Download citation
Download citation
link to html
Isomorphous triclinic forms of di­chloro­[phthalocyaninato(2−)]­tin(IV), [Sn(C32H16N8)Cl2], and di­chloro­[phthalocyaninato(2−)]­ger­manium(IV), [Sn(C32H16N8)Cl2], and a monoclinic form of the latter have been obtained from the reaction of pure tin and germanium powder, respectively, with phthalo­nitrile under a stream of ICl vapour. All three crystal structures consist of centrosymmetric [SnPcCl2] and [GePcCl2] [Pc is phthalocyaninate(2−)] mol­ecules, which are separated but interacting. In the triclinic forms (Sn and Ge), the Pc macrocycles are not staggered but slipped, and in the monoclinic form (Ge), the mol­ecules are additionally inclined. In both cases, the central Sn or Ge atom is six-coordinated by the four iso­indole N atoms of the Pc macrocyclic ligand and by two Cl atoms (located trans) into a tetragonal–bipyramidal structure. The arrangement of [SnPcCl2] and [GePcCl2] mol­ecules in the crystal structure is determined mainly by intermolecular C—H...Cl, π–π and van der Waals interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103009417/gg1161sup1.cif
Contains datablocks global, Ia, IIa, IIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103009417/gg1161Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103009417/gg1161IIasup3.hkl
Contains datablock IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103009417/gg1161IIbsup4.hkl
Contains datablock IIb

CCDC references: 214377; 214378; 214379

Comment top

Continuing our investigation of the synthesis and characterization of metallophthalocyaninato complexes under a stream of halogen vapour (I2, IBr and ICl), we have obtained several metallophthalocyaninato complexes. The iodine-doped metallophthalocyaninato complexes have been reported previously (Kubiak & Janczak, 1997; Janczak et al., 1998, 1999a, 2000; Janczak & Kubiak, 1999a,b; Janczak & Idemori, 2001a; Janczak, 2003; Janczak & Kubiak, 1999c; Janczak & Idemori, 2001b; Janczak et al., 1999b; Janczak et al., 1999c; Janczak & Idemori, 2002). Quite recently, we reported two Nb(V) diphthalocyaninato complexes stapled by two interring σ C—C bonds obtained under IBr vapour (Janczak & Kubiak, 2003a) and the SbPcCl complex obtained under ICl vapour (Janczak & Kubiak, 2001).

Isostructural triclinic crystals of the SnPcCl2, (Ia), and GePcCl2, (IIa), complexes have been obtained directly from the reactions of powdered Sn and Ge, respectively, with phthalonitrile under a stream of ICl vapour at about 433 K, while at higher temperature (ca 453 K), the monoclinic modifications of these complexes, (Ib) and (IIb), are formed (Kubiak & Janczak, 2003). We report here the crystal structures of the triclinic forms of SnPcCl2, (Ia), and GePcCl2,(IIa), and the monoclinic form of GePcCl2, (IIb).

Crystals of (I) and (II) are built up from separate but interacting SnPcCl2 and GePcCl2 molecules (Fig. 1). The central Sn [(Ia)] and Ge [(IIa) and (IIb)] atoms are six-coordinated by four isoindole N atoms of the [phthalocyaninato]2− (Pc) macrocyclic ligand and by two Cl atoms (in a trans geometry) in a slightly distorted square bipyramid. This geometry is in agreement with the interpretation of the spectra of these compounds and related (4 + 2)-coordinated metallophthaloyaninato complexes (O'Rourke & Curran, 1970; Fujiki et al., 1986). In both cases, the slightly buckled Pc macro-ring resides on an crystallographic inversion centre. The largest displacements from the N4-isoindole plane are observed from the outermost C atoms, C4 and C5, which are displaced by ~0.53, ~0.42 and ~0.21 Å in (Ia), (IIa) and (IIb), respectively. The SnIV and GeIV atoms are located at the centre of the N4-isoindole square. The Sn—N and Ge—N distances in (Ia) and (IIa) are comparable to those found in their monoclinic modifications, (Ib)? (Rogers & Osborn, 1971) and (IIb), as well as to the distances observed in other Sn and Ge phthalocyaninato complexes (Ejsmont & Kubiak, 1997; Krämer, 1985; Janczak et al. 1999c; Janczak & Kubiak,1999 d).

In both (Ia) and (IIa), the axially coordinated Cl atoms are at comparable distances from the Sn and Ge atoms [2.470 (2) Å in (Ia) and 2.475 (2) Å in (IIa)]. However, in the monoclinic modifications of these complexes, the axial Sn—Cl and Ge—Cl distances are different, viz. 2.448 (2) Å (Ib)? (Rogers & Osborn, 1971) and 2.299 (1) Å in (IIb). Thus, in the triclinic modification, the Ge—Cl bond is longer than that in the monoclinic modification, which indicates the different character of the Ge—Cl bond in these modifications; the longer Ge—Cl bond in the triclinic form is more ionic than the shorter bond in the monoclinic modification. The Sn—Cl bond lengths in the two modifications of the SnPcCl2 complex are comparable, which supports the hypothesis that these bonds have the same character?. The differences between the Ge—Cl bonds of the two modifications are consistent with far-IR spectroscopy, which shows the band at a higher frequency for the monoclinic modification (shorter Ge—Cl bond) than the band in the triclinic modification (longer Ge—Cl bond), while the Sn—Cl vibrational bands are observed at almost the same frequency (Kubiak & Janczak, 2003).

The most remarkable feature of (Ia) and (IIa) is that the [phthalocyaninato]2− macrocycles are not staggered but slipped. In the monoclinic form, the molecules are additionally inclined, the angle between the N4-isoindole planes of two neighbouring [phthalocyaninato]2− macrocycles being equal to 19.2 (2)°. In the unit cell (Figs. 2a and 2 b) there are significant intermolecular C14—H14···Cli [symmetry code: (i) 1 − x,1 + y,1 − z] hydrogen-bonding interactions, with H14···Cli distances of 2.83 and 2.89 Å, C14···Cli distances of 3.679 (2) and 3.747 (2) Å, and C4—H4···Cli angles of 153 and 154° in (Ia) and (IIa), respectively. The corresponding C4—H4···Clii [symmetry code: (ii) 1/2 − x,-1/2 + y,1/2 − z] hydrogen-bonding interactions in (IIb) exhibit H4···Clii distances of 2.87 Å, C4···Clii distances of 3.579 (2) Å and C4—H4···Clii angles of 134°. This interaction causes the slight tilt of the Sn—Cl [1.3 (1)° in (Ia) and 2.5° in (Ib?); Rogers & Osborn, 1971] and Ge—Cl [0.9 (1)° in (IIa) and 1.2 (1)° in (IIb)] axis from the normal to the N2/M/N4 plane (M = Sn and Ge). The C—H···Cl intermolecular interactions that link the SnPcCl2 and GePcCl2 molecules into two-dimensional sheets makes the distance between the halves of the phthalocyaninato(2-) rings of neighbouring molecules shorter than ~3.4 Å. This value indicates the ππ interaction between the phenyl rings of the [phthalocyaninato]2− macrocycles, since this distance is shorter than van der Waals distance for an aromatic C atom (Pauling, 1960). This ππ interaction between the phthalocyaninato rings of neighbouring molecules within the sheet (Figs. 2a and 2 b) is significant and, together with the van der Waals and C—H···Cl interactions, is responsible for the molecular arrangement and the crystal packing. The ππ intermolecular interaction is a common feature in the field of phthalocyanine chemistry, since phthalocyanine and its metal complexes tend to aggregate the molecules to each other as a result of the strong ππ intermolecular interaction (Nevin et al., 1987; Terekhov et al., 1996; Insago et al., 1997, 1998). The solubility of the SnPcCl2 and GePcCl2 complexes in polar solvents, such as water, methanol and ethanol, is insignificant, but they are slightly soluble in pyridine, DMF, DMSO, THF and high-boiling aromatic solvents, such as chloronaphthalene or quinoline. As can be seen, from the crystal structure architecture of SnPcCl2 and GePcCl2, molecules with polar Sn—Cl and Ge—Cl bonds on both sides of the [phthalocyaninato]2− ring are surrounded by the hydrophobic peripheral phenyl rings of neighbouring molecules, which prevent the interactions of polar solvents with the polar Sn—Cl or Ge—Cl bonds, thus leading to the limited solubility of the crystals in polar solvents.

Experimental top

The triclinic and monoclinic crystals of SnPcCl2 and GePcCl2 were obtained by the direct reaction of the pure powdered tin or germanium with phthalonitrile under a stream of ICl vapours at about 433 and 453 K, respectively (Kubiak & Janczak, 2003). At this temperature, the liquid 1,2-dicyanobenzene undergoes catalytic tetramerization, with simultaneous transfer of two electrons from Sn (Ge) to the Pc ring, the other two electrons are transfered from Sn(Ge) to the ICl to form I and Cl ions. Crystals of SnPcCl2 and GePcCl2 were grown, as well as their iodine analogues (SnPcI2 and GePcI2).

Refinement top

The 960 images for six different runs covered over 95% of the Ewald sphere. H atoms were treated as riding, with C—H distances of 0.93 Å.

Computing details top

Data collection: KM-4 CCD Software (Kuma, 2000) for (Ia); KM-4 CCD software (Kuma, 2000) for (IIa); KM-4 CCD Software (Kuma, 2000 for (IIb). Cell refinement: KM-4 CCD Software for (Ia), (IIb); KM-4 CCD software for (IIa). Data reduction: KM-4 CCD Software for (Ia), (IIb); KM-4 CCD software for (IIa). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) and (II), showing displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular packing in the unit cell, showing the intermolecular C—H···Cl interactions between the MIVPcCl2 molecules [M = Sn (Ia) and Ge (IIa)] in the triclinic form (a) and in the monoclinic form (b).
(Ia) dichloro(phthalocyaninato(2-))tin(IV) top
Crystal data top
[Sn(C32H16N8)Cl2]Z = 1
Mr = 702.12F(000) = 348
Triclinic, P1Dx = 1.743 Mg m3
Dm = 1.74 Mg m3
Dm measured by floatation
Hall symbol: -P 1Melting point: sublimation K
a = 7.363 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.676 (2) ÅCell parameters from 2604 reflections
c = 11.048 (2) Åθ = 3.7–27.6°
α = 74.21 (3)°µ = 1.20 mm1
β = 80.33 (3)°T = 293 K
γ = 85.47 (3)°Parallelepiped, violet
V = 669.1 (2) Å30.36 × 0.18 × 0.12 mm
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
2968 independent reflections
Radiation source: fine-focus sealed tube2604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 27.6°, θmin = 3.7°
ω scanh = 99
Absorption correction: analytical
face-indexed, SHELXTL (Sheldrick, 1990)
k = 1011
Tmin = 0.673, Tmax = 0.870l = 1214
6020 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.8816P]
where P = (Fo2 + 2Fc2)/3
2968 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Sn(C32H16N8)Cl2]γ = 85.47 (3)°
Mr = 702.12V = 669.1 (2) Å3
Triclinic, P1Z = 1
a = 7.363 (1) ÅMo Kα radiation
b = 8.676 (2) ŵ = 1.20 mm1
c = 11.048 (2) ÅT = 293 K
α = 74.21 (3)°0.36 × 0.18 × 0.12 mm
β = 80.33 (3)°
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
2968 independent reflections
Absorption correction: analytical
face-indexed, SHELXTL (Sheldrick, 1990)
2604 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.870Rint = 0.025
6020 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.01Δρmax = 0.53 e Å3
2968 reflectionsΔρmin = 0.54 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.23050 (13)0.14501 (11)0.40982 (8)0.0544 (2)
Sn0.50000.00000.50000.03902 (12)
N10.6095 (3)0.3194 (3)0.5933 (2)0.0342 (5)
N20.4291 (3)0.0797 (3)0.6619 (2)0.0353 (6)
N30.2387 (4)0.1413 (3)0.7897 (2)0.0367 (6)
N40.3429 (4)0.1964 (3)0.5833 (2)0.0381 (6)
C10.5000 (4)0.2131 (3)0.6782 (3)0.0326 (6)
C20.4346 (4)0.2169 (4)0.8101 (3)0.0340 (6)
C30.4650 (5)0.3226 (4)0.8780 (3)0.0415 (7)
H30.53500.41260.84000.050*
C40.3866 (5)0.2883 (4)1.0056 (3)0.0478 (8)
H40.40680.35611.05400.057*
C50.2789 (5)0.1557 (4)1.0628 (3)0.0469 (8)
H50.22780.13741.14810.056*
C60.2462 (4)0.0500 (4)0.9951 (3)0.0404 (7)
H60.17370.03841.03330.049*
C70.3261 (4)0.0815 (4)0.8680 (3)0.0345 (6)
C80.3239 (4)0.0047 (4)0.7712 (3)0.0339 (6)
C90.2452 (4)0.2265 (4)0.7046 (3)0.0351 (6)
C100.1494 (4)0.3744 (3)0.7263 (3)0.0359 (6)
C110.0310 (4)0.4577 (4)0.8306 (3)0.0414 (7)
H110.00190.42050.90300.050*
C120.0366 (5)0.5991 (4)0.8226 (3)0.0477 (8)
H120.11530.65830.89150.057*
C130.0106 (5)0.6544 (4)0.7140 (4)0.0474 (8)
H130.03820.74910.71190.057*
C140.1289 (4)0.5714 (4)0.6086 (3)0.0407 (7)
H140.16110.60900.53640.049*
C150.1973 (4)0.4294 (3)0.6160 (3)0.0344 (6)
C160.3197 (4)0.3130 (3)0.5245 (3)0.0345 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0634 (6)0.0622 (6)0.0470 (5)0.0162 (4)0.0195 (4)0.0289 (4)
Sn0.0534 (2)0.03832 (19)0.02815 (17)0.01040 (13)0.00157 (12)0.01566 (13)
N10.0402 (14)0.0342 (13)0.0316 (13)0.0033 (10)0.0044 (10)0.0144 (10)
N20.0453 (14)0.0364 (13)0.0280 (12)0.0078 (11)0.0008 (10)0.0159 (10)
N30.0464 (15)0.0377 (14)0.0273 (12)0.0063 (11)0.0000 (10)0.0127 (11)
N40.0502 (15)0.0374 (14)0.0294 (13)0.0114 (11)0.0014 (11)0.0151 (11)
C10.0366 (16)0.0351 (15)0.0305 (14)0.0006 (12)0.0053 (12)0.0162 (12)
C20.0367 (16)0.0374 (16)0.0317 (15)0.0045 (12)0.0059 (12)0.0166 (13)
C30.0464 (18)0.0430 (17)0.0428 (18)0.0015 (14)0.0086 (14)0.0238 (15)
C40.059 (2)0.056 (2)0.0393 (18)0.0059 (17)0.0117 (15)0.0304 (16)
C50.059 (2)0.057 (2)0.0280 (15)0.0091 (17)0.0055 (14)0.0202 (15)
C60.0469 (18)0.0454 (18)0.0297 (15)0.0044 (14)0.0035 (13)0.0141 (14)
C70.0394 (16)0.0373 (16)0.0290 (14)0.0041 (12)0.0054 (12)0.0141 (12)
C80.0411 (16)0.0362 (15)0.0263 (14)0.0005 (12)0.0024 (11)0.0133 (12)
C90.0416 (17)0.0353 (15)0.0289 (14)0.0053 (13)0.0007 (12)0.0111 (12)
C100.0426 (17)0.0315 (15)0.0323 (15)0.0039 (13)0.0042 (12)0.0062 (12)
C110.0445 (18)0.0387 (17)0.0371 (16)0.0028 (14)0.0033 (13)0.0050 (13)
C120.0438 (19)0.0412 (18)0.050 (2)0.0102 (15)0.0038 (15)0.0022 (15)
C130.049 (2)0.0333 (17)0.060 (2)0.0088 (14)0.0166 (16)0.0053 (15)
C140.0458 (18)0.0349 (16)0.0449 (18)0.0011 (13)0.0147 (14)0.0121 (14)
C150.0375 (16)0.0341 (15)0.0329 (15)0.0020 (12)0.0083 (12)0.0090 (12)
C160.0411 (17)0.0331 (15)0.0327 (15)0.0046 (12)0.0040 (12)0.0143 (12)
Geometric parameters (Å, º) top
Sn—Cl2.4700 (12)C4—H40.9300
Sn—N22.063 (2)C5—C61.388 (5)
Sn—N42.047 (3)C5—H50.9300
Sn—N4i2.047 (3)C6—C71.389 (4)
Sn—N2i2.063 (2)C6—H60.9300
Sn—Cli2.4700 (12)C7—C81.465 (4)
N1—C11.331 (4)C9—C101.456 (4)
N1—C16i1.332 (4)C10—C111.386 (4)
N2—C11.372 (4)C10—C151.407 (4)
N2—C81.374 (4)C11—C121.390 (5)
N3—C81.335 (4)C11—H110.9300
N3—C91.338 (4)C12—C131.391 (5)
N4—C161.378 (4)C12—H120.9300
N4—C91.377 (4)C13—C141.391 (5)
C1—C21.464 (4)C13—H130.9300
C2—C31.385 (4)C14—C151.395 (4)
C2—C71.412 (4)C14—H140.9300
C3—C41.390 (5)C15—C161.462 (4)
C3—H30.9300C16—N1i1.332 (4)
C4—C51.390 (5)
N4—Sn—N4i180.00 (19)C6—C5—H5119.3
N2—Sn—Cl91.36 (8)C4—C5—H5119.3
N4—Sn—Cl89.42 (8)C5—C6—C7117.4 (3)
N4—Sn—N2i89.91 (10)C5—C6—H6121.3
N4—Sn—Cli90.58 (8)C7—C6—H6121.3
N4i—Sn—N2i90.09 (10)C6—C7—C2121.1 (3)
N4—Sn—N290.09 (10)C6—C7—C8131.8 (3)
N4i—Sn—N289.91 (10)C2—C7—C8107.1 (2)
N2i—Sn—N2180.00 (6)N3—C8—N2127.9 (3)
N4i—Sn—Cl90.58 (8)N3—C8—C7125.3 (3)
N2i—Sn—Cl88.64 (8)N2—C8—C7106.8 (2)
N4i—Sn—Cli89.42 (8)N3—C9—N4128.2 (3)
N2i—Sn—Cli91.36 (8)N3—C9—C10125.1 (3)
N2—Sn—Cli88.64 (8)N4—C9—C10106.7 (2)
Cl—Sn—Cli180.00 (4)C11—C10—C15121.4 (3)
C1—N1—C16i126.5 (2)C11—C10—C9131.1 (3)
C1—N2—C8112.1 (2)C15—C10—C9107.5 (2)
C1—N2—Sn123.65 (19)C10—C11—C12117.2 (3)
C8—N2—Sn123.81 (19)C10—C11—H11121.4
C8—N3—C9125.9 (2)C12—C11—H11121.4
C16—N4—C9111.8 (2)C13—C12—C11121.7 (3)
C16—N4—Sn124.26 (19)C13—C12—H12119.2
C9—N4—Sn123.89 (19)C11—C12—H12119.2
N1—C1—N2127.9 (3)C12—C13—C14121.6 (3)
N1—C1—C2125.3 (3)C12—C13—H13119.2
N2—C1—C2106.8 (2)C14—C13—H13119.2
C3—C2—C7121.1 (3)C13—C14—C15117.0 (3)
C3—C2—C1131.6 (3)C13—C14—H14121.5
C7—C2—C1107.3 (2)C15—C14—H14121.5
C2—C3—C4117.2 (3)C14—C15—C10121.1 (3)
C2—C3—H3121.4C14—C15—C16131.6 (3)
C4—C3—H3121.4C10—C15—C16107.4 (2)
C5—C4—C3121.8 (3)N1i—C16—N4127.6 (3)
C5—C4—H4119.1N1i—C16—C15125.9 (3)
C3—C4—H4119.1N4—C16—C15106.5 (2)
C6—C5—C4121.3 (3)
Symmetry code: (i) x+1, y, z+1.
(IIa) dichloro(phthalocyaninato(2-))germanium(IV) top
Crystal data top
[Ge(C32H16N8)Cl2]Z = 1
Mr = 656.02F(000) = 330
Triclinic, P1Dx = 1.635 Mg m3
Dm = 1.63 Mg m3
Dm measured by floatation
Hall symbol: -P 1Melting point: sublimation K
a = 7.365 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.704 (2) ÅCell parameters from 3082 reflections
c = 10.966 (2) Åθ = 2.8–28°
α = 73.85 (3)°µ = 1.39 mm1
β = 80.61 (3)°T = 293 K
γ = 86.39 (3)°Parallelepiped, violet
V = 666.1 (2) Å30.36 × 0.25 × 0.18 mm
Data collection top
KUMA KM-4 CCD area-detector
diffractometer
3082 independent reflections
Radiation source: fine-focus sealed tube1936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 28.0°, θmin = 2.8°
ω scanh = 99
Absorption correction: analytical
face-indexed, SHELXTL (Sheldrick, 1990)
k = 1110
Tmin = 0.634, Tmax = 0.787l = 1413
5657 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.2297P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3082 reflectionsΔρmax = 0.35 e Å3
197 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.110 (10)
Crystal data top
[Ge(C32H16N8)Cl2]γ = 86.39 (3)°
Mr = 656.02V = 666.1 (2) Å3
Triclinic, P1Z = 1
a = 7.365 (1) ÅMo Kα radiation
b = 8.704 (2) ŵ = 1.39 mm1
c = 10.966 (2) ÅT = 293 K
α = 73.85 (3)°0.36 × 0.25 × 0.18 mm
β = 80.61 (3)°
Data collection top
KUMA KM-4 CCD area-detector
diffractometer
3082 independent reflections
Absorption correction: analytical
face-indexed, SHELXTL (Sheldrick, 1990)
1936 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 0.787Rint = 0.013
5657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
3082 reflectionsΔρmin = 0.29 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge0.50000.00000.50000.0816 (3)
Cl0.22982 (11)0.14435 (10)0.41116 (8)0.0687 (3)
N10.3866 (5)0.3169 (4)0.4072 (3)0.0841 (9)
N20.5651 (4)0.0748 (4)0.3434 (3)0.0763 (8)
N30.7611 (4)0.1418 (4)0.2114 (3)0.0796 (9)
N40.6527 (5)0.1896 (4)0.4186 (3)0.0851 (9)
C10.4963 (5)0.2066 (4)0.3231 (4)0.0766 (10)
C20.5612 (5)0.2122 (5)0.1943 (4)0.0825 (10)
C30.5343 (6)0.3205 (5)0.1253 (4)0.0883 (11)
H30.46390.41120.16410.106*
C40.6131 (7)0.2898 (6)0.0008 (5)0.1025 (14)
H40.59470.35890.04700.123*
C50.7237 (6)0.1532 (5)0.0578 (4)0.0918 (12)
H50.77700.13340.14340.110*
C60.7514 (6)0.0521 (5)0.0105 (4)0.0840 (11)
H60.82630.03590.02720.101*
C70.6693 (6)0.0794 (5)0.1350 (4)0.0814 (10)
C80.6717 (5)0.0053 (4)0.2335 (4)0.0759 (9)
C90.7496 (5)0.2191 (4)0.2967 (4)0.0759 (9)
C100.8628 (7)0.3607 (6)0.2798 (4)0.1078 (18)
C110.9684 (6)0.4542 (5)0.1683 (5)0.0928 (13)
H110.99430.42330.09260.111*
C121.0318 (6)0.5973 (5)0.1796 (5)0.0923 (12)
H121.10770.66100.11020.111*
C130.9866 (6)0.6470 (5)0.2889 (5)0.0979 (14)
H131.03860.73940.29360.117*
C140.8694 (6)0.5657 (5)0.3890 (5)0.0850 (11)
H140.83540.60430.46060.102*
C150.7998 (5)0.4252 (5)0.3854 (4)0.0799 (10)
C160.6775 (5)0.3097 (4)0.4740 (4)0.0777 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge0.0903 (4)0.0753 (4)0.0770 (4)0.0119 (3)0.0052 (3)0.0250 (3)
Cl0.0738 (5)0.0686 (5)0.0657 (5)0.0019 (4)0.0033 (4)0.0263 (4)
N10.086 (2)0.0753 (19)0.096 (2)0.0091 (16)0.0015 (18)0.0380 (17)
N20.0773 (18)0.0684 (17)0.079 (2)0.0123 (14)0.0064 (15)0.0133 (15)
N30.086 (2)0.0721 (19)0.079 (2)0.0150 (15)0.0044 (16)0.0242 (16)
N40.098 (2)0.078 (2)0.078 (2)0.0108 (17)0.0009 (17)0.0272 (16)
C10.078 (2)0.068 (2)0.080 (2)0.0010 (17)0.0023 (19)0.0213 (18)
C20.072 (2)0.080 (2)0.096 (3)0.0054 (18)0.010 (2)0.029 (2)
C30.094 (3)0.095 (3)0.086 (3)0.007 (2)0.001 (2)0.046 (2)
C40.115 (3)0.113 (3)0.094 (3)0.006 (3)0.018 (3)0.053 (3)
C50.102 (3)0.100 (3)0.069 (2)0.004 (2)0.009 (2)0.027 (2)
C60.093 (3)0.077 (2)0.078 (2)0.0100 (19)0.004 (2)0.0229 (19)
C70.087 (2)0.072 (2)0.086 (3)0.0045 (19)0.003 (2)0.029 (2)
C80.081 (2)0.071 (2)0.072 (2)0.0040 (17)0.0017 (18)0.0188 (17)
C90.081 (2)0.066 (2)0.071 (2)0.0045 (17)0.0017 (18)0.0110 (17)
C100.142 (4)0.102 (3)0.081 (3)0.075 (3)0.036 (3)0.040 (2)
C110.078 (2)0.073 (2)0.107 (3)0.0114 (19)0.005 (2)0.000 (2)
C120.087 (3)0.084 (3)0.100 (3)0.014 (2)0.013 (2)0.012 (2)
C130.094 (3)0.062 (2)0.136 (4)0.001 (2)0.040 (3)0.012 (3)
C140.086 (2)0.068 (2)0.099 (3)0.0039 (19)0.023 (2)0.014 (2)
C150.085 (2)0.074 (2)0.079 (2)0.0049 (18)0.0130 (19)0.0173 (19)
C160.086 (2)0.070 (2)0.076 (2)0.0085 (18)0.0063 (19)0.0206 (18)
Geometric parameters (Å, º) top
Ge—Cl2.4747 (11)C4—H40.9300
Ge—N21.979 (3)C5—C61.347 (6)
Ge—N41.968 (3)C5—H50.9300
Ge—N2i1.979 (3)C6—C71.361 (6)
Ge—Cli2.4747 (11)C6—H60.9300
Ge—N4i1.968 (3)C7—C81.470 (6)
N1—C16i1.329 (5)C9—C101.484 (5)
N1—C11.337 (5)C10—C111.406 (5)
N2—C81.360 (5)C10—C151.423 (6)
N2—C11.369 (5)C11—C121.401 (6)
N3—C91.286 (5)C11—H110.9300
N3—C81.337 (5)C12—C131.369 (7)
N4—C91.373 (5)C12—H120.9300
N4—C161.381 (5)C13—C141.337 (6)
C1—C21.428 (6)C13—H130.9300
C2—C71.387 (6)C14—C151.368 (5)
C2—C31.404 (6)C14—H140.9300
C3—C41.353 (6)C15—C161.432 (5)
C3—H30.9300C16—N1i1.329 (5)
C4—C51.420 (7)
N2—Ge—Cl89.09 (10)C6—C5—H5119.9
N4—Ge—Cl90.71 (11)C4—C5—H5119.9
N4i—Ge—N289.83 (13)C5—C6—C7119.7 (4)
N2—Ge—N490.17 (13)C5—C6—H6120.1
N4i—Ge—N4180.00 (13)C7—C6—H6120.1
N4i—Ge—N2i90.17 (13)C6—C7—C2121.2 (4)
N4—Ge—N2i89.83 (13)C6—C7—C8133.0 (4)
N2—Ge—N2i180.0C2—C7—C8105.8 (3)
N4i—Ge—Cl89.29 (11)N3—C8—N2128.0 (4)
N2i—Ge—Cl90.91 (10)N3—C8—C7123.3 (3)
N4i—Ge—Cli90.71 (11)N2—C8—C7108.7 (3)
N4—Ge—Cli89.29 (11)N3—C9—N4131.4 (3)
N2—Ge—Cli90.91 (10)N3—C9—C10122.7 (3)
N2i—Ge—Cli89.09 (10)N4—C9—C10105.7 (3)
Cl—Ge—Cli180.00 (4)C11—C10—C15120.2 (4)
C16i—N1—C1123.2 (3)C11—C10—C9129.6 (4)
C8—N2—C1108.7 (3)C15—C10—C9107.2 (3)
C8—N2—Ge125.2 (3)C12—C11—C10115.2 (5)
C1—N2—Ge125.8 (3)C12—C11—H11122.4
C9—N3—C8121.8 (3)C10—C11—H11122.4
C9—N4—C16110.9 (3)C13—C12—C11122.6 (4)
C9—N4—Ge123.3 (3)C13—C12—H12118.7
C16—N4—Ge125.7 (3)C11—C12—H12118.7
N1—C1—N2127.4 (3)C14—C13—C12121.5 (4)
N1—C1—C2123.2 (4)C14—C13—H13119.3
N2—C1—C2109.4 (3)C12—C13—H13119.3
C7—C2—C3119.8 (4)C13—C14—C15119.6 (5)
C7—C2—C1107.5 (4)C13—C14—H14120.2
C3—C2—C1132.7 (4)C15—C14—H14120.2
C4—C3—C2118.4 (4)C14—C15—C10119.9 (4)
C4—C3—H3120.8C14—C15—C16134.0 (4)
C2—C3—H3120.8C10—C15—C16106.0 (3)
C3—C4—C5120.8 (4)N1i—C16—N4127.6 (3)
C3—C4—H4119.6N1i—C16—C15123.2 (4)
C5—C4—H4119.6N4—C16—C15109.0 (3)
C6—C5—C4120.1 (4)
Symmetry code: (i) x+1, y, z+1.
(IIb) dichloro(phthalocyaninato(2-))germanium(IV) top
Crystal data top
[Ge(C32H16N8)Cl2]F(000) = 660
Mr = 656.02Dx = 1.593 Mg m3
Dm = 1.59 Mg m3
Dm measured by floatation in CHCl3/CHBr3
Monoclinic, P21/nMelting point: sublimation K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.124 (2) ÅCell parameters from 2102 reflections
b = 14.810 (3) Åθ = 3.4–29°
c = 10.233 (2) ŵ = 1.36 mm1
β = 98.50 (3)°T = 293 K
V = 1367.6 (5) Å3Parallelepiped, violet
Z = 20.30 × 0.22 × 0.18 mm
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
3561 independent reflections
Radiation source: fine-focus sealed tube2102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 29.0°, θmin = 3.4°
ω–scanh = 1210
Absorption correction: analytical
face-indexed, SHELXTL (Sheldrick, 1990)
k = 2020
Tmin = 0.687, Tmax = 0.792l = 1313
12868 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.227P]
where P = (Fo2 + 2Fc2)/3
3561 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Ge(C32H16N8)Cl2]V = 1367.6 (5) Å3
Mr = 656.02Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.124 (2) ŵ = 1.36 mm1
b = 14.810 (3) ÅT = 293 K
c = 10.233 (2) Å0.30 × 0.22 × 0.18 mm
β = 98.50 (3)°
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
3561 independent reflections
Absorption correction: analytical
face-indexed, SHELXTL (Sheldrick, 1990)
2102 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.792Rint = 0.040
12868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 1.04 e Å3
3561 reflectionsΔρmin = 0.33 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge0.00000.00000.00000.04143 (13)
Cl0.05960 (7)0.03141 (5)0.20579 (6)0.04980 (18)
N10.3453 (2)0.07923 (15)0.1058 (2)0.0459 (5)
N20.0966 (2)0.11822 (14)0.00139 (19)0.0428 (5)
N30.1123 (2)0.21143 (14)0.0925 (2)0.0447 (5)
N40.1869 (2)0.05404 (13)0.0811 (2)0.0418 (5)
C10.2432 (3)0.13618 (17)0.0539 (2)0.0428 (6)
C20.2702 (3)0.23225 (17)0.0407 (2)0.0434 (6)
C30.3958 (3)0.28385 (19)0.0776 (3)0.0534 (7)
H30.48440.25820.11710.064*
C40.3830 (4)0.3763 (2)0.0526 (3)0.0640 (8)
H40.46540.41310.07550.077*
C50.2510 (4)0.4147 (2)0.0054 (3)0.0654 (8)
H50.24690.47670.01970.078*
C60.1245 (3)0.36329 (19)0.0427 (3)0.0571 (7)
H60.03600.38930.08180.069*
C70.1369 (3)0.27045 (18)0.0186 (2)0.0459 (6)
C80.0292 (3)0.19836 (17)0.0418 (2)0.0433 (6)
C90.2107 (3)0.14518 (17)0.1103 (2)0.0431 (6)
C100.3645 (3)0.15829 (18)0.1654 (2)0.0434 (6)
C110.4451 (3)0.23517 (19)0.2081 (2)0.0484 (6)
H110.40040.29170.20390.058*
C120.5941 (3)0.2249 (2)0.2571 (3)0.0560 (7)
H120.65020.27530.28700.067*
C130.6614 (3)0.1396 (2)0.2621 (3)0.0551 (7)
H130.76170.13450.29490.066*
C140.5828 (3)0.0633 (2)0.2197 (3)0.0503 (7)
H140.62810.00690.22330.060*
C150.4328 (3)0.07338 (18)0.1711 (2)0.0448 (6)
C160.3194 (3)0.00868 (17)0.1173 (2)0.0431 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge0.0360 (2)0.0393 (2)0.0490 (2)0.00555 (17)0.00630 (16)0.00128 (17)
Cl0.0503 (4)0.0506 (4)0.0501 (4)0.0052 (3)0.0124 (3)0.0003 (3)
N10.0403 (12)0.0444 (14)0.0530 (13)0.0093 (11)0.0062 (10)0.0006 (10)
N20.0414 (12)0.0415 (13)0.0460 (11)0.0058 (10)0.0078 (10)0.0024 (10)
N30.0444 (12)0.0432 (12)0.0468 (12)0.0047 (10)0.0072 (10)0.0019 (10)
N40.0387 (11)0.0375 (12)0.0494 (12)0.0046 (10)0.0073 (9)0.0013 (9)
C10.0412 (15)0.0392 (15)0.0477 (14)0.0101 (12)0.0061 (12)0.0005 (11)
C20.0484 (15)0.0405 (14)0.0424 (13)0.0093 (12)0.0105 (12)0.0020 (11)
C30.0539 (17)0.0537 (17)0.0508 (15)0.0181 (14)0.0019 (13)0.0021 (13)
C40.070 (2)0.058 (2)0.0631 (18)0.0279 (17)0.0034 (16)0.0025 (15)
C50.084 (2)0.0419 (17)0.0685 (19)0.0195 (17)0.0067 (17)0.0090 (14)
C60.0631 (19)0.0443 (17)0.0622 (17)0.0089 (14)0.0036 (14)0.0093 (13)
C70.0506 (16)0.0446 (15)0.0437 (14)0.0074 (13)0.0107 (12)0.0023 (12)
C80.0463 (15)0.0424 (15)0.0416 (13)0.0068 (12)0.0084 (11)0.0013 (11)
C90.0425 (15)0.0418 (15)0.0454 (14)0.0003 (12)0.0076 (11)0.0017 (11)
C100.0395 (14)0.0478 (16)0.0435 (14)0.0003 (12)0.0082 (11)0.0006 (12)
C110.0453 (15)0.0483 (16)0.0524 (15)0.0018 (13)0.0100 (13)0.0025 (13)
C120.0481 (16)0.0582 (19)0.0625 (17)0.0096 (14)0.0104 (14)0.0050 (14)
C130.0364 (14)0.067 (2)0.0618 (17)0.0019 (14)0.0054 (13)0.0032 (15)
C140.0432 (15)0.0524 (17)0.0551 (16)0.0094 (13)0.0065 (13)0.0046 (13)
C150.0411 (14)0.0486 (16)0.0452 (14)0.0021 (12)0.0080 (12)0.0025 (11)
C160.0383 (13)0.0490 (17)0.0422 (13)0.0075 (12)0.0063 (11)0.0032 (12)
Geometric parameters (Å, º) top
Ge—Cl2.2989 (8)C4—H40.9300
Ge—N21.959 (2)C5—C61.387 (4)
Ge—N41.954 (2)C5—H50.9300
Ge—N2i1.959 (2)C6—C71.398 (4)
Ge—N4i1.954 (2)C6—H60.9300
Ge—Cli2.2989 (8)C7—C81.446 (3)
N1—C11.309 (3)C9—C101.447 (4)
N1—C16i1.332 (3)C10—C111.390 (4)
N2—C81.379 (3)C10—C151.401 (4)
N2—C11.392 (3)C11—C121.386 (4)
N3—C91.324 (3)C11—H110.9300
N3—C81.333 (3)C12—C131.403 (4)
N4—C161.385 (3)C12—H120.9300
N4—C91.392 (3)C13—C141.373 (4)
C1—C21.454 (3)C13—H130.9300
C2—C31.383 (3)C14—C151.393 (3)
C2—C71.397 (4)C14—H140.9300
C3—C41.394 (4)C15—C161.458 (4)
C3—H30.9300C16—N1i1.332 (3)
C4—C51.385 (4)
N2—Ge—Cl88.83 (6)C4—C5—H5119.1
N4—Ge—Cl89.80 (6)C6—C5—H5119.1
N2—Ge—N490.02 (8)C5—C6—C7116.7 (3)
N4—Ge—N2i89.98 (8)C5—C6—H6121.7
N4i—Ge—N289.98 (8)C7—C6—H6121.7
N4i—Ge—N4180.00 (15)C2—C7—C6121.1 (2)
N4i—Ge—N2i90.02 (8)C2—C7—C8107.4 (2)
N2i—Ge—N2180.00 (15)C6—C7—C8131.5 (3)
N4i—Ge—Cl90.20 (6)N3—C8—N2127.6 (2)
N2i—Ge—Cl91.17 (6)N3—C8—C7123.5 (2)
N4i—Ge—Cli89.80 (6)N2—C8—C7108.9 (2)
N4—Ge—Cli90.20 (6)N3—C9—N4127.4 (2)
N2i—Ge—Cli88.83 (6)N3—C9—C10123.6 (2)
N2—Ge—Cli91.17 (6)N4—C9—C10109.0 (2)
Cl—Ge—Cli180.00 (5)C11—C10—C15120.7 (2)
C1—N1—C16i122.7 (2)C11—C10—C9132.1 (2)
C8—N2—C1108.5 (2)C15—C10—C9107.2 (2)
C8—N2—Ge126.03 (17)C12—C11—C10118.0 (3)
C1—N2—Ge125.40 (17)C12—C11—H11121.0
C9—N3—C8123.0 (2)C10—C11—H11121.0
C16—N4—C9108.1 (2)C11—C12—C13120.8 (3)
C16—N4—Ge125.96 (17)C11—C12—H12119.6
C9—N4—Ge125.93 (16)C13—C12—H12119.6
N1—C1—N2128.2 (2)C14—C13—C12121.6 (3)
N1—C1—C2123.2 (2)C14—C13—H13119.2
N2—C1—C2108.5 (2)C12—C13—H13119.2
C3—C2—C7121.9 (2)C13—C14—C15117.7 (3)
C3—C2—C1131.3 (3)C13—C14—H14121.2
C7—C2—C1106.8 (2)C15—C14—H14121.2
C2—C3—C4116.7 (3)C14—C15—C10121.2 (3)
C2—C3—H3121.7C14—C15—C16132.1 (3)
C4—C3—H3121.7C10—C15—C16106.7 (2)
C5—C4—C3121.7 (3)N1i—C16—N4127.6 (2)
C5—C4—H4119.1N1i—C16—C15123.4 (2)
C3—C4—H4119.1N4—C16—C15109.0 (2)
C4—C5—C6121.9 (3)
Symmetry code: (i) x, y, z.

Experimental details

(Ia)(IIa)(IIb)
Crystal data
Chemical formula[Sn(C32H16N8)Cl2][Ge(C32H16N8)Cl2][Ge(C32H16N8)Cl2]
Mr702.12656.02656.02
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/n
Temperature (K)293293293
a, b, c (Å)7.363 (1), 8.676 (2), 11.048 (2)7.365 (1), 8.704 (2), 10.966 (2)9.124 (2), 14.810 (3), 10.233 (2)
α, β, γ (°)74.21 (3), 80.33 (3), 85.47 (3)73.85 (3), 80.61 (3), 86.39 (3)90, 98.50 (3), 90
V3)669.1 (2)666.1 (2)1367.6 (5)
Z112
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.201.391.36
Crystal size (mm)0.36 × 0.18 × 0.120.36 × 0.25 × 0.180.30 × 0.22 × 0.18
Data collection
DiffractometerKuma KM-4 CCD area-detector
diffractometer
KUMA KM-4 CCD area-detector
diffractometer
Kuma KM-4 CCD area-detector
diffractometer
Absorption correctionAnalytical
face-indexed, SHELXTL (Sheldrick, 1990)
Analytical
face-indexed, SHELXTL (Sheldrick, 1990)
Analytical
face-indexed, SHELXTL (Sheldrick, 1990)
Tmin, Tmax0.673, 0.8700.634, 0.7870.687, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
6020, 2968, 2604 5657, 3082, 1936 12868, 3561, 2102
Rint0.0250.0130.040
(sin θ/λ)max1)0.6520.6610.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.01 0.053, 0.151, 1.06 0.044, 0.098, 1.02
No. of reflections296830823561
No. of parameters197197196
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.540.35, 0.291.04, 0.33

Computer programs: KM-4 CCD Software (Kuma, 2000), KM-4 CCD software (Kuma, 2000), KM-4 CCD Software (Kuma, 2000, KM-4 CCD Software, KM-4 CCD software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) for (Ia) top
Sn—Cl2.4700 (12)Sn—N42.047 (3)
Sn—N22.063 (2)
N2—Sn—Cl91.36 (8)N4—Sn—N2i89.91 (10)
N4—Sn—Cl89.42 (8)N4—Sn—Cli90.58 (8)
Symmetry code: (i) x+1, y, z+1.
Selected geometric parameters (Å, º) for (IIa) top
Ge—Cl2.4747 (11)Ge—N41.968 (3)
Ge—N21.979 (3)
N2—Ge—Cl89.09 (10)N4i—Ge—N289.83 (13)
N4—Ge—Cl90.71 (11)N2—Ge—N490.17 (13)
Symmetry code: (i) x+1, y, z+1.
Selected geometric parameters (Å, º) for (IIb) top
Ge—Cl2.2989 (8)Ge—N41.954 (2)
Ge—N21.959 (2)
N2—Ge—Cl88.83 (6)N4—Ge—N2i89.98 (8)
N4—Ge—Cl89.80 (6)N4—Ge—Cli90.20 (6)
N2—Ge—N490.02 (8)N2—Ge—Cli91.17 (6)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds