Download citation
Download citation
link to html
Tetrakis­(chloro­methyl)­phospho­nium chloride monohydrate, C4H8Cl4P+·Cl·H2O or P(CH2Cl)4+·Cl·H2O, is the first crystal structure determination of a tetrakis­(halogeno­methyl)­phospho­nium compound to date. The only comparable structures known so far are of phospho­nium ions containing just one halogeno­methyl group. The solvent water mol­ecule interacts with the Cl anion via hydrogen bonds, with O...Cl distances of 3.230 (2) and 3.309 (2) Å. The structure also contains several C—H...Cl and C—H...O contacts, though with longer D...A distances [D...A 3.286 (3)–3.662 (2) Å] or bent D—H...A angles. For these reasons, the C—H...Cl and C—H...O interactions should not be considered as strong hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102001543/gg1097sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102001543/gg1097Isup2.hkl
Contains datablock I

CCDC reference: 183035

Comment top

Hoffman (1921, 1930) reported on the formation of tetrakis(chloromethyl)phosphonium chloride as water-free needle-shaped crystals which melt at 466 K. We have now discovered that tetrakis(chloromethyl)phosphonium chloride also forms the title monohydrate, (I). Compound (I) can be obtained by dissolving tetrakis(chloromethyl)phosphonium chloride in organic solvents and then slowly removing the solvent in air. Monohydrate (I) can be distinguished from the anhydrous compound by the crystal habit and melting point. By recrystallization of (I) from methanol/ethyl acetate (3:16), needle-shaped crystals of the anhydrous material are recovered. \sch

The present structure determination of (I) is the first such to date, and the only comparable structures known so far are of phosphonium ions containing just one halogenomethyl group (Cambridge Structural Database, Version 5.22 Query; Allen & Kennard, 1993).

In the cation of (I), P is coordinated tetrahedrally by C atoms (Fig. 1). The Cl—C—PR2R conformations are all staggered, with torsion angles ranging from 161.8 (1) to 179.6 (1)°. The coordination of the Cl- anions by water molecules presents an interesting feature, which is shown in Fig. 2. The O—H···Cl- hydrogen bonds establish an approximately planar eight-membered ring, with a maximum deviation of 0.04 (2) Å from the best plane For which atom?. The O—H···Cl- hydrogen bonds are nearly linear.

Additional coordination of Cl- ions via C—H···Cl- interactions should be weaker than the O—H···Cl- bonds for polarization reasons. This is confirmed by the longer H···Cl- distances and the bent C—H···Cl angle, compared with the geometry of the O—H···Cl- contacts (Table 2).

Experimental top

Tetrakis(chloromethyl)phosphonium chloride (100 mg) was prepared by the method of Hoffman (1921, 1930) and Reeves et al. (1955), and dissolved in a mixture of methanol and ethyl acetate (3:16; 50 ml). The solvent was slowly removed at room temperature in an open vessel. After 5 d, colourless prism-shaped crystals of (I) formed (m.p. 401 K).

Refinement top

All H-atom positions were found on the difference Fourier map and refined independently with isotropic displacement parameters.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the cation of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The coordination of the Cl- anions in (I) by water molecules. Displacement ellipsoids are drawn at the 50% probability level and bond lengths are given in Å.
Tetrakis(chloromethyl)phosphonium chloride monohydrate top
Crystal data top
C4H8Cl4P+·Cl·H2ODx = 1.705 Mg m3
Mr = 282.34Melting point: 401 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 36817 reflections
a = 13.0928 (2) Åθ = 1.0–26.0°
b = 12.6946 (2) ŵ = 1.41 mm1
c = 13.2335 (2) ÅT = 293 K
V = 2199.51 (6) Å3Prismatic block, colourless
Z = 80.12 × 0.10 × 0.10 mm
F(000) = 1136
Data collection top
Nonius KappaCCD area-detector Query
diffractometer
1929 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Horizonally mounted graphite crystal monochromatorθmax = 26.0°, θmin = 2.7°
Detector resolution: 9 pixels mm-1h = 1616
CCD scansk = 1515
50779 measured reflectionsl = 1616
2171 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0246P)2 + 1.3871P]
where P = (Fo2 + 2Fc2)/3
2171 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C4H8Cl4P+·Cl·H2OV = 2199.51 (6) Å3
Mr = 282.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.0928 (2) ŵ = 1.41 mm1
b = 12.6946 (2) ÅT = 293 K
c = 13.2335 (2) Å0.12 × 0.10 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector Query
diffractometer
1929 reflections with I > 2σ(I)
50779 measured reflectionsRint = 0.058
2171 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.062All H-atom parameters refined
S = 1.08Δρmax = 0.32 e Å3
2171 reflectionsΔρmin = 0.28 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.80754 (4)0.19360 (4)0.73775 (3)0.03078 (12)
C10.74423 (19)0.08177 (17)0.68164 (17)0.0447 (5)
C20.72919 (16)0.25806 (18)0.83104 (15)0.0409 (5)
C30.91916 (16)0.14611 (18)0.80310 (16)0.0399 (4)
C40.84662 (17)0.28509 (15)0.64102 (14)0.0361 (4)
Cl10.65833 (5)0.12073 (5)0.58499 (5)0.05981 (18)
Cl20.62403 (4)0.32148 (4)0.77219 (4)0.04772 (14)
Cl30.87950 (5)0.06122 (4)0.90195 (4)0.05011 (15)
Cl40.92205 (5)0.21361 (5)0.55343 (4)0.05577 (17)
Cl50.43240 (4)0.44884 (4)0.66460 (4)0.04540 (14)
O0.35820 (15)0.58451 (15)0.47165 (16)0.0578 (4)
H1A0.7955 (18)0.0402 (18)0.6498 (18)0.052 (7)*
H1B0.710 (2)0.046 (2)0.728 (2)0.067 (8)*
H2A0.695 (2)0.213 (2)0.877 (2)0.066 (8)*
H2B0.7722 (18)0.3103 (18)0.8615 (18)0.052 (7)*
H3A0.9546 (17)0.2079 (18)0.8340 (17)0.049 (6)*
H3B0.9587 (19)0.108 (2)0.762 (2)0.060 (7)*
H4A0.7856 (18)0.3134 (17)0.6056 (18)0.049 (6)*
H4B0.8889 (17)0.3394 (19)0.6668 (17)0.049 (6)*
H50.373 (2)0.548 (2)0.527 (3)0.087 (11)*
H60.408 (2)0.581 (2)0.440 (2)0.064 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0313 (2)0.0327 (2)0.0283 (2)0.00104 (19)0.00338 (19)0.00134 (18)
C10.0474 (12)0.0418 (11)0.0448 (11)0.0094 (10)0.0042 (10)0.0068 (10)
C20.0392 (11)0.0475 (12)0.0360 (10)0.0047 (9)0.0056 (9)0.0037 (9)
C30.0392 (11)0.0447 (11)0.0357 (10)0.0045 (9)0.0022 (9)0.0079 (9)
C40.0436 (11)0.0344 (10)0.0303 (9)0.0021 (9)0.0041 (8)0.0007 (8)
Cl10.0506 (3)0.0761 (4)0.0527 (3)0.0038 (3)0.0090 (3)0.0244 (3)
Cl20.0404 (3)0.0454 (3)0.0573 (3)0.0082 (2)0.0009 (2)0.0092 (2)
Cl30.0689 (4)0.0416 (3)0.0398 (3)0.0007 (2)0.0021 (2)0.0093 (2)
Cl40.0728 (4)0.0542 (3)0.0403 (3)0.0142 (3)0.0231 (3)0.0056 (2)
Cl50.0476 (3)0.0482 (3)0.0404 (3)0.0009 (2)0.0023 (2)0.0016 (2)
O0.0512 (11)0.0659 (11)0.0562 (11)0.0027 (9)0.0008 (9)0.0112 (9)
Geometric parameters (Å, º) top
P—C11.804 (2)C1—H1B0.89 (3)
P—C21.802 (2)C2—H2A0.95 (3)
P—C31.802 (2)C2—H2B0.96 (2)
P—C41.803 (2)C3—H3A1.00 (2)
C1—Cl11.774 (2)C3—H3B0.89 (3)
C2—Cl21.775 (2)C4—H4A0.99 (2)
C3—Cl31.773 (2)C4—H4B0.95 (2)
C4—Cl41.7726 (19)O—H50.88 (3)
C1—H1A0.95 (2)O—H60.78 (3)
C1—P—C2112.20 (11)P—C2—H2A115.4 (16)
C1—P—C3107.88 (11)Cl2—C2—H2B109.0 (14)
C1—P—C4110.19 (10)P—C2—H2B105.6 (14)
C2—P—C3106.55 (10)H2A—C2—H2B115 (2)
C2—P—C4110.83 (10)Cl3—C3—H3A108.2 (13)
C3—P—C4109.04 (10)P—C3—H3A108.1 (13)
P—C1—Cl1111.64 (12)Cl3—C3—H3B107.0 (16)
P—C2—Cl2110.30 (11)P—C3—H3B111.1 (17)
P—C3—Cl3108.66 (11)H3A—C3—H3B114 (2)
P—C4—Cl4107.02 (10)Cl4—C4—H4A109.0 (13)
Cl1—C1—H1A106.4 (14)P—C4—H4A109.8 (13)
P—C1—H1A107.1 (14)Cl4—C4—H4B106.5 (14)
Cl1—C1—H1B109.0 (17)P—C4—H4B112.3 (14)
P—C1—H1B110.5 (17)H4A—C4—H4B112.1 (19)
H1A—C1—H1B112 (2)H5—O—H6103 (3)
Cl2—C2—H2A101.0 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H5···Cl50.88 (3)2.35 (3)3.230 (2)173 (3)
O—H6···Cl5i0.78 (3)2.53 (3)3.309 (2)175 (3)
C1—H1B···Cl5ii0.89 (3)2.65 (3)3.512 (2)165 (2)
C2—H2B···Cl5iii0.96 (2)2.76 (2)3.598 (2)146.6 (19)
C3—H3B···Cl5iv0.89 (3)2.79 (3)3.662 (2)166 (2)
C4—H4B···Cl5iii0.95 (2)2.69 (2)3.493 (2)142.9 (18)
C1—H1A···Ov0.95 (2)2.40 (2)3.286 (3)154.5 (19)
C4—H4A···Oi0.99 (2)2.50 (2)3.486 (3)169.9 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y, z+3/2; (iv) x+3/2, y1/2, z; (v) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC4H8Cl4P+·Cl·H2O
Mr282.34
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.0928 (2), 12.6946 (2), 13.2335 (2)
V3)2199.51 (6)
Z8
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector Query
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
50779, 2171, 1929
Rint0.058
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.08
No. of reflections2171
No. of parameters140
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.32, 0.28

Computer programs: COLLECT (Nonius, 1999), SCALEPACK (Otwinowski & Minor 1997), DENZO (Otwinowski & Minor 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
P—C11.804 (2)C1—Cl11.774 (2)
P—C21.802 (2)C2—Cl21.775 (2)
P—C31.802 (2)C3—Cl31.773 (2)
P—C41.803 (2)C4—Cl41.7726 (19)
C1—P—C2112.20 (11)C3—P—C4109.04 (10)
C1—P—C3107.88 (11)P—C1—Cl1111.64 (12)
C1—P—C4110.19 (10)P—C2—Cl2110.30 (11)
C2—P—C3106.55 (10)P—C3—Cl3108.66 (11)
C2—P—C4110.83 (10)P—C4—Cl4107.02 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H5···Cl50.88 (3)2.35 (3)3.230 (2)173 (3)
O—H6···Cl5i0.78 (3)2.53 (3)3.309 (2)175 (3)
C1—H1B···Cl5ii0.89 (3)2.65 (3)3.512 (2)165 (2)
C2—H2B···Cl5iii0.96 (2)2.76 (2)3.598 (2)146.6 (19)
C3—H3B···Cl5iv0.89 (3)2.79 (3)3.662 (2)166 (2)
C4—H4B···Cl5iii0.95 (2)2.69 (2)3.493 (2)142.9 (18)
C1—H1A···Ov0.95 (2)2.40 (2)3.286 (3)154.5 (19)
C4—H4A···Oi0.99 (2)2.50 (2)3.486 (3)169.9 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y, z+3/2; (iv) x+3/2, y1/2, z; (v) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds