004), and 2-(2,6-dimethylphenyl)-6-[(diphenylphosphanyl)methyl]pyridine, (II) (Speiser et al., 2004a), and investigated the catalytic properties of their [NiCl2(P,N)] complexes for ethylene oligomerization. Owing to the paramagnetism of these NiII compounds, it was felt desirable to prepare analogous PdII complexes amenable to NMR studies in solution. For comparison, we have selected complexes of the type [PdCl2(P,N)] for which the Pd—Cl distances should provide direct evidence of the respective trans influences of the P and N donor functions, and of the type [PdCl(CH3)(P,N)], since the stoichiometric or catalytic insertion of small molecules (such as CO or olefins) into the Pd—CH3 σ bond is very much influenced by the nature of the donor group situated in the trans position. The new Pd complexes (III)–(V) have been synthesized, and their structural features are analyzed and, in the case of (III), compared with the Ni analog (Speiser et al., 2004).

Despite the relevance of Pd complexes featuring these types of P,N ligands in the catalytic alternating copolymerization of olefins and CO as well as in other C—C coupling reactions, (III) is the first six-membered chloromethyl–phosphinite P,N-type palladium(II) complex to be structurally characterized. Other groups have reported six-membered chloromethyl–Pd complexes with iminophosphine (van den Beuken et al., 1998; Song et al., 2002; Reddy et al., 2002; Spek, 2003) and l-(dimethylamino)-8(diphenylphosphino)naphthalene ligands (Dekker et al., 1992). Recently, Chen et al. (2003b) reported the first structurally characterized five-membered chloromethyl–phosphinopyridine-based PdII complex. Other five-membered chloromethyl complexes containing 2-(2-pyridyl)phosphaalkenes (van der Sluis et al., 1997), 2-(2-pyridyl)phospholes (Sauthier et al., 2002), iminophosphines (Coleman et al., 2001; Reddy et al., 2001, 2002; Doherty et al., 2002; Daugulis & Brookhart, 2002) and phosphino-oxazoline (Apfelbacher et al., 2003) P,N ligands have also been reported.

The structure of (III) shows that the asymmetric unit contains three very similar but crystallographically different molecules (AC), with a chloroform molecule. Although the geometric data are as expected for the three molecules (Table 1), examination reveals (Fig. 1) that the P,N chelate in molecules A and C has approximately the same conformation, whereas in B the pyridine ring has a different orientation with respect to the Pd—N axis. This is confirmed by the torsion-angle values, which are similar for A and C [Cl1—Pd1—N1—C9 = −55.9 (3)° and Cl3—Pd3—N3—C53 = −61.6 (3)°, respectively], whereas for B the Cl2—Pd2—N2—C31 angle is 51.3 (3)°. The symmetry-equivalent asymmetric units contain enantiomers of A, B and C with opposite torsion angles.

Analysis of molecule A shows a folding of the ligand along the Pd1···C2 hinge, creating a roof-like conformation, which generates a niche limited by a phenyl group (Fig. 2). This conformation is similar to the [NiCl2(P,N)] analog (Speiser et al., 2004) for which the Ni coordination geometry was slightly distorted square-planar. The Pd atom is almost in the mean plane passing through atoms Cl1, C1, N1 and P1 [the deviation of Pd is 0.0390 (3) Å] and the sum of the bond angles around the Pd atom is 360.56°. Although the distance from the metal to the corresponding plane in the analogous Ni complex [0.03 (1) Å] is similar to that for Pd, the sum of the bond angles around the Ni center is larger (365.22°), indicating a slight distortion toward tetrahedral for the Ni coordination (Speiser et al., 2004). Molecules B and C are almost identical to A and therefore will not be discussed further.

Within the ligands of complexes (IV) (Fig. 3) and (V) (Fig. 4) the geometric data (Tables 2 and 3) are similar and in the expected ranges; the only marked difference between these two structures concerns the Pd—N distance, which is larger in (V) [2.286 (3) Å] than in (IV) [2.098 (2) Å]. The aromatic substituent at the 6-position is oriented nearly perpendicularly to the pyridine ring, as evidenced by the torsion angle N1—C6—C7—C12 [70.3 (3)° for (IV) and 78.9 (4)° for (V)].

In (IV), the Pd—Cl bond distance trans to the P atom is longer than that trans to N, which is consistent with the respective trans influences of the P and N donor atoms (Hartley, 1973). The methyl group in (III) and (V) is cis to the P atom, which is in agreement with the fact that the donor groups with the largest trans influence avoid being mutually trans to one another. This is consistent with complexes of the type [PdCl(CH3)(P,N)] (Apfelbacher et al., 2003; Chen et al., 2003b; Coleman et al., 2001; Daugulis & Brookhart, 2002).

The P,N chelate bite angle [81.74 (6)° for (IV) and 78.91 (8)° for (V)] is in accordance with that of other five-membered P,N chelates [82.5 (2)°; Perera et al., 1995]. As expected on increasing in size from this five-membered ring chelate to a six-membered ring as in (III), the chelate bite angle increases by 4–5° [84.0 (1)° for A in (III)].

Although no classical intermolecular hydrogen bonds were detected in (III)–(V), significant non-conventional C—H···Cl hydrogen bonds are present. They constitute structure directing elements. Compound (III) has an interaction involving the Cl atom on the Pd metal center of molecule A and a phenyl H atom of a neighboring A molecule (C13—H13···Cl1i; symmetry codes as in Table 4; Fig. 5). Another interaction of this type is observed between the H atom of the chloroform solvent molecule and a Cl atom from the palladium metal center of molecule B (C67—H67···Cl2ii). Furthermore, molecules A and C have an intramolecular interaction between a phenyl H atom and the O atom adjacent to the P atom (C22—H22···O1 and C66—H66···O3), and finally in molecule B an interaction involves the H atoms of the pyridine methyl group and the Pd-bound Cl atom (C32—H32···Cl2). In (IV), an interaction exists between a Pd-bound Cl atom and a pyridine H atom (C4—H4···Cl2ii) (Fig. 6). A similar interaction occurs in (V) involving a phenyl H atom (C23—H23···Cl1ii; Fig. 7). In both cases, these interactions result in infinite one-dimensional chains of molecules along (100).

From a packing viewpoint, the crystal structure of (III) can be described in term of pseudo-slabs stacked along (001). These slabs, interconnected by van der Waals contacts, are constituted by a succession of A, B and C moieties, as defined above (Fig. 1) with molecules of CHCl3 located between these slabs (Fig. 8). For (IV) and (V), the bc and ac projections show that the molecular moieties are placed along pseudo-slabs, with these slabs connected via van der Waals contacts, but specifically through the organic part of the corresponding molecules (see Fig. 8).

Experimental top

All solvents were dried and distilled under N2 using common techniques unless otherwise stated. [PdCl(CH3)(COD)] and [PdCl2(COD)] (COD is 1,5-cyclo-octadiene, C8H12) were prepared according to the literature methods (Rulke et al., 1993; Ladipo & Anderson, 1994; Chatt et al., 1957). The 1H and 31P{H} NMR spectra were recorded at 300.13 and 76.0 MHz, respectively, on an FT Bruker AC300, Avance 300 instrument. Ligands (I) and (II) were prepared according to reported procedures (Speiser et al., 2004) and (Speiser et al., 2004a). Compound (III) was synthesized by addition of solid [PdCl(CH3)(COD)] (0.391 g, 1.475 mmol) to a solution of (I) (0.545 g, 1.623 mmol) in CH2Cl2 (20 ml), and the yellow mixture was stirred for 2 h at room temperature. The solvent was evaporated under reduced pressure and the white residue was washed with diethyl ether (2 × 10 ml) and pentane (1 × 10 ml). The product was dried under vacuum overnight, and (III) was obtained as a white solid. Crystals of (III) suitable for X-ray diffraction were obtained by slow diffusion of pentane into a CHCl3 solution of (III) (yield 0.442 g, 0.897 mmol, 61%). Compound (IV) was obtained using a procedure similar to that described above for (III), using (II) (0.615 g, 1.612 mmol) and [PdCl2(COD)] (0.460 g, 1.612 mmol), and was obtained as a yellow–white solid. Crystals of (IV) suitable for X-ray diffraction were obtained by slow diffusion of pentane into a CH2Cl2 solution of (IV) (yield 0.595 g, 1.064 mmol, 66%). Compound (V) was obtained using a procedure similar to that described above for (III), using (II) (0.588 g, 1.541 mmol) and [PdCl(CH3)(COD)] (0.408 g, 1.541 mmol), and was obtained as a yellow–white solid. Crystals of (V) suitable for X-ray diffraction were obtained by slow diffusion of pentane into a CH2Cl2 solution of this complex (yield 0.463 g, 0.859 mmol, 56%).

Refinement top

The rotational orientations of the methyl groups were refined by the circular Fourier method available in SHELXL97 (Sheldrick, 1997). All H atoms were treated as riding with C—H and N—H distances ranging from 0.95 to 1.00 Å and Uiso(H) values equal to 1.5 (methyl H atoms) or 1.2 (all other H atoms) times Ueq of the parent atom.

Computing details top

For all compounds, data collection: Collect (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON 98 (Spek, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
Figure 1 The P,N chelate conformations of molecules AC in (III), with the atomic labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms and CH groups from phenyl rings have been omitted for clarity.

Figure 2 A view of the roof-like conformation, formed by the ligand folding along the Pd1···C2 hinge, in the structure of molecule A of (III). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 3 A view of (IV), with the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 4 A view of (V), with the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 5 Part of the crystal structure of (III), showing the C—H···Cl interactions (view down the a axis). [Symmetry code as in Table 4.]

Figure 6 Part of the crystal structure of (IV), showing the C—H···Cl interactions (view down the c axis). [Symmetry code as in Table 4.]

Figure 7 Part of the crystal structure of (V), showing the C—H···Cl interaction (view down the c axis). [Symmetry code as in Table 4.]

Figure 8 A view of the packing for complexes (III) (view down the a axis), (IV) (view down the a axis) and (V) (view down the b axis).
(III) tris{chloro[6-(1-diphenylphosphinoxy-1-methylethyl)-2- ethylpyridine-κ2N,P]methylpalladium(II)} chloroform solvate top
Crystal data top
3[Pd(CH3)Cl(C21H22NOP)]·CHCl3F(000) = 3232
Mr = 1596.12Dx = 1.526 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 53191 reflections
a = 14.628 (1) Åθ = 1.0–30.0°
b = 28.573 (5) ŵ = 1.11 mm1
c = 17.324 (2) ÅT = 173 K
β = 106.39 (5)°Prism, yellow
V = 6947 (2) Å30.13 × 0.10 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
13997 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 30.0°, θmin = 1.4°
ϕ or ω scans?h = 2020
58356 measured reflectionsk = 4037
20304 independent reflectionsl = 2024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
20304 reflections(Δ/σ)max < 0.001
766 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
3[Pd(CH3)Cl(C21H22NOP)]·CHCl3V = 6947 (2) Å3
Mr = 1596.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.628 (1) ŵ = 1.11 mm1
b = 28.573 (5) ÅT = 173 K
c = 17.324 (2) Å0.13 × 0.10 × 0.08 mm
β = 106.39 (5)°
Data collection top
Nonius KappaCCD
diffractometer
13997 reflections with I > 2σ(I)
58356 measured reflectionsRint = 0.067
20304 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.09Δρmax = 0.69 e Å3
20304 reflectionsΔρmin = 0.88 e Å3
766 parameters
Special details top

Experimental. The 1H and 31P{H} NMR spectra were recorded at 300.13 and 76.0 MHz, respectively, on an FT Bruker AC300, Avance 300 instrument.

Complex (III) 1H NMR (CDCl3) d: 0.88 (s, 3H, Pd—CH3), 2.35 (s, 6H, C(CH3)2), 3.15 (s, 3H, py-CH3), 7.08–7.94 (13H, aromatics); 31P{1H} NMR (CDCl3) d: 115.1 (s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.669851 (18)0.147149 (9)0.524282 (15)0.02158 (7)
Pd20.160306 (19)0.174448 (9)0.461121 (15)0.02309 (7)
Pd30.58016 (2)0.065989 (9)0.119917 (15)0.02473 (7)
Cl10.64261 (7)0.17960 (3)0.64262 (6)0.0374 (2)
Cl20.17972 (7)0.14661 (3)0.33570 (5)0.0341 (2)
Cl30.41905 (7)0.09301 (4)0.16601 (7)0.0485 (3)
Cl41.00402 (9)0.04814 (5)0.17843 (7)0.0642 (4)
Cl50.96332 (8)0.02422 (4)0.32661 (6)0.0426 (3)
Cl61.14485 (9)0.00041 (5)0.30325 (8)0.0662 (4)
P10.67942 (6)0.12422 (3)0.40771 (5)0.02135 (19)
P20.15468 (7)0.19846 (3)0.57863 (5)0.0235 (2)
P30.71737 (7)0.03546 (3)0.05830 (5)0.0236 (2)
O10.57421 (17)0.12312 (8)0.34547 (13)0.0262 (5)
O20.25818 (16)0.21736 (8)0.62816 (13)0.0257 (5)
O30.73630 (18)0.04390 (9)0.03721 (13)0.0300 (6)
N10.5488 (2)0.09807 (10)0.50089 (16)0.0251 (7)
N20.2492 (2)0.23671 (10)0.46537 (17)0.0275 (7)
N30.6284 (2)0.12531 (10)0.03750 (16)0.0246 (6)
C10.7897 (3)0.18681 (14)0.5415 (2)0.0343 (9)
H1A0.83330.17180.51530.051*
H1B0.82110.18980.59930.051*
H1C0.77250.21800.51830.051*
C20.4832 (2)0.13152 (12)0.3646 (2)0.0252 (8)
C30.4746 (3)0.18301 (13)0.3861 (2)0.0338 (9)
H3A0.48060.20280.34160.051*
H3B0.52530.19080.43490.051*
H3C0.41250.18830.39550.051*
C40.4107 (3)0.12050 (14)0.2845 (2)0.0376 (10)
H4A0.41970.14200.24320.056*
H4B0.34610.12420.28980.056*
H4C0.41960.08820.26890.056*
C50.4738 (2)0.10003 (12)0.4325 (2)0.0260 (8)
C60.3919 (3)0.07466 (14)0.4272 (2)0.0357 (9)
H60.33970.07660.38000.043*
C70.3860 (3)0.04652 (15)0.4901 (3)0.0428 (11)
H70.32880.03010.48770.051*
C80.4639 (3)0.04248 (14)0.5564 (2)0.0394 (10)
H80.46180.02230.59950.047*
C90.5452 (3)0.06797 (13)0.5598 (2)0.0325 (9)
C100.6331 (3)0.06242 (14)0.6298 (2)0.0432 (11)
H10A0.68930.07160.61330.065*
H10B0.63930.02970.64730.065*
H10C0.62780.08240.67430.065*
C110.7440 (2)0.15791 (12)0.35142 (19)0.0231 (7)
C120.7086 (3)0.20129 (13)0.3198 (2)0.0370 (10)
H120.64870.21170.32450.044*
C130.7596 (3)0.22929 (14)0.2816 (2)0.0427 (11)
H130.73440.25870.26020.051*
C140.8459 (3)0.21504 (14)0.2745 (2)0.0399 (10)
H140.88080.23450.24840.048*
C150.8820 (3)0.17246 (15)0.3053 (2)0.0406 (10)
H150.94190.16230.30040.049*
C160.8313 (3)0.14426 (13)0.3434 (2)0.0334 (9)
H160.85710.11490.36460.040*
C170.7232 (2)0.06530 (11)0.40657 (19)0.0208 (7)
C180.8035 (3)0.05100 (12)0.4664 (2)0.0275 (8)
H180.83280.07180.50900.033*
C190.8411 (3)0.00687 (13)0.4643 (2)0.0330 (9)
H190.89650.00250.50500.040*
C200.7977 (3)0.02372 (13)0.4028 (2)0.0343 (9)
H200.82360.05410.40140.041*
C210.7173 (3)0.01034 (12)0.3437 (2)0.0313 (9)
H210.68770.03160.30190.038*
C220.6796 (3)0.03414 (13)0.3450 (2)0.0277 (8)
H220.62430.04340.30410.033*
C230.0773 (3)0.11694 (12)0.4633 (2)0.0332 (9)
H23A0.07070.11280.51770.050*
H23B0.10730.08910.44820.050*
H23C0.01420.12140.42520.050*
C240.3461 (2)0.21441 (13)0.6022 (2)0.0276 (8)
C250.4183 (3)0.23693 (15)0.6731 (2)0.0384 (10)
H25A0.42420.21810.72150.058*
H25B0.39690.26850.68150.058*
H25C0.48030.23870.66200.058*
C260.3735 (3)0.16361 (13)0.5931 (2)0.0335 (9)
H26A0.38090.14700.64400.050*
H26B0.43380.16270.57890.050*
H26C0.32350.14850.55050.050*
C270.3331 (3)0.24196 (12)0.5246 (2)0.0277 (8)
C280.4029 (3)0.27177 (14)0.5142 (2)0.0371 (10)
H280.46180.27450.55490.045*
C290.3868 (3)0.29739 (14)0.4449 (3)0.0427 (10)
H290.43570.31680.43620.051*
C300.3002 (3)0.29498 (13)0.3882 (2)0.0391 (10)
H300.28770.31370.34100.047*
C310.2304 (3)0.26503 (12)0.4000 (2)0.0313 (9)
C320.1315 (3)0.26434 (14)0.3442 (2)0.0386 (10)
H32A0.12220.23570.31190.058*
H32B0.12210.29170.30870.058*
H32C0.08530.26520.37570.058*
C330.0759 (2)0.24791 (12)0.5744 (2)0.0244 (8)
C340.0061 (3)0.25169 (13)0.5103 (2)0.0327 (9)
H340.01770.22970.46750.039*
C350.0708 (3)0.28730 (14)0.5082 (3)0.0421 (11)
H350.12720.28940.46470.050*
C360.0529 (3)0.31979 (14)0.5699 (3)0.0422 (11)
H360.09700.34440.56840.051*
C370.0283 (3)0.31664 (14)0.6333 (2)0.0387 (10)
H370.04010.33910.67530.046*
C380.0930 (3)0.28090 (13)0.6361 (2)0.0304 (8)
H380.14890.27880.68010.036*
C390.1252 (3)0.15918 (12)0.6501 (2)0.0253 (8)
C400.0298 (3)0.15232 (15)0.6459 (2)0.0401 (10)
H400.01810.17030.60960.048*
C410.0047 (3)0.11922 (16)0.6947 (3)0.0466 (11)
H410.06050.11440.69150.056*
C420.0749 (3)0.09299 (14)0.7483 (2)0.0384 (10)
H420.05740.06970.78070.046*
C430.1685 (3)0.10067 (13)0.7543 (2)0.0333 (9)
H430.21630.08360.79240.040*
C440.1948 (3)0.13350 (12)0.7048 (2)0.0269 (8)
H440.26020.13830.70860.032*
C450.5484 (3)0.01136 (14)0.1983 (2)0.0355 (9)
H45A0.60740.00190.20510.053*
H45B0.50820.02240.25040.053*
H45C0.51420.01270.17710.053*
C460.6743 (3)0.06986 (13)0.0756 (2)0.0298 (8)
C470.5794 (3)0.04549 (15)0.0638 (2)0.0424 (10)
H47A0.59020.01360.08510.064*
H47B0.54560.04430.00630.064*
H47C0.54110.06280.09230.064*
C480.7323 (3)0.06774 (15)0.1645 (2)0.0437 (11)
H48A0.73910.03510.18250.066*
H48B0.69920.08550.19700.066*
H48C0.79550.08130.17090.066*
C490.6616 (2)0.11980 (12)0.0439 (2)0.0262 (8)
C500.6819 (3)0.15768 (14)0.0951 (2)0.0378 (10)
H500.70310.15310.15160.045*
C510.6713 (3)0.20253 (14)0.0634 (2)0.0409 (10)
H510.68380.22900.09790.049*
C520.6426 (3)0.20805 (13)0.0183 (3)0.0389 (10)
H520.63660.23860.04100.047*
C530.6223 (3)0.16917 (13)0.0681 (2)0.0315 (9)
C540.5930 (3)0.17481 (14)0.1579 (2)0.0451 (11)
H54A0.61650.14820.18250.068*
H54B0.62010.20380.17210.068*
H54C0.52330.17610.17790.068*
C550.8198 (3)0.06234 (12)0.0785 (2)0.0269 (8)
C560.9115 (3)0.05170 (14)0.0320 (2)0.0376 (10)
H560.92100.02750.00700.045*
C570.9892 (3)0.07626 (17)0.0422 (3)0.0498 (12)
H571.05160.06920.00940.060*
C580.9760 (4)0.11042 (17)0.0990 (3)0.0545 (13)
H581.02930.12730.10560.065*
C590.8860 (4)0.12073 (15)0.1471 (3)0.0516 (12)
H590.87740.14440.18700.062*
C600.8078 (3)0.09651 (15)0.1374 (2)0.0389 (10)
H600.74580.10340.17120.047*
C610.7396 (3)0.02683 (12)0.0594 (2)0.0286 (8)
C620.7709 (3)0.04660 (13)0.1206 (2)0.0335 (9)
H620.78430.02710.16040.040*
C630.7829 (3)0.09470 (15)0.1240 (3)0.0432 (11)
H630.80310.10810.16660.052*
C640.7652 (4)0.12272 (15)0.0655 (3)0.0546 (13)
H640.77460.15560.06700.066*
C650.7341 (3)0.10359 (15)0.0053 (3)0.0619 (13)
H650.72160.12330.03470.074*
C660.7204 (4)0.05535 (14)0.0017 (3)0.0485 (12)
H660.69820.04230.04010.058*
C671.0524 (3)0.04118 (15)0.2833 (2)0.0385 (11)
H671.07920.07190.30700.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01955 (14)0.02291 (14)0.02108 (14)0.00107 (11)0.00377 (11)0.00322 (11)
Pd20.02425 (15)0.02233 (14)0.02036 (13)0.00058 (11)0.00249 (11)0.00078 (11)
Pd30.02399 (15)0.02674 (15)0.02130 (14)0.00009 (11)0.00290 (11)0.00193 (11)
Cl10.0417 (6)0.0413 (6)0.0319 (5)0.0090 (4)0.0146 (4)0.0156 (4)
Cl20.0357 (5)0.0381 (5)0.0279 (5)0.0011 (4)0.0081 (4)0.0071 (4)
Cl30.0286 (5)0.0515 (7)0.0559 (7)0.0089 (5)0.0037 (5)0.0118 (5)
Cl40.0532 (8)0.1012 (10)0.0359 (6)0.0019 (7)0.0088 (6)0.0100 (6)
Cl50.0411 (6)0.0445 (6)0.0452 (6)0.0085 (5)0.0170 (5)0.0061 (5)
Cl60.0509 (8)0.0742 (9)0.0791 (9)0.0201 (7)0.0273 (7)0.0254 (7)
P10.0205 (5)0.0218 (4)0.0206 (4)0.0017 (4)0.0038 (4)0.0000 (4)
P20.0206 (5)0.0272 (5)0.0213 (4)0.0002 (4)0.0038 (4)0.0005 (4)
P30.0266 (5)0.0247 (5)0.0188 (4)0.0014 (4)0.0053 (4)0.0004 (4)
O10.0224 (13)0.0324 (14)0.0216 (12)0.0043 (11)0.0027 (10)0.0027 (10)
O20.0191 (13)0.0341 (14)0.0235 (12)0.0016 (10)0.0053 (10)0.0044 (10)
O30.0362 (15)0.0360 (15)0.0169 (12)0.0094 (12)0.0062 (11)0.0016 (11)
N10.0270 (16)0.0231 (15)0.0249 (15)0.0020 (13)0.0069 (13)0.0048 (12)
N20.0324 (18)0.0249 (16)0.0272 (16)0.0018 (13)0.0115 (14)0.0002 (13)
N30.0228 (15)0.0241 (16)0.0251 (15)0.0002 (12)0.0035 (13)0.0003 (12)
C10.0198 (19)0.040 (2)0.040 (2)0.0044 (17)0.0034 (17)0.0034 (18)
C20.0184 (18)0.0293 (19)0.0248 (18)0.0021 (15)0.0011 (15)0.0038 (15)
C30.030 (2)0.029 (2)0.039 (2)0.0072 (16)0.0043 (18)0.0052 (17)
C40.024 (2)0.047 (2)0.035 (2)0.0029 (18)0.0039 (17)0.0101 (19)
C50.0224 (18)0.0223 (18)0.035 (2)0.0020 (14)0.0101 (16)0.0102 (15)
C60.024 (2)0.037 (2)0.045 (2)0.0058 (17)0.0075 (18)0.0101 (19)
C70.032 (2)0.042 (2)0.059 (3)0.0127 (19)0.021 (2)0.008 (2)
C80.044 (3)0.035 (2)0.045 (2)0.0097 (19)0.021 (2)0.0027 (19)
C90.039 (2)0.028 (2)0.034 (2)0.0008 (17)0.0166 (18)0.0006 (17)
C100.048 (3)0.042 (2)0.034 (2)0.006 (2)0.004 (2)0.0118 (19)
C110.0259 (19)0.0225 (18)0.0194 (16)0.0006 (14)0.0038 (15)0.0008 (14)
C120.042 (2)0.030 (2)0.042 (2)0.0096 (18)0.016 (2)0.0053 (18)
C130.063 (3)0.029 (2)0.038 (2)0.006 (2)0.017 (2)0.0107 (18)
C140.043 (3)0.044 (2)0.031 (2)0.009 (2)0.0083 (19)0.0109 (19)
C150.031 (2)0.048 (3)0.044 (2)0.0003 (19)0.013 (2)0.016 (2)
C160.030 (2)0.031 (2)0.038 (2)0.0035 (17)0.0080 (18)0.0114 (17)
C170.0250 (18)0.0191 (17)0.0198 (16)0.0003 (14)0.0085 (14)0.0006 (13)
C180.028 (2)0.0283 (19)0.0241 (18)0.0041 (16)0.0030 (16)0.0008 (15)
C190.035 (2)0.035 (2)0.0279 (19)0.0079 (18)0.0072 (17)0.0086 (17)
C200.045 (3)0.0242 (19)0.037 (2)0.0067 (18)0.017 (2)0.0029 (17)
C210.041 (2)0.0239 (19)0.030 (2)0.0017 (17)0.0125 (18)0.0040 (16)
C220.029 (2)0.031 (2)0.0255 (18)0.0010 (16)0.0122 (16)0.0025 (16)
C230.041 (2)0.0228 (19)0.029 (2)0.0079 (17)0.0010 (18)0.0015 (15)
C240.0193 (18)0.034 (2)0.0292 (19)0.0014 (15)0.0058 (16)0.0022 (16)
C250.024 (2)0.052 (3)0.036 (2)0.0061 (18)0.0038 (18)0.0083 (19)
C260.029 (2)0.033 (2)0.036 (2)0.0051 (17)0.0057 (18)0.0007 (17)
C270.0243 (19)0.0262 (19)0.034 (2)0.0037 (15)0.0100 (17)0.0042 (16)
C280.032 (2)0.036 (2)0.047 (2)0.0053 (18)0.0161 (19)0.0014 (19)
C290.041 (3)0.037 (2)0.060 (3)0.0057 (19)0.029 (2)0.002 (2)
C300.056 (3)0.025 (2)0.045 (2)0.0046 (19)0.028 (2)0.0066 (18)
C310.043 (2)0.0253 (19)0.0284 (19)0.0065 (17)0.0144 (18)0.0008 (16)
C320.048 (3)0.036 (2)0.030 (2)0.0042 (19)0.0088 (19)0.0086 (18)
C330.0207 (18)0.0251 (18)0.0283 (18)0.0009 (14)0.0083 (15)0.0037 (15)
C340.028 (2)0.034 (2)0.033 (2)0.0007 (17)0.0034 (17)0.0003 (17)
C350.031 (2)0.038 (2)0.052 (3)0.0023 (19)0.002 (2)0.012 (2)
C360.039 (3)0.028 (2)0.063 (3)0.0099 (18)0.022 (2)0.005 (2)
C370.042 (3)0.032 (2)0.045 (2)0.0019 (19)0.017 (2)0.0085 (18)
C380.029 (2)0.033 (2)0.0288 (19)0.0007 (17)0.0080 (17)0.0001 (16)
C390.0232 (19)0.0290 (19)0.0222 (17)0.0011 (15)0.0039 (15)0.0004 (15)
C400.026 (2)0.054 (3)0.037 (2)0.0035 (19)0.0038 (18)0.011 (2)
C410.032 (2)0.062 (3)0.046 (3)0.010 (2)0.013 (2)0.008 (2)
C420.052 (3)0.035 (2)0.033 (2)0.007 (2)0.019 (2)0.0008 (18)
C430.041 (2)0.029 (2)0.0278 (19)0.0070 (18)0.0071 (18)0.0024 (16)
C440.030 (2)0.0231 (18)0.0272 (18)0.0016 (15)0.0080 (16)0.0006 (15)
C450.035 (2)0.040 (2)0.028 (2)0.0079 (18)0.0018 (17)0.0091 (17)
C460.038 (2)0.032 (2)0.0215 (18)0.0024 (17)0.0119 (17)0.0028 (15)
C470.053 (3)0.041 (2)0.042 (2)0.008 (2)0.028 (2)0.0014 (19)
C480.068 (3)0.046 (3)0.0184 (18)0.007 (2)0.014 (2)0.0000 (17)
C490.0235 (19)0.029 (2)0.0273 (18)0.0012 (15)0.0100 (16)0.0011 (15)
C500.041 (2)0.040 (2)0.030 (2)0.0011 (19)0.0050 (19)0.0084 (18)
C510.041 (2)0.029 (2)0.047 (3)0.0010 (18)0.003 (2)0.0138 (19)
C520.036 (2)0.022 (2)0.051 (3)0.0028 (17)0.001 (2)0.0031 (18)
C530.024 (2)0.032 (2)0.036 (2)0.0043 (16)0.0047 (17)0.0020 (17)
C540.063 (3)0.031 (2)0.036 (2)0.005 (2)0.005 (2)0.0092 (18)
C550.027 (2)0.0276 (19)0.0269 (19)0.0029 (16)0.0091 (16)0.0043 (15)
C560.033 (2)0.041 (2)0.035 (2)0.0049 (19)0.0040 (19)0.0078 (18)
C570.036 (3)0.058 (3)0.053 (3)0.010 (2)0.010 (2)0.019 (2)
C580.050 (3)0.052 (3)0.075 (3)0.022 (2)0.038 (3)0.022 (3)
C590.067 (3)0.040 (3)0.062 (3)0.005 (2)0.042 (3)0.004 (2)
C600.037 (2)0.046 (3)0.036 (2)0.004 (2)0.0149 (19)0.0037 (19)
C610.028 (2)0.0235 (19)0.031 (2)0.0019 (15)0.0039 (17)0.0015 (16)
C620.029 (2)0.034 (2)0.033 (2)0.0036 (17)0.0001 (17)0.0036 (17)
C630.031 (2)0.044 (3)0.047 (2)0.006 (2)0.000 (2)0.016 (2)
C640.048 (3)0.031 (2)0.080 (4)0.001 (2)0.011 (3)0.009 (2)
C650.076 (3)0.033 (2)0.086 (4)0.000 (2)0.038 (3)0.015 (2)
C660.068 (3)0.029 (2)0.055 (3)0.003 (2)0.027 (3)0.007 (2)
C670.039 (3)0.040 (2)0.033 (2)0.003 (2)0.006 (2)0.0019 (19)
Geometric parameters (Å, º) top
Pd1—Cl12.3838 (10)C25—H25B0.9800
Pd1—P12.1650 (9)C25—H25C0.9801
Pd1—N12.205 (3)C26—H26A0.9801
Pd1—C12.038 (4)C26—H26B0.9801
Pd2—Cl22.4047 (10)C26—H26C0.9800
Pd2—P22.1717 (10)C27—C281.380 (5)
Pd2—N22.193 (3)C28—C291.369 (6)
Pd2—C232.050 (4)C28—H280.9502
Pd3—Cl32.3929 (12)C29—C301.369 (6)
Pd3—P32.1725 (13)C29—H290.9500
Pd3—N32.200 (3)C30—C311.390 (6)
Pd3—C452.034 (4)C30—H300.9500
Cl4—C671.765 (4)C31—C321.497 (6)
Cl5—C671.745 (5)C32—H32A0.9800
Cl6—C671.760 (5)C32—H32B0.9800
P1—O11.611 (2)C32—H32C0.9799
P1—C171.803 (3)C33—C341.390 (5)
P1—C111.814 (4)C33—C381.394 (5)
P2—O21.608 (2)C34—C351.384 (5)
P2—C331.811 (4)C34—H340.9500
P2—C391.812 (4)C35—C361.383 (6)
P3—O31.617 (2)C35—H350.9500
P3—C551.804 (4)C36—C371.375 (6)
P3—C611.810 (4)C36—H360.9499
O1—C21.479 (4)C37—C381.383 (5)
O2—C241.480 (4)C37—H370.9501
O3—C461.468 (4)C38—H380.9502
N1—C91.347 (4)C39—C441.389 (5)
N1—C51.369 (4)C39—C401.391 (5)
N2—C311.355 (4)C40—C411.384 (6)
N2—C271.368 (4)C40—H400.9502
N3—C531.354 (4)C41—C421.393 (6)
N3—C491.364 (4)C41—H410.9502
C1—H1A0.9800C42—C431.363 (6)
C1—H1B0.9798C42—H420.9501
C1—H1C0.9801C43—C441.395 (5)
C2—C51.518 (5)C43—H430.9501
C2—C41.524 (5)C44—H440.9501
C2—C31.531 (5)C45—H45A0.9798
C3—H3A0.9797C45—H45B0.9802
C3—H3B0.9801C45—H45C0.9801
C3—H3C0.9801C46—C471.514 (6)
C4—H4A0.9798C46—C491.522 (5)
C4—H4B0.9799C46—C481.536 (5)
C4—H4C0.9802C47—H47A0.9800
C5—C61.381 (5)C47—H47B0.9802
C6—C71.377 (6)C47—H47C0.9800
C6—H60.9500C48—H48A0.9801
C7—C81.376 (6)C48—H48B0.9800
C7—H70.9499C48—H48C0.9804
C8—C91.382 (5)C49—C501.378 (5)
C8—H80.9500C50—C511.385 (6)
C9—C101.507 (5)C50—H500.9501
C10—H10A0.9800C51—C521.367 (6)
C10—H10B0.9800C51—H510.9503
C10—H10C0.9799C52—C531.387 (5)
C11—C161.378 (5)C52—H520.9501
C11—C121.395 (5)C53—C541.501 (5)
C12—C131.384 (6)C54—H54A0.9800
C12—H120.9502C54—H54B0.9799
C13—C141.365 (6)C54—H54C0.9802
C13—H130.9500C55—C601.387 (5)
C14—C151.373 (5)C55—C561.388 (5)
C14—H140.9500C56—C571.389 (6)
C15—C161.383 (5)C56—H560.9501
C15—H150.9501C57—C581.362 (7)
C16—H160.9500C57—H570.9501
C17—C181.391 (5)C58—C591.377 (7)
C17—C221.398 (5)C58—H580.9500
C18—C191.380 (5)C59—C601.387 (6)
C18—H180.9501C59—H590.9501
C19—C201.386 (5)C60—H600.9500
C19—H190.9499C61—C661.378 (5)
C20—C211.378 (5)C61—C621.387 (5)
C20—H200.9501C62—C631.389 (5)
C21—C221.388 (5)C62—H620.9502
C21—H210.9499C63—C641.372 (7)
C22—H220.9502C63—H630.9502
C23—H23A0.9798C64—C651.365 (7)
C23—H23B0.9802C64—H640.9500
C23—H23C0.9800C65—C661.397 (6)
C24—C251.518 (5)C65—H650.9516
C24—C271.523 (5)C66—H660.9500
C24—C261.526 (5)C67—H670.9999
C25—H25A0.9799
C1—Pd1—P191.45 (12)H26A—C26—H26B109.5
C1—Pd1—N1173.65 (14)C24—C26—H26C109.5
P1—Pd1—N184.03 (8)H26A—C26—H26C109.5
C1—Pd1—Cl190.20 (12)H26B—C26—H26C109.5
P1—Pd1—Cl1172.09 (4)N2—C27—C28120.7 (3)
N1—Pd1—Cl194.87 (8)N2—C27—C24117.9 (3)
C23—Pd2—P293.23 (12)C28—C27—C24121.4 (3)
C23—Pd2—N2176.97 (13)C29—C28—C27119.6 (4)
P2—Pd2—N283.76 (8)C29—C28—H28120.2
C23—Pd2—Cl288.48 (12)C27—C28—H28120.2
P2—Pd2—Cl2175.46 (4)C28—C29—C30119.9 (4)
N2—Pd2—Cl294.50 (8)C28—C29—H29120.0
C45—Pd3—P391.45 (12)C30—C29—H29120.1
C45—Pd3—N3174.34 (14)C29—C30—C31119.6 (4)
P3—Pd3—N384.71 (8)C29—C30—H30120.2
C45—Pd3—Cl390.38 (12)C31—C30—H30120.2
P3—Pd3—Cl3168.49 (4)N2—C31—C30120.5 (4)
N3—Pd3—Cl394.21 (9)N2—C31—C32117.6 (3)
O1—P1—C17104.46 (14)C30—C31—C32121.9 (3)
O1—P1—C11101.24 (14)C31—C32—H32A109.5
C17—P1—C11104.41 (16)C31—C32—H32B109.5
O1—P1—Pd1109.22 (10)H32A—C32—H32B109.5
C17—P1—Pd1114.16 (11)C31—C32—H32C109.5
C11—P1—Pd1121.43 (11)H32A—C32—H32C109.5
O2—P2—C33104.59 (14)H32B—C32—H32C109.5
O2—P2—C39102.30 (14)C34—C33—C38119.2 (3)
C33—P2—C39103.87 (17)C34—C33—P2119.2 (3)
O2—P2—Pd2109.10 (10)C38—C33—P2121.5 (3)
C33—P2—Pd2113.59 (12)C35—C34—C33120.5 (4)
C39—P2—Pd2121.64 (12)C35—C34—H34119.8
O3—P3—C55102.91 (15)C33—C34—H34119.8
O3—P3—C61100.27 (15)C36—C35—C34119.7 (4)
C55—P3—C61104.76 (17)C36—C35—H35120.2
O3—P3—Pd3108.10 (11)C34—C35—H35120.1
C55—P3—Pd3115.89 (12)C37—C36—C35120.3 (4)
C61—P3—Pd3122.23 (12)C37—C36—H36119.8
C2—O1—P1126.6 (2)C35—C36—H36119.8
C24—O2—P2125.9 (2)C36—C37—C38120.3 (4)
C46—O3—P3126.1 (2)C36—C37—H37119.8
C9—N1—C5119.2 (3)C38—C37—H37119.8
C9—N1—Pd1117.9 (2)C37—C38—C33120.0 (3)
C5—N1—Pd1122.6 (2)C37—C38—H38120.0
C31—N2—C27119.2 (3)C33—C38—H38120.0
C31—N2—Pd2118.6 (2)C44—C39—C40119.6 (3)
C27—N2—Pd2120.8 (2)C44—C39—P2121.6 (3)
C53—N3—C49118.5 (3)C40—C39—P2118.7 (3)
C53—N3—Pd3119.0 (2)C41—C40—C39119.9 (4)
C49—N3—Pd3122.5 (2)C41—C40—H40120.1
Pd1—C1—H1A109.5C39—C40—H40120.0
Pd1—C1—H1B109.5C40—C41—C42120.1 (4)
H1A—C1—H1B109.5C40—C41—H41119.9
Pd1—C1—H1C109.5C42—C41—H41119.9
H1A—C1—H1C109.5C43—C42—C41120.0 (4)
H1B—C1—H1C109.5C43—C42—H42120.0
O1—C2—C5111.2 (3)C41—C42—H42120.0
O1—C2—C4101.6 (3)C42—C43—C44120.5 (4)
C5—C2—C4113.1 (3)C42—C43—H43119.8
O1—C2—C3110.6 (3)C44—C43—H43119.8
C5—C2—C3110.5 (3)C39—C44—C43119.9 (4)
C4—C2—C3109.6 (3)C39—C44—H44120.1
C2—C3—H3A109.5C43—C44—H44120.1
C2—C3—H3B109.5Pd3—C45—H45A109.5
H3A—C3—H3B109.5Pd3—C45—H45B109.5
C2—C3—H3C109.5H45A—C45—H45B109.5
H3A—C3—H3C109.5Pd3—C45—H45C109.5
H3B—C3—H3C109.5H45A—C45—H45C109.5
C2—C4—H4A109.5H45B—C45—H45C109.4
C2—C4—H4B109.5O3—C46—C47111.5 (3)
H4A—C4—H4B109.5O3—C46—C49109.8 (3)
C2—C4—H4C109.4C47—C46—C49111.7 (3)
H4A—C4—H4C109.5O3—C46—C48101.4 (3)
H4B—C4—H4C109.5C47—C46—C48110.1 (3)
N1—C5—C6120.3 (3)C49—C46—C48112.1 (3)
N1—C5—C2118.0 (3)C46—C47—H47A109.5
C6—C5—C2121.7 (3)C46—C47—H47B109.5
C7—C6—C5120.0 (4)H47A—C47—H47B109.5
C7—C6—H6120.0C46—C47—H47C109.5
C5—C6—H6120.0H47A—C47—H47C109.5
C8—C7—C6119.2 (4)H47B—C47—H47C109.5
C8—C7—H7120.4C46—C48—H48A109.5
C6—C7—H7120.4C46—C48—H48B109.5
C7—C8—C9119.4 (4)H48A—C48—H48B109.5
C7—C8—H8120.3C46—C48—H48C109.5
C9—C8—H8120.3H48A—C48—H48C109.4
N1—C9—C8121.5 (4)H48B—C48—H48C109.4
N1—C9—C10118.0 (3)N3—C49—C50121.6 (3)
C8—C9—C10120.5 (4)N3—C49—C46116.9 (3)
C9—C10—H10A109.5C50—C49—C46121.5 (3)
C9—C10—H10B109.5C49—C50—C51119.5 (4)
H10A—C10—H10B109.5C49—C50—H50120.3
C9—C10—H10C109.5C51—C50—H50120.3
H10A—C10—H10C109.5C52—C51—C50119.0 (3)
H10B—C10—H10C109.5C52—C51—H51120.5
C16—C11—C12117.7 (3)C50—C51—H51120.5
C16—C11—P1122.8 (3)C51—C52—C53120.1 (4)
C12—C11—P1119.3 (3)C51—C52—H52120.0
C13—C12—C11120.7 (4)C53—C52—H52120.0
C13—C12—H12119.7N3—C53—C52121.2 (3)
C11—C12—H12119.6N3—C53—C54118.3 (3)
C14—C13—C12120.6 (4)C52—C53—C54120.5 (3)
C14—C13—H13119.7C53—C54—H54A109.5
C12—C13—H13119.7C53—C54—H54B109.5
C13—C14—C15119.5 (4)H54A—C54—H54B109.5
C13—C14—H14120.3C53—C54—H54C109.5
C15—C14—H14120.2H54A—C54—H54C109.5
C14—C15—C16120.2 (4)H54B—C54—H54C109.5
C14—C15—H15119.9C60—C55—C56118.8 (4)
C16—C15—H15119.9C60—C55—P3120.1 (3)
C11—C16—C15121.3 (3)C56—C55—P3120.9 (3)
C11—C16—H16119.3C55—C56—C57120.5 (4)
C15—C16—H16119.4C55—C56—H56119.8
C18—C17—C22119.3 (3)C57—C56—H56119.8
C18—C17—P1119.6 (2)C58—C57—C56120.0 (4)
C22—C17—P1121.1 (3)C58—C57—H57120.0
C19—C18—C17120.5 (3)C56—C57—H57120.0
C19—C18—H18119.7C57—C58—C59120.5 (4)
C17—C18—H18119.7C57—C58—H58119.8
C18—C19—C20119.8 (3)C59—C58—H58119.7
C18—C19—H19120.1C58—C59—C60120.0 (4)
C20—C19—H19120.1C58—C59—H59120.0
C21—C20—C19120.4 (3)C60—C59—H59120.0
C21—C20—H20119.8C55—C60—C59120.1 (4)
C19—C20—H20119.8C55—C60—H60119.9
C20—C21—C22120.1 (3)C59—C60—H60119.9
C20—C21—H21119.9C66—C61—C62119.4 (3)
C22—C21—H21119.9C66—C61—P3120.0 (3)
C21—C22—C17119.8 (3)C62—C61—P3120.5 (3)
C21—C22—H22120.1C61—C62—C63120.6 (4)
C17—C22—H22120.1C61—C62—H62119.7
Pd2—C23—H23A109.5C63—C62—H62119.7
Pd2—C23—H23B109.5C64—C63—C62119.5 (4)
H23A—C23—H23B109.5C64—C63—H63120.2
Pd2—C23—H23C109.5C62—C63—H63120.2
H23A—C23—H23C109.5C65—C64—C63120.3 (4)
H23B—C23—H23C109.5C65—C64—H64119.8
O2—C24—C25101.3 (3)C63—C64—H64119.9
O2—C24—C27109.6 (3)C64—C65—C66120.8 (4)
C25—C24—C27112.3 (3)C64—C65—H65119.6
O2—C24—C26111.2 (3)C66—C65—H65119.6
C25—C24—C26110.1 (3)C61—C66—C65119.4 (4)
C27—C24—C26111.8 (3)C61—C66—H66120.3
C24—C25—H25A109.5C65—C66—H66120.3
C24—C25—H25B109.5Cl5—C67—Cl6110.7 (2)
H25A—C25—H25B109.5Cl5—C67—Cl4110.1 (2)
C24—C25—H25C109.5Cl6—C67—Cl4109.9 (2)
H25A—C25—H25C109.5Cl5—C67—H67108.7
H25B—C25—H25C109.5Cl6—C67—H67108.7
C24—C26—H26A109.5Cl4—C67—H67108.7
C24—C26—H26B109.5
(IV) dichloro[2-(2,6-dimethylphenyl)-6-(diphenylphosphanomethyl)pyridine- κ2N,P]palladium(II) top
Crystal data top
C26H24Cl2NPPdZ = 2
Mr = 558.73F(000) = 564
Triclinic, P1Dx = 1.566 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.151 (1) ÅCell parameters from 7840 reflections
b = 11.461 (1) Åθ = 1.0–27.9°
c = 12.106 (2) ŵ = 1.09 mm1
α = 95.40 (5)°T = 173 K
β = 109.93 (5)°Prism, yellow–orange
γ = 112.23 (5)°0.13 × 0.10 × 0.08 mm
V = 1184.7 (9) Å3
Data collection top
Nonius KappaCCD
diffractometer
4878 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.8°, θmin = 1.9°
ϕ or ω scans?h = 1313
14956 measured reflectionsk = 1415
5587 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.3488P]
where P = (Fo2 + 2Fc2)/3
5587 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
C26H24Cl2NPPdγ = 112.23 (5)°
Mr = 558.73V = 1184.7 (9) Å3
Triclinic, P1Z = 2
a = 10.151 (1) ÅMo Kα radiation
b = 11.461 (1) ŵ = 1.09 mm1
c = 12.106 (2) ÅT = 173 K
α = 95.40 (5)°0.13 × 0.10 × 0.08 mm
β = 109.93 (5)°
Data collection top
Nonius KappaCCD
diffractometer
4878 reflections with I > 2σ(I)
14956 measured reflectionsRint = 0.033
5587 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.00Δρmax = 0.49 e Å3
5587 reflectionsΔρmin = 0.80 e Å3
280 parameters
Special details top

Experimental. The 1H and 31P{H} NMR spectra were recorded at 300.13 and 76.0 MHz, respectively, on an FT Bruker AC300, Avance 300 instrument.

Complex (IV) 1H NMR (CDCl3) d: 2.01 (s, 6H, Ph(CH3)2), 4.27 (d, 2H, PCH2, 2JPH = 13.7 Hz), 7.03–7.88 (16H, aromatics); 31P{1H} NMR (CDCl3) d: 46.1 (s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.194666 (18)0.044011 (15)0.279218 (15)0.02745 (7)
Cl10.09907 (8)0.27189 (5)0.26100 (6)0.04143 (16)
Cl20.03851 (7)0.04876 (6)0.25935 (7)0.04838 (17)
P10.30688 (7)0.17127 (5)0.33743 (5)0.02879 (14)
N10.4199 (2)0.01187 (17)0.29826 (16)0.0270 (4)
C10.4896 (3)0.1836 (2)0.4487 (2)0.0336 (5)
H1A0.57110.27480.47580.040*
H1B0.47490.15650.52050.040*
C20.5374 (3)0.0955 (2)0.3882 (2)0.0301 (5)
C30.6920 (3)0.1252 (2)0.4180 (2)0.0391 (6)
H30.77160.19930.48180.047*
C40.7299 (3)0.0469 (3)0.3548 (2)0.0445 (6)
H40.83590.06450.37570.053*
C50.6123 (3)0.0581 (2)0.2603 (2)0.0391 (6)
H50.63780.11180.21490.047*
C60.4565 (3)0.0860 (2)0.2308 (2)0.0297 (5)
C70.3342 (3)0.1896 (2)0.1182 (2)0.0311 (5)
C80.3001 (3)0.3211 (2)0.1115 (2)0.0380 (6)
C90.1895 (3)0.4132 (2)0.0021 (3)0.0482 (7)
H90.16230.50320.00340.058*
C100.1196 (3)0.3756 (3)0.0973 (3)0.0533 (8)
H100.04360.43970.17050.064*
C110.1589 (3)0.2464 (3)0.0915 (2)0.0479 (7)
H110.11260.22160.16200.057*
C120.2653 (3)0.1508 (2)0.0157 (2)0.0368 (5)
C130.3741 (4)0.3664 (3)0.2176 (3)0.0534 (7)
H13A0.33890.35140.28120.080*
H13B0.48780.31770.24960.080*
H13C0.34390.45970.19130.080*
C140.3075 (4)0.0112 (3)0.0163 (3)0.0551 (8)
H14A0.29410.00060.06570.083*
H14B0.41640.04250.07300.083*
H14C0.23970.01630.04180.083*
C150.2380 (3)0.2622 (2)0.4158 (2)0.0323 (5)
C160.2256 (3)0.3718 (2)0.3845 (2)0.0431 (6)
H160.25370.40060.32120.052*
C170.1720 (4)0.4398 (3)0.4452 (3)0.0520 (7)
H170.16240.51450.42300.062*
C180.1328 (3)0.3988 (3)0.5378 (3)0.0516 (7)
H180.09630.44540.57940.062*
C190.1462 (3)0.2907 (3)0.5704 (3)0.0500 (7)
H190.12070.26380.63520.060*
C200.1967 (3)0.2210 (2)0.5088 (2)0.0404 (6)
H200.20320.14500.52990.049*
C210.3442 (3)0.2497 (2)0.2223 (2)0.0333 (5)
C220.4934 (3)0.3177 (3)0.2287 (3)0.0516 (7)
H220.58190.33280.29960.062*
C230.5120 (5)0.3636 (3)0.1300 (4)0.0724 (10)
H230.61390.40990.13370.087*
C240.3865 (5)0.3430 (3)0.0286 (3)0.0689 (10)
H240.40130.37310.03860.083*
C250.2390 (4)0.2793 (3)0.0223 (3)0.0601 (9)
H250.15180.26810.04800.072*
C260.2166 (3)0.2311 (2)0.1187 (2)0.0434 (6)
H260.11400.18540.11380.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02733 (11)0.02842 (11)0.03118 (11)0.01414 (8)0.01488 (8)0.00781 (7)
Cl10.0495 (4)0.0299 (3)0.0511 (4)0.0157 (3)0.0298 (3)0.0088 (3)
Cl20.0309 (3)0.0489 (4)0.0659 (4)0.0194 (3)0.0210 (3)0.0036 (3)
P10.0308 (3)0.0292 (3)0.0320 (3)0.0158 (2)0.0159 (3)0.0089 (2)
N10.0282 (9)0.0318 (9)0.0266 (9)0.0161 (8)0.0132 (8)0.0108 (7)
C10.0343 (12)0.0377 (12)0.0290 (12)0.0175 (10)0.0116 (10)0.0062 (9)
C20.0317 (12)0.0356 (12)0.0274 (11)0.0177 (10)0.0129 (10)0.0107 (9)
C30.0316 (13)0.0453 (14)0.0369 (14)0.0185 (11)0.0089 (11)0.0083 (11)
C40.0297 (13)0.0578 (16)0.0505 (16)0.0243 (12)0.0160 (12)0.0127 (13)
C50.0384 (13)0.0480 (14)0.0442 (15)0.0277 (12)0.0215 (12)0.0141 (11)
C60.0352 (12)0.0334 (12)0.0299 (12)0.0208 (10)0.0164 (10)0.0127 (9)
C70.0338 (12)0.0359 (12)0.0333 (12)0.0201 (10)0.0190 (10)0.0102 (9)
C80.0467 (15)0.0393 (13)0.0429 (14)0.0246 (12)0.0279 (12)0.0133 (11)
C90.0539 (17)0.0340 (13)0.0587 (18)0.0175 (12)0.0294 (15)0.0031 (12)
C100.0455 (16)0.0523 (17)0.0482 (17)0.0186 (14)0.0113 (14)0.0044 (13)
C110.0477 (16)0.0582 (17)0.0370 (14)0.0295 (14)0.0110 (12)0.0060 (12)
C120.0408 (13)0.0453 (14)0.0349 (13)0.0265 (11)0.0187 (11)0.0103 (10)
C130.080 (2)0.0410 (14)0.0565 (18)0.0357 (15)0.0343 (16)0.0195 (13)
C140.087 (2)0.0520 (16)0.0400 (16)0.0449 (16)0.0226 (15)0.0184 (12)
C150.0317 (12)0.0320 (12)0.0367 (13)0.0155 (10)0.0167 (10)0.0063 (9)
C160.0544 (16)0.0374 (13)0.0514 (16)0.0253 (12)0.0307 (14)0.0153 (11)
C170.0635 (19)0.0392 (14)0.0659 (19)0.0306 (14)0.0318 (16)0.0116 (13)
C180.0482 (16)0.0520 (16)0.0624 (19)0.0266 (13)0.0293 (15)0.0024 (14)
C190.0531 (17)0.0602 (17)0.0511 (17)0.0279 (14)0.0344 (14)0.0135 (13)
C200.0478 (15)0.0429 (14)0.0430 (14)0.0252 (12)0.0250 (12)0.0160 (11)
C210.0420 (13)0.0310 (12)0.0350 (13)0.0200 (10)0.0200 (11)0.0106 (9)
C220.0498 (16)0.0553 (17)0.0595 (18)0.0231 (14)0.0305 (15)0.0258 (14)
C230.084 (3)0.070 (2)0.092 (3)0.0325 (19)0.064 (2)0.044 (2)
C240.121 (3)0.0566 (19)0.058 (2)0.046 (2)0.057 (2)0.0331 (16)
C250.101 (3)0.0445 (16)0.0341 (15)0.0411 (17)0.0170 (16)0.0113 (12)
C260.0503 (15)0.0391 (13)0.0399 (14)0.0228 (12)0.0142 (12)0.0082 (11)
Geometric parameters (Å, º) top
Pd1—Cl12.3747 (12)C12—C141.490 (4)
Pd1—Cl22.2749 (13)C13—H13A0.9800
Pd1—P12.2093 (11)C13—H13B0.9800
Pd1—N12.098 (2)C13—H13C0.9800
P1—C211.798 (2)C14—H14A0.9800
P1—C151.814 (2)C14—H14B0.9800
P1—C11.826 (3)C14—H14C0.9800
N1—C61.357 (3)C15—C161.383 (3)
N1—C21.369 (3)C15—C201.392 (3)
C1—C21.506 (3)C16—C171.390 (4)
C1—H1A0.9900C16—H160.9500
C1—H1B0.9900C17—C181.377 (4)
C2—C31.378 (3)C17—H170.9500
C3—C41.368 (4)C18—C191.375 (4)
C3—H30.9500C18—H180.9500
C4—C51.380 (3)C19—C201.384 (4)
C4—H40.9500C19—H190.9500
C5—C61.393 (3)C20—H200.9500
C5—H50.9500C21—C221.387 (4)
C6—C71.496 (3)C21—C261.389 (4)
C7—C81.400 (3)C22—C231.392 (4)
C7—C121.405 (3)C22—H220.9500
C8—C91.398 (4)C23—C241.355 (5)
C8—C131.499 (4)C23—H230.9500
C9—C101.373 (4)C24—C251.366 (5)
C9—H90.9500C24—H240.9500
C10—C111.368 (4)C25—C261.388 (4)
C10—H100.9500C25—H250.9500
C11—C121.391 (4)C26—H260.9500
C11—H110.9500
N1—Pd1—P181.74 (5)C11—C12—C7118.4 (2)
N1—Pd1—Cl2171.99 (5)C11—C12—C14119.0 (2)
P1—Pd1—Cl290.52 (3)C7—C12—C14122.5 (2)
N1—Pd1—Cl196.05 (5)C8—C13—H13A109.5
P1—Pd1—Cl1167.92 (2)C8—C13—H13B109.5
Cl2—Pd1—Cl191.95 (3)H13A—C13—H13B109.5
C21—P1—C15107.09 (11)C8—C13—H13C109.5
C21—P1—C1109.32 (11)H13A—C13—H13C109.5
C15—P1—C1107.36 (11)H13B—C13—H13C109.5
C21—P1—Pd1114.41 (8)C12—C14—H14A109.5
C15—P1—Pd1122.56 (8)C12—C14—H14B109.5
C1—P1—Pd194.68 (8)H14A—C14—H14B109.5
C6—N1—C2119.13 (19)C12—C14—H14C109.5
C6—N1—Pd1126.31 (15)H14A—C14—H14C109.5
C2—N1—Pd1114.56 (14)H14B—C14—H14C109.5
C2—C1—P1107.59 (15)C16—C15—C20119.4 (2)
C2—C1—H1A110.2C16—C15—P1121.09 (18)
P1—C1—H1A110.2C20—C15—P1119.53 (19)
C2—C1—H1B110.2C15—C16—C17120.2 (2)
P1—C1—H1B110.2C15—C16—H16119.9
H1A—C1—H1B108.5C17—C16—H16119.9
N1—C2—C3121.8 (2)C18—C17—C16119.8 (3)
N1—C2—C1116.7 (2)C18—C17—H17120.1
C3—C2—C1121.4 (2)C16—C17—H17120.1
C4—C3—C2119.3 (2)C19—C18—C17120.4 (2)
C4—C3—H3120.3C19—C18—H18119.8
C2—C3—H3120.3C17—C18—H18119.8
C3—C4—C5119.2 (2)C18—C19—C20120.1 (3)
C3—C4—H4120.4C18—C19—H19120.0
C5—C4—H4120.4C20—C19—H19120.0
C4—C5—C6120.7 (2)C19—C20—C15120.1 (2)
C4—C5—H5119.7C19—C20—H20120.0
C6—C5—H5119.7C15—C20—H20120.0
N1—C6—C5119.7 (2)C22—C21—C26119.4 (2)
N1—C6—C7121.3 (2)C22—C21—P1122.7 (2)
C5—C6—C7118.7 (2)C26—C21—P1117.74 (18)
C8—C7—C12120.8 (2)C21—C22—C23119.2 (3)
C8—C7—C6120.7 (2)C21—C22—H22120.4
C12—C7—C6118.2 (2)C23—C22—H22120.4
C9—C8—C7118.2 (2)C24—C23—C22120.8 (3)
C9—C8—C13119.2 (2)C24—C23—H23119.6
C7—C8—C13122.6 (2)C22—C23—H23119.6
C10—C9—C8121.0 (2)C23—C24—C25120.7 (3)
C10—C9—H9119.5C23—C24—H24119.7
C8—C9—H9119.5C25—C24—H24119.7
C11—C10—C9120.3 (2)C24—C25—C26119.8 (3)
C11—C10—H10119.8C24—C25—H25120.1
C9—C10—H10119.8C26—C25—H25120.1
C10—C11—C12121.2 (3)C25—C26—C21120.0 (3)
C10—C11—H11119.4C25—C26—H26120.0
C12—C11—H11119.4C21—C26—H26120.0
(V) chloro[2-(2,6-dimethylphenyl)-6-(diphenylphosphanomethyl)pyridine- κ2N,P]methylpalladium(II) top
Crystal data top
[Pd(CH3)Cl(C26H24NP)]F(000) = 1096
Mr = 538.32Dx = 1.502 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 23164 reflections
a = 11.507 (1) Åθ = 1.0–30.0°
b = 12.011 (2) ŵ = 0.97 mm1
c = 17.490 (2) ÅT = 173 K
β = 99.92 (5)°Prism, yellow
V = 2381.2 (6) Å30.10 × 0.08 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4250 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 30.0°, θmin = 2.3°
ϕ or ω scans?h = 1615
6838 measured reflectionsk = 016
6837 independent reflectionsl = 024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
6837 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Pd(CH3)Cl(C26H24NP)]V = 2381.2 (6) Å3
Mr = 538.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.507 (1) ŵ = 0.97 mm1
b = 12.011 (2) ÅT = 173 K
c = 17.490 (2) Å0.10 × 0.08 × 0.06 mm
β = 99.92 (5)°
Data collection top
Nonius KappaCCD
diffractometer
4250 reflections with I > 2σ(I)
6838 measured reflectionsRint = 0.045
6837 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.91Δρmax = 0.72 e Å3
6837 reflectionsΔρmin = 0.63 e Å3
280 parameters
Special details top

Experimental. The 1H and 31P{H} NMR spectra were recorded at 300.13 and 76.0 MHz, respectively, on an FT Bruker AC300, Avance 300 instrument.

Complex (V) 1H NMR (CDCl3) d: 0.80 (s, 3H, Pd—CH3), 2.01 (s, 6H, Ph(CH3)2), 4.19 (d, 2H, PCH2, 2JPH = 11.4 Hz), 7.09–7.90 (16H, aromatics); 31P{1H} NMR (CDCl3) d: 42.6 (s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.11677 (2)0.25415 (2)0.110714 (16)0.02959 (9)
Cl10.30199 (8)0.21959 (8)0.07376 (6)0.0466 (3)
P10.05236 (7)0.26689 (7)0.15132 (5)0.0289 (2)
N10.1737 (2)0.3362 (2)0.22921 (16)0.0304 (6)
C10.0014 (3)0.2373 (3)0.2539 (2)0.0343 (8)
H1A0.06500.25300.28400.041*
H1B0.02090.15780.26100.041*
C20.1041 (3)0.3104 (3)0.2818 (2)0.0319 (8)
C30.1238 (3)0.3526 (3)0.3561 (2)0.0400 (9)
H30.07330.33220.39150.048*
C40.2163 (4)0.4239 (4)0.3791 (2)0.0522 (11)
H40.23180.45260.43050.063*
C50.2862 (3)0.4528 (4)0.3255 (2)0.0485 (11)
H50.35050.50250.33970.058*
C60.2630 (3)0.4097 (3)0.2515 (2)0.0357 (8)
C70.3319 (3)0.4532 (3)0.1927 (2)0.0355 (8)
C80.4477 (3)0.4154 (3)0.1920 (2)0.0444 (10)
C90.5104 (4)0.4645 (4)0.1405 (3)0.0541 (12)
H90.58910.44120.13990.065*
C100.4619 (4)0.5462 (4)0.0901 (3)0.0566 (12)
H100.50650.57770.05460.068*
C110.3488 (4)0.5827 (3)0.0909 (2)0.0498 (11)
H110.31560.63900.05570.060*
C120.2828 (3)0.5378 (3)0.1429 (2)0.0421 (9)
C130.5009 (4)0.3232 (4)0.2433 (3)0.0615 (13)
H13A0.58060.30790.23350.092*
H13B0.45220.25620.23260.092*
H13C0.50460.34490.29770.092*
C140.1617 (4)0.5839 (4)0.1473 (3)0.0592 (13)
H14A0.14720.65030.11440.089*
H14B0.15780.60390.20110.089*
H14C0.10180.52750.12910.089*
C150.1158 (3)0.4055 (3)0.1463 (2)0.0319 (8)
C160.1352 (4)0.4576 (3)0.0750 (2)0.0459 (10)
H160.11450.42080.03120.055*
C170.1848 (4)0.5631 (4)0.0666 (3)0.0554 (12)
H170.20130.59690.01680.066*
C180.2100 (4)0.6184 (3)0.1303 (3)0.0571 (12)
H180.24210.69140.12490.068*
C190.1891 (4)0.5691 (4)0.2010 (3)0.0582 (12)
H190.20600.60820.24500.070*
C200.1434 (3)0.4622 (3)0.2097 (2)0.0445 (10)
H200.13100.42780.25930.053*
C210.1750 (3)0.1727 (3)0.1214 (2)0.0302 (8)
C220.2912 (3)0.2097 (3)0.1009 (2)0.0393 (9)
H220.30760.28720.10120.047*
C230.3827 (3)0.1353 (4)0.0803 (3)0.0532 (11)
H230.46160.16150.06780.064*
C240.3590 (4)0.0219 (4)0.0778 (2)0.0507 (11)
H240.42130.02980.06320.061*
C250.2444 (4)0.0144 (3)0.0968 (3)0.0501 (11)
H250.22810.09180.09510.060*
C260.1528 (3)0.0590 (3)0.1182 (2)0.0402 (9)
H260.07430.03200.13090.048*
C270.0382 (3)0.1836 (3)0.0086 (2)0.0436 (10)
H27A0.05280.10320.01040.065*
H27B0.07110.21630.03440.065*
H27C0.04690.19750.00070.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02577 (13)0.02849 (15)0.03430 (15)0.00068 (11)0.00460 (9)0.00135 (11)
Cl10.0313 (5)0.0468 (6)0.0628 (7)0.0032 (4)0.0111 (4)0.0096 (5)
P10.0255 (4)0.0290 (5)0.0315 (5)0.0008 (4)0.0027 (3)0.0004 (4)
N10.0267 (14)0.0289 (16)0.0340 (16)0.0015 (12)0.0014 (12)0.0023 (12)
C10.0330 (17)0.035 (2)0.035 (2)0.0013 (16)0.0047 (15)0.0082 (16)
C20.0295 (17)0.0290 (19)0.035 (2)0.0049 (14)0.0009 (15)0.0030 (15)
C30.046 (2)0.041 (2)0.034 (2)0.0016 (18)0.0081 (17)0.0040 (17)
C40.060 (3)0.061 (3)0.034 (2)0.007 (2)0.003 (2)0.018 (2)
C50.040 (2)0.054 (3)0.050 (3)0.0154 (19)0.005 (2)0.019 (2)
C60.0314 (19)0.033 (2)0.042 (2)0.0033 (15)0.0043 (16)0.0025 (16)
C70.0322 (19)0.031 (2)0.042 (2)0.0078 (15)0.0045 (16)0.0099 (16)
C80.038 (2)0.039 (2)0.057 (3)0.0065 (17)0.0104 (19)0.0167 (19)
C90.040 (2)0.053 (3)0.075 (3)0.009 (2)0.025 (2)0.021 (2)
C100.065 (3)0.056 (3)0.056 (3)0.022 (2)0.029 (2)0.018 (2)
C110.061 (3)0.047 (3)0.040 (2)0.019 (2)0.005 (2)0.0055 (19)
C120.041 (2)0.039 (2)0.045 (2)0.0116 (18)0.0027 (18)0.0113 (18)
C130.042 (2)0.054 (3)0.086 (4)0.008 (2)0.004 (2)0.006 (3)
C140.046 (3)0.056 (3)0.071 (3)0.006 (2)0.001 (2)0.010 (2)
C150.0271 (17)0.0275 (18)0.040 (2)0.0042 (14)0.0012 (15)0.0008 (15)
C160.058 (3)0.041 (2)0.037 (2)0.001 (2)0.0011 (19)0.0003 (18)
C170.059 (3)0.041 (3)0.061 (3)0.002 (2)0.004 (2)0.018 (2)
C180.051 (3)0.030 (2)0.088 (4)0.0035 (19)0.005 (3)0.005 (2)
C190.066 (3)0.043 (3)0.068 (3)0.007 (2)0.019 (3)0.012 (2)
C200.050 (2)0.042 (2)0.043 (2)0.0051 (19)0.0115 (19)0.0023 (18)
C210.0254 (17)0.034 (2)0.0317 (19)0.0034 (14)0.0073 (14)0.0016 (15)
C220.0314 (19)0.045 (2)0.042 (2)0.0045 (16)0.0077 (16)0.0030 (17)
C230.025 (2)0.075 (3)0.059 (3)0.003 (2)0.0046 (19)0.004 (2)
C240.043 (2)0.063 (3)0.046 (3)0.025 (2)0.009 (2)0.005 (2)
C250.059 (3)0.036 (2)0.057 (3)0.012 (2)0.017 (2)0.006 (2)
C260.032 (2)0.035 (2)0.054 (3)0.0023 (16)0.0092 (18)0.0020 (18)
C270.039 (2)0.054 (3)0.039 (2)0.0073 (19)0.0093 (18)0.0139 (19)
Geometric parameters (Å, º) top
Pd1—Cl12.3681 (14)C13—H13A0.9800
Pd1—P12.189 (2)C13—H13B0.9800
Pd1—N12.286 (3)C13—H13C0.9800
Pd1—C272.042 (4)C14—H14A0.9800
P1—C151.814 (4)C14—H14B0.9800
P1—C211.815 (3)C14—H14C0.9800
P1—C11.823 (4)C15—C161.378 (5)
N1—C21.356 (4)C15—C201.384 (5)
N1—C61.360 (4)C16—C171.387 (6)
C1—C21.510 (5)C16—H160.9500
C1—H1A0.9900C17—C181.370 (6)
C1—H1B0.9900C17—H170.9500
C2—C31.377 (5)C18—C191.354 (7)
C3—C41.372 (5)C18—H180.9500
C3—H30.9500C19—C201.385 (6)
C4—C51.381 (5)C19—H190.9500
C4—H40.9500C20—H200.9500
C5—C61.376 (5)C21—C261.392 (5)
C5—H50.9500C21—C221.396 (5)
C6—C71.497 (5)C22—C231.380 (5)
C7—C121.394 (5)C22—H220.9500
C7—C81.411 (5)C23—C241.391 (6)
C8—C91.379 (6)C23—H230.9500
C8—C131.489 (6)C24—C251.375 (6)
C9—C101.372 (7)C24—H240.9500
C9—H90.9500C25—C261.375 (5)
C10—C111.375 (6)C25—H250.9500
C10—H100.9500C26—H260.9500
C11—C121.390 (5)C27—H27A0.9800
C11—H110.9500C27—H27B0.9800
C12—C141.513 (5)C27—H27C0.9800
C27—Pd1—P191.64 (11)C8—C13—H13A109.5
C27—Pd1—N1170.52 (11)C8—C13—H13B109.5
P1—Pd1—N178.92 (8)H13A—C13—H13B109.5
C27—Pd1—Cl188.40 (11)C8—C13—H13C109.5
P1—Pd1—Cl1173.30 (4)H13A—C13—H13C109.5
N1—Pd1—Cl1101.07 (8)H13B—C13—H13C109.5
C15—P1—C21105.80 (15)C12—C14—H14A109.5
C15—P1—C1106.57 (17)C12—C14—H14B109.5
C21—P1—C1105.33 (16)H14A—C14—H14B109.5
C15—P1—Pd1114.90 (11)C12—C14—H14C109.5
C21—P1—Pd1123.61 (11)H14A—C14—H14C109.5
C1—P1—Pd198.77 (12)H14B—C14—H14C109.5
C2—N1—C6117.3 (3)C16—C15—C20118.5 (3)
C2—N1—Pd1114.0 (2)C16—C15—P1117.5 (3)
C6—N1—Pd1128.6 (2)C20—C15—P1124.0 (3)
C2—C1—P1108.0 (2)C15—C16—C17120.7 (4)
C2—C1—H1A110.1C15—C16—H16119.7
P1—C1—H1A110.1C17—C16—H16119.7
C2—C1—H1B110.1C18—C17—C16119.8 (4)
P1—C1—H1B110.1C18—C17—H17120.1
H1A—C1—H1B108.4C16—C17—H17120.1
N1—C2—C3122.4 (3)C19—C18—C17120.1 (4)
N1—C2—C1116.7 (3)C19—C18—H18120.0
C3—C2—C1120.8 (3)C17—C18—H18120.0
C4—C3—C2120.0 (4)C18—C19—C20120.6 (4)
C4—C3—H3120.0C18—C19—H19119.7
C2—C3—H3120.0C20—C19—H19119.7
C3—C4—C5118.1 (4)C15—C20—C19120.2 (4)
C3—C4—H4120.9C15—C20—H20119.9
C5—C4—H4120.9C19—C20—H20119.9
C6—C5—C4120.2 (4)C26—C21—C22118.5 (3)
C6—C5—H5119.9C26—C21—P1119.0 (3)
C4—C5—H5119.9C22—C21—P1122.6 (3)
N1—C6—C5121.9 (3)C23—C22—C21121.0 (4)
N1—C6—C7119.5 (3)C23—C22—H22119.5
C5—C6—C7118.4 (3)C21—C22—H22119.5
C12—C7—C8120.7 (4)C22—C23—C24119.8 (4)
C12—C7—C6118.6 (3)C22—C23—H23120.1
C8—C7—C6120.5 (4)C24—C23—H23120.1
C9—C8—C7118.0 (4)C25—C24—C23119.2 (4)
C9—C8—C13120.4 (4)C25—C24—H24120.4
C7—C8—C13121.6 (4)C23—C24—H24120.4
C10—C9—C8121.6 (4)C24—C25—C26121.4 (4)
C10—C9—H9119.2C24—C25—H25119.3
C8—C9—H9119.2C26—C25—H25119.3
C9—C10—C11120.2 (4)C25—C26—C21120.2 (4)
C9—C10—H10119.9C25—C26—H26119.9
C11—C10—H10119.9C21—C26—H26119.9
C10—C11—C12120.5 (4)Pd1—C27—H27A109.5
C10—C11—H11119.7Pd1—C27—H27B109.5
C12—C11—H11119.7H27A—C27—H27B109.5
C11—C12—C7118.9 (4)Pd1—C27—H27C109.5
C11—C12—C14120.2 (4)H27A—C27—H27C109.5
C7—C12—C14120.9 (4)H27B—C27—H27C109.5

Experimental details

(III)(IV)(V)
Crystal data
Chemical formula3[Pd(CH3)Cl(C21H22NOP)]·CHCl3C26H24Cl2NPPd[Pd(CH3)Cl(C26H24NP)]
Mr1596.12558.73538.32
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Monoclinic, P21/n
Temperature (K)173173173
a, b, c (Å)14.628 (1), 28.573 (5), 17.324 (2)10.151 (1), 11.461 (1), 12.106 (2)11.507 (1), 12.011 (2), 17.490 (2)
α, β, γ (°)90, 106.39 (5), 9095.40 (5), 109.93 (5), 112.23 (5)90, 99.92 (5), 90
V3)6947 (2)1184.7 (9)2381.2 (6)
Z424
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.111.090.97
Crystal size (mm)0.13 × 0.10 × 0.080.13 × 0.10 × 0.080.10 × 0.08 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
58356, 20304, 13997 14956, 5587, 4878 6838, 6837, 4250
Rint0.0670.0330.045
(sin θ/λ)max1)0.7040.6570.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.123, 1.09 0.031, 0.078, 1.00 0.055, 0.112, 0.91
No. of reflections2030455876837
No. of parameters766280280
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.880.49, 0.800.72, 0.63

Computer programs: Collect (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON 98 (Spek, 1998), SHELXL97.

Selected geometric parameters (Å, º) for (III) top
Pd1—Cl12.3838 (10)Pd3—Cl32.3929 (12)
Pd1—P12.1650 (9)Pd3—P32.1725 (13)
Pd1—N12.205 (3)Pd3—N32.200 (3)
Pd1—C12.038 (4)Pd3—C452.034 (4)
Pd2—Cl22.4047 (10)P1—O11.611 (2)
Pd2—P22.1717 (10)P2—O21.608 (2)
Pd2—N22.193 (3)P3—O31.617 (2)
Pd2—C232.050 (4)
C1—Pd1—P191.45 (12)C23—Pd2—Cl288.48 (12)
C1—Pd1—N1173.65 (14)P2—Pd2—Cl2175.46 (4)
P1—Pd1—N184.03 (8)N2—Pd2—Cl294.50 (8)
C1—Pd1—Cl190.20 (12)C45—Pd3—P391.45 (12)
P1—Pd1—Cl1172.09 (4)C45—Pd3—N3174.34 (14)
N1—Pd1—Cl194.87 (8)P3—Pd3—N384.71 (8)
C23—Pd2—P293.23 (12)C45—Pd3—Cl390.38 (12)
C23—Pd2—N2176.97 (13)P3—Pd3—Cl3168.49 (4)
P2—Pd2—N283.76 (8)N3—Pd3—Cl394.21 (9)
Selected geometric parameters (Å, º) for (IV) top
Pd1—Cl12.3747 (12)P1—C11.826 (3)
Pd1—Cl22.2749 (13)N1—C21.369 (3)
Pd1—P12.2093 (11)C1—C21.506 (3)
Pd1—N12.098 (2)
N1—Pd1—P181.74 (5)N1—Pd1—Cl196.05 (5)
N1—Pd1—Cl2171.99 (5)P1—Pd1—Cl1167.92 (2)
P1—Pd1—Cl290.52 (3)Cl2—Pd1—Cl191.95 (3)
Selected geometric parameters (Å, º) for (V) top
Pd1—Cl12.3681 (14)P1—C11.823 (4)
Pd1—P12.189 (2)N1—C21.356 (4)
Pd1—N12.286 (3)C1—C21.510 (5)
Pd1—C272.042 (4)
C27—Pd1—P191.64 (11)C27—Pd1—Cl188.40 (11)
C27—Pd1—N1170.52 (11)P1—Pd1—Cl1173.30 (4)
P1—Pd1—N178.92 (8)N1—Pd1—Cl1101.07 (8)
Hydrogen-bond parameters (Å, °) for compounds (III)–(V) top
CompoundD—H···AD—HH···AD···AD—H···A
(III)C13—H13···Cl1i0.952.743.630 (4)156
C22—H22···O10.952.562.975 (5)107
C32—H32···Cl20.982.683.449 (4)136
C66—H66···O30.952.532.909 (5)104
C67—H67···Cl2ii1.002.563.523 (4)161
(IV)C4—H4···Cl2ii0.952.733.410 (4)130
(V)C23—H23···Cl1ii0.952.833.750 (4)164
Symmetry codes: (i) x, 1/2 − y, −1/2 + z; (ii) 1 + x, y, z
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds