Download citation
Download citation
link to html
The title compound, hetisan-6,11β,15β-triol, C20H27NO3, is a hetisane-type diterpenoid alkaloid. It consists of six six-membered rings and two five-membered rings. The fused-ring system contains three chair, two boat, one distorted boat and two envelope conformations. Intramolecular and intermolecular hydrogen bonds are present between the O atoms, with O...O separations of 3.006 (3) and 2.743 (3) Å, as well as an O...N intermolecular interaction of 2.887 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012828/gg1019sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012828/gg1019Isup2.hkl
Contains datablock I

CCDC reference: 158252

Comment top

Investigations on the alkaloid constitutents of the roots of Aconitum nasutum obtained from Trabzon-Sürmene, Arpali, Turkey, led to the isolation of the title compound, (I). Aconite root and alkaloids of this plant have been used for thousands of years in Eurasia as a powerful toxin, an arrow poison and as a drug. From ancient times, the Chinese have processed Aconite roots to decrease its toxicity for safe usage in the treatment of weak constitution, poor metabolism, dysuria, cardiac weakness, gout, rheumatism, neuralgia and chill, while Western medicine utilizes it for chronic rheumatism and neuralgia (Saito et al., 1982). \sch

The molecular structure contains an alkenyl CH2 group attached at C16 with CC 1.303 (4) Å. It has a masked amino alcohol group N—C—OH which is generally stable to oxidation and reduction (Natsume, 1962). Considering the three hydroxyl groups of the molecule, the tertiary hydroxyl at C6 forms a masked amino alcohol with the tertiary nitrogen atom N1 and one of the two secondary hydroxyls is beside the allyl alcohol functional group. There was an ambiguity in the location of the remaining hydroxyl group. Two alternate structures were attributed to pseudokobusine, based on the two positions of the third hydroxyl group at either C11 or at C12 (Natsume, 1962). The X-ray structure analysis has established the former structure, with the hydroxyl group at C11.

The value of the Flack parameter obtained 0.6 (14) is inadequate to indicate the absolute configuration. The absolute stereochemistry has been established by convention (Okamoto et al., 1962) and hence the present enantiomer has been retained. There are chiral centres in the present structure and the respective configurations are 4R,5R,6R,8R,9S,10S,11R,12R,14S,15S and 20R.

The molecule is composed of eight fused rings, six of which are six-membered and two are five-membered. The rings A (C1—C5, C10), B (C5—C9,C10) and D (C6,C7,C8,C14,C20,N1) adopt the chair conformation (see Table 2, scheme 2), ring C (C8,C9,C11,C12,C16,C15) is in a distorted boat conformation, ring E (C8,C14,C13,C12,C16,C15) is in a boat conformation while ring F (N1,C19,C4,C5,C10,C20) is in a distorted boat conformation. The two five-membered rings, G (C4,C5,C6,N1,C19) and H (C10,C9,C8,C14,C20), adopt an envelope conformation with the apex at C6 and C8, respectively. The oxygen atom O21 of the hydroxyl group at C6, is equatorial to ring B, the associated torsion angles are C10/C5/C6/O21, -174.7 (2)° and O21/C6/C7/C8, -179.2 (2)°. The hydroxyl group at C11 is twisted from the plane of the ring C, torsion angles C8/C9/C11/O22 - 105.6 (3)° and O22/C11/C12/C16 55.9 (3)°. The alkenyl group at C16 is equatorial to ring C, torsion angles of C11/C12/C16/C17 - 129.2 (3)° and C8/C15/C16/C17 - 168.4 (3)°, respectively. The hydroxyl group at C15 is twisted from the plane of the ring C, the torsion angles being O23/C15/C16/C12, -105.4 (3)° and C9/C8/C15/O23, 56.6 (3)°. The ring puckering parameters (Table 2) were calculated using the method of Cremer & Pople (1975). The range of Csp3—N bond lengths lie between 1.486 (4) and 1.513 (3) Å. The range of Csp3—O bond lengths are from 1.403 (3) to 1.448 (3) Å.

The O21 hydroxyl group at C16 forms an intermolecular O—H···O hydrogen bond with the O22 hydroxyl group bonded to C11, O21···O22i 2.743 (3) Å (symmetry code: i = x + 1, y, z), and an intramolecular hydrogen bond is formed by O22 with the O23 hydroxyl group at C15, O22···O23 3.006 (3) Å. An O—H···N hydrogen bond completes the intermolecular interactions, O23···N1ii 2.887 (3) Å [symmetry code: (ii) 1 - x, 1/2 + y, -z]. In kobusine methiodide, the contact distance between the two O atoms of the two hydroxyl groups at the same position as in the present molecule was calculated to be 2.81 Å indicating a strong intermolecular hydrogen bond (Pelletier et al., 1970).

Experimental top

The crude alkaloid extract obtained from the roots of Aconitum nasutum, was first separated by vacuum liquid chromatography (VLC) on basic Al2O3 and eluted with CHCl3/MeOH mixtures. VLC fractions 32–36 (CHCl3/MeOH 90:1} (942 mg) were separated on basic Al2O3 rotor with hexane/chloroform/methanol mixtures and pseudokobusine was subsequently isolated. Crystals of the title compound were obtained from a solution of the compound in methanol, by slow evaporation at room temperature.

Refinement top

The methyl H atoms on C18 and C19 and the hydroxyl H atoms, attached to O21, O22 and O23 were allowed to ride on their parent atoms with Uiso = 1.5Ueq. The remaining H atoms were included at geometrically calculated positions and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(parent).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SHELXTLNT (Bruker, 1999); program(s) used to solve structure: SIR97 (Cascarano et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai & Huttner, 1994); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983).

Figures top
[Figure 1] Fig. 1. Structure of the compound with 30% probability displacement ellipsoids and the atom-numbering scheme.
Hetisan-6, 11(β), 15(β)-triol top
Crystal data top
C20H27NO3Dx = 1.297 Mg m3
Mr = 329.43Melting point: 271° K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.0746 (8) ÅCell parameters from >10σ reflections
b = 11.4613 (11) Åθ = 3.0–30.6°
c = 9.1121 (9) ŵ = 0.09 mm1
β = 90.338 (2)°T = 293 K
V = 843.27 (14) Å3Plate, colourless
Z = 20.38 × 0.26 × 0.19 mm
F(000) = 356
Data collection top
Bruker 1000
diffractometer
2455 independent reflections
Radiation source: fine-focus sealed tube1335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.05
ω scansθmax = 30.6°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1998)
h = 117
Tmin = 0.97, Tmax = 0.98k = 1616
6766 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.043P)2 + 0.0279P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.004
S = 0.81Δρmax = 0.16 e Å3
2455 reflectionsΔρmin = 0.15 e Å3
222 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.006 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.5 (16)
Crystal data top
C20H27NO3V = 843.27 (14) Å3
Mr = 329.43Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.0746 (8) ŵ = 0.09 mm1
b = 11.4613 (11) ÅT = 293 K
c = 9.1121 (9) Å0.38 × 0.26 × 0.19 mm
β = 90.338 (2)°
Data collection top
Bruker 1000
diffractometer
2455 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1998)
1335 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.98Rint = 0.05
6766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.16 e Å3
S = 0.81Δρmin = 0.15 e Å3
2455 reflectionsAbsolute structure: Flack (1983)
222 parametersAbsolute structure parameter: 0.5 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1656 (4)0.1295 (3)0.3742 (3)0.0534 (9)
H1A0.10360.18520.43230.064*
H1B0.08840.09090.30830.064*
C20.2429 (5)0.0398 (3)0.4751 (4)0.0639 (10)
H2A0.15850.00790.53890.077*
H2B0.28770.02360.41710.077*
C30.3784 (5)0.0925 (3)0.5667 (4)0.0597 (9)
H3A0.43250.03060.62150.072*
H3B0.32880.14520.63720.072*
C40.5109 (4)0.1598 (3)0.4808 (3)0.0456 (7)
C50.4346 (4)0.2504 (2)0.3757 (3)0.0393 (7)
H50.40320.32370.42350.047*
C60.5675 (3)0.2651 (2)0.2554 (3)0.0371 (7)
C70.5155 (3)0.3358 (2)0.1237 (3)0.0364 (7)
H7A0.60060.33020.04940.044*
H7B0.50640.41710.15220.044*
C80.3522 (3)0.2963 (2)0.0585 (3)0.0332 (6)
C90.2203 (3)0.2903 (2)0.1809 (3)0.0376 (7)
H90.21680.36500.23310.045*
C100.2944 (3)0.1949 (2)0.2838 (3)0.0380 (7)
C110.0504 (4)0.2661 (3)0.1100 (4)0.0505 (8)
H110.00590.20680.16900.061*
C120.0718 (4)0.2175 (3)0.0445 (4)0.0509 (8)
H120.03420.18960.08390.061*
C130.1968 (4)0.1183 (3)0.0356 (3)0.0492 (8)
H13A0.21230.08490.13240.059*
H13B0.15510.05760.02850.059*
C140.3648 (4)0.1638 (2)0.0244 (3)0.0385 (7)
H140.45520.14730.04380.046*
C150.2939 (3)0.3693 (2)0.0724 (3)0.0364 (6)
H150.38280.37540.14480.044*
C160.1429 (4)0.3117 (3)0.1415 (3)0.0461 (7)
C170.0814 (5)0.3421 (3)0.2683 (4)0.0689 (10)
H17A0.01270.30500.30470.083*
H17B0.13150.40100.32250.083*
C180.6292 (5)0.2123 (3)0.5956 (3)0.0666 (10)
H18A0.71630.25380.54680.100*
H18B0.67600.15090.65430.100*
H18C0.56930.26510.65750.100*
C190.6057 (4)0.0843 (3)0.3667 (3)0.0490 (8)
H19A0.72310.08350.38970.059*
H19B0.56530.00460.36860.059*
C200.4017 (4)0.1159 (2)0.1768 (3)0.0403 (7)
H200.37170.03330.18480.048*
O210.7181 (3)0.30584 (19)0.3133 (2)0.0520 (6)
H210.77720.32870.24640.078*
O220.0502 (3)0.3697 (2)0.1095 (3)0.0650 (7)
H220.00340.42450.07660.098*
O230.2510 (3)0.48421 (16)0.0186 (2)0.0494 (6)
H230.28440.53380.07610.074*
N10.5773 (3)0.13643 (19)0.2191 (3)0.0419 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0526 (19)0.0507 (19)0.0572 (19)0.0001 (16)0.0152 (17)0.0183 (16)
C20.072 (2)0.0528 (19)0.067 (2)0.0072 (19)0.014 (2)0.0259 (19)
C30.081 (2)0.0485 (19)0.0500 (18)0.0078 (18)0.0123 (19)0.0157 (16)
C40.0573 (19)0.0412 (15)0.0385 (16)0.0056 (15)0.0002 (15)0.0000 (14)
C50.0502 (17)0.0302 (14)0.0375 (15)0.0056 (13)0.0091 (14)0.0015 (12)
C60.0360 (16)0.0346 (15)0.0408 (16)0.0009 (13)0.0026 (13)0.0054 (13)
C70.0359 (15)0.0331 (14)0.0404 (16)0.0024 (12)0.0092 (13)0.0007 (12)
C80.0347 (15)0.0263 (12)0.0385 (15)0.0004 (12)0.0075 (13)0.0031 (12)
C90.0353 (15)0.0290 (14)0.0485 (17)0.0012 (12)0.0122 (14)0.0059 (13)
C100.0416 (16)0.0294 (13)0.0430 (15)0.0018 (12)0.0096 (14)0.0038 (13)
C110.0349 (16)0.0394 (17)0.077 (2)0.0027 (14)0.0077 (16)0.0203 (16)
C120.0378 (17)0.0457 (18)0.069 (2)0.0125 (15)0.0094 (16)0.0100 (17)
C130.0558 (19)0.0352 (15)0.0567 (19)0.0077 (15)0.0061 (17)0.0034 (14)
C140.0419 (16)0.0319 (13)0.0419 (15)0.0002 (12)0.0027 (14)0.0028 (13)
C150.0367 (15)0.0321 (14)0.0405 (15)0.0014 (12)0.0053 (13)0.0004 (13)
C160.0444 (18)0.0403 (16)0.0536 (19)0.0003 (13)0.0048 (15)0.0064 (14)
C170.065 (2)0.062 (2)0.079 (2)0.0146 (19)0.024 (2)0.018 (2)
C180.092 (3)0.059 (2)0.0488 (19)0.009 (2)0.005 (2)0.0011 (18)
C190.058 (2)0.0428 (17)0.0458 (17)0.0118 (15)0.0002 (16)0.0013 (14)
C200.0442 (17)0.0256 (13)0.0513 (17)0.0015 (13)0.0016 (15)0.0026 (13)
O210.0461 (13)0.0595 (14)0.0505 (13)0.0068 (11)0.0031 (11)0.0026 (12)
O220.0430 (13)0.0596 (14)0.0926 (18)0.0134 (12)0.0126 (13)0.0258 (14)
O230.0603 (14)0.0328 (10)0.0551 (13)0.0023 (10)0.0119 (11)0.0071 (10)
N10.0446 (15)0.0368 (13)0.0441 (14)0.0094 (12)0.0021 (12)0.0035 (11)
Geometric parameters (Å, º) top
C6—O211.403 (3)C8—C141.553 (3)
C11—O221.440 (3)C8—C91.548 (3)
C15—O231.448 (3)C9—C111.538 (4)
C6—N11.513 (3)C9—C101.557 (4)
C14—C201.522 (4)C9—H90.9800
C16—C171.303 (4)C10—C201.590 (4)
C19—N11.488 (4)C11—C121.525 (5)
C20—N11.486 (4)C11—H110.9800
C1—C21.512 (4)C12—C161.511 (4)
C1—C101.527 (4)C12—C131.521 (4)
C1—H1A0.9700C12—H120.9800
C1—H1B0.9700C13—C141.550 (4)
C2—C31.499 (5)C13—H13A0.9700
C2—H2A0.9700C13—H13B0.9700
C2—H2B0.9700C14—H140.9800
C3—C41.536 (4)C15—C161.520 (4)
C3—H3A0.9700C15—H150.9800
C3—H3B0.9700C17—H17A0.9300
C4—C51.540 (4)C17—H17B0.9300
C4—C181.535 (5)C18—H18A0.9600
C4—C191.558 (4)C18—H18B0.9600
C5—C61.547 (4)C18—H18C0.9600
C5—C101.542 (4)C19—H19A0.9700
C5—H50.9800C19—H19B0.9700
C6—C71.506 (4)C20—H200.9800
C7—C81.513 (4)O21—H210.8200
C7—H7A0.9700O22—H220.8200
C7—H7B0.9700O23—H230.8200
C8—C151.529 (4)
O21—C6—C5111.9 (2)C1—C10—C9114.1 (2)
O21—C6—C7110.9 (2)C5—C10—C9108.4 (2)
N1—C6—C7111.4 (2)C1—C10—C20115.3 (2)
C17—C16—C12124.5 (3)C5—C10—C2099.6 (2)
C17—C16—C15123.5 (3)C9—C10—C20103.8 (2)
C19—N1—C20108.2 (2)O22—C11—C12111.5 (3)
C19—N1—C6101.6 (2)O22—C11—C9110.8 (2)
C20—N1—C699.2 (2)C12—C11—C9110.4 (2)
C2—C1—C10112.4 (3)O22—C11—H11108.0
C2—C1—H1A109.1C12—C11—H11108.0
C10—C1—H1A109.1C9—C11—H11108.0
C2—C1—H1B109.1C16—C12—C13108.1 (3)
C10—C1—H1B109.1C16—C12—C11108.9 (3)
H1A—C1—H1B107.8C13—C12—C11107.6 (3)
C3—C2—C1111.2 (3)C16—C12—H12110.7
C3—C2—H2A109.4C13—C12—H12110.7
C1—C2—H2A109.4C11—C12—H12110.7
C3—C2—H2B109.4C12—C13—C14110.3 (2)
C1—C2—H2B109.4C12—C13—H13A109.6
H2A—C2—H2B108.0C14—C13—H13A109.6
C2—C3—C4115.3 (3)C12—C13—H13B109.6
C2—C3—H3A108.5C14—C13—H13B109.6
C4—C3—H3A108.5H13A—C13—H13B108.1
C2—C3—H3B108.5C20—C14—C8100.5 (2)
C4—C3—H3B108.5C20—C14—C13111.5 (2)
H3A—C3—H3B107.5C8—C14—C13110.0 (2)
C3—C4—C5112.2 (3)C20—C14—H14111.5
C3—C4—C18106.4 (2)C8—C14—H14111.5
C5—C4—C18113.8 (3)C13—C14—H14111.5
C3—C4—C19114.1 (2)O23—C15—C16110.0 (2)
C5—C4—C1999.0 (2)O23—C15—C8107.9 (2)
C18—C4—C19111.5 (3)C16—C15—C8109.1 (2)
C4—C5—C6103.7 (2)O23—C15—H15109.9
C4—C5—C10110.4 (2)C16—C15—H15109.9
C6—C5—C1099.8 (2)C8—C15—H15109.9
C4—C5—H5113.9C12—C16—C15112.0 (3)
C6—C5—H5113.9C16—C17—H17A120.0
C10—C5—H5113.9C16—C17—H17B120.0
O21—C6—N1111.1 (2)H17A—C17—H17B120.0
N1—C6—C595.0 (2)C4—C18—H18A109.5
C7—C6—C5115.6 (2)C4—C18—H18B109.5
C6—C7—C8112.9 (2)H18A—C18—H18B109.5
C6—C7—H7A109.0C4—C18—H18C109.5
C8—C7—H7A109.0H18A—C18—H18C109.5
C6—C7—H7B109.0H18B—C18—H18C109.5
C8—C7—H7B109.0N1—C19—C4107.9 (2)
H7A—C7—H7B107.8N1—C19—H19A110.1
C7—C8—C15113.9 (2)C4—C19—H19A110.1
C7—C8—C14108.3 (2)N1—C19—H19B110.1
C15—C8—C14113.5 (2)C4—C19—H19B110.1
C7—C8—C9109.4 (2)H19A—C19—H19B108.4
C15—C8—C9112.1 (2)N1—C20—C14111.2 (2)
C14—C8—C998.5 (2)N1—C20—C10105.9 (2)
C11—C9—C8108.7 (2)C14—C20—C10104.5 (2)
C11—C9—C10117.7 (2)N1—C20—H20111.7
C8—C9—C10101.6 (2)C14—C20—H20111.7
C11—C9—H9109.5C10—C20—H20111.7
C8—C9—H9109.5C6—O21—H21109.5
C10—C9—H9109.5C11—O22—H22109.5
C1—C10—C5114.2 (2)C15—O23—H23109.5
C10—C5—C6—O21174.7 (2)C8—C9—C11—C1218.3 (3)
O21—C6—C7—C8179.2 (2)C10—C9—C11—C1296.4 (3)
C8—C9—C11—O22105.6 (3)C9—C11—C12—C1667.6 (3)
O22—C11—C12—C1655.9 (3)O22—C11—C12—C13172.9 (2)
C9—C8—C15—O2356.6 (3)C9—C11—C12—C1349.3 (3)
C11—C12—C16—C17129.2 (3)C16—C12—C13—C1457.7 (3)
O23—C15—C16—C12105.4 (3)C11—C12—C13—C1459.8 (3)
C8—C15—C16—C17168.4 (3)C7—C8—C14—C2059.6 (3)
C10—C1—C2—C351.8 (4)C15—C8—C14—C20172.9 (2)
C1—C2—C3—C452.0 (4)C9—C8—C14—C2054.2 (3)
C2—C3—C4—C551.2 (4)C7—C8—C14—C13177.2 (2)
C2—C3—C4—C18176.4 (3)C15—C8—C14—C1355.2 (3)
C2—C3—C4—C1960.3 (4)C9—C8—C14—C1363.4 (3)
C3—C4—C5—C6154.7 (2)C12—C13—C14—C20111.3 (3)
C18—C4—C5—C684.4 (3)C12—C13—C14—C80.7 (3)
C19—C4—C5—C634.0 (3)C7—C8—C15—O2368.4 (3)
C3—C4—C5—C1048.6 (3)C14—C8—C15—O23167.0 (2)
C18—C4—C5—C10169.5 (2)C7—C8—C15—C16172.1 (2)
C19—C4—C5—C1072.1 (3)C14—C8—C15—C1647.5 (3)
C4—C5—C6—O2160.7 (3)C9—C8—C15—C1663.0 (3)
C4—C5—C6—N154.4 (3)C13—C12—C16—C17114.2 (4)
C10—C5—C6—N159.6 (2)C13—C12—C16—C1567.0 (3)
C4—C5—C6—C7171.0 (2)C11—C12—C16—C1549.6 (3)
C10—C5—C6—C757.0 (3)O23—C15—C16—C1773.5 (4)
N1—C6—C7—C856.5 (3)C8—C15—C16—C1212.8 (3)
C5—C6—C7—C850.4 (3)C3—C4—C19—N1119.9 (3)
C6—C7—C8—C15178.1 (2)C5—C4—C19—N10.5 (3)
C6—C7—C8—C1454.5 (3)C18—C4—C19—N1119.6 (3)
C6—C7—C8—C951.8 (3)C8—C14—C20—N176.8 (3)
C7—C8—C9—C11172.5 (2)C13—C14—C20—N1166.7 (2)
C15—C8—C9—C1145.1 (3)C8—C14—C20—C1036.9 (3)
C14—C8—C9—C1174.6 (3)C13—C14—C20—C1079.6 (3)
C7—C8—C9—C1062.7 (2)C1—C10—C20—N1122.9 (3)
C15—C8—C9—C10169.9 (2)C5—C10—C20—N10.3 (2)
C14—C8—C9—C1050.2 (2)C9—C10—C20—N1111.5 (2)
C2—C1—C10—C553.2 (3)C1—C10—C20—C14119.6 (3)
C2—C1—C10—C9178.6 (3)C5—C10—C20—C14117.7 (2)
C2—C1—C10—C2061.3 (4)C9—C10—C20—C146.0 (3)
C4—C5—C10—C151.0 (3)C4—C19—N1—C2070.2 (3)
C6—C5—C10—C1159.7 (2)C4—C19—N1—C633.7 (3)
C4—C5—C10—C9179.4 (2)C14—C20—N1—C19178.2 (2)
C6—C5—C10—C971.9 (2)C10—C20—N1—C1968.9 (2)
C4—C5—C10—C2072.4 (2)C14—C20—N1—C676.2 (2)
C6—C5—C10—C2036.3 (2)C10—C20—N1—C636.7 (2)
C11—C9—C10—C135.2 (3)O21—C6—N1—C1963.5 (3)
C8—C9—C10—C1153.8 (2)C7—C6—N1—C19172.2 (2)
C11—C9—C10—C5163.6 (2)C5—C6—N1—C1952.3 (2)
C8—C9—C10—C577.8 (2)O21—C6—N1—C20174.4 (2)
C11—C9—C10—C2091.1 (3)C7—C6—N1—C2061.4 (2)
C8—C9—C10—C2027.5 (2)C5—C6—N1—C2058.6 (2)
C10—C9—C11—O22139.7 (2)

Experimental details

Crystal data
Chemical formulaC20H27NO3
Mr329.43
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.0746 (8), 11.4613 (11), 9.1121 (9)
β (°) 90.338 (2)
V3)843.27 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.26 × 0.19
Data collection
DiffractometerBruker 1000
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 1998)
Tmin, Tmax0.97, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
6766, 2455, 1335
Rint0.05
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.094, 0.81
No. of reflections2455
No. of parameters222
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15
Absolute structureFlack (1983)
Absolute structure parameter0.5 (16)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTLNT (Bruker, 1999), SIR97 (Cascarano et al., 1996), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai & Huttner, 1994), SHELXL97 and PARST (Nardelli, 1983).

Selected geometric parameters (Å, º) top
C6—O211.403 (3)C14—C201.522 (4)
C11—O221.440 (3)C16—C171.303 (4)
C15—O231.448 (3)C19—N11.488 (4)
C6—N11.513 (3)C20—N11.486 (4)
O21—C6—C5111.9 (2)C17—C16—C15123.5 (3)
O21—C6—C7110.9 (2)C19—N1—C20108.2 (2)
N1—C6—C7111.4 (2)C19—N1—C6101.6 (2)
C17—C16—C12124.5 (3)C20—N1—C699.2 (2)
C10—C5—C6—O21174.7 (2)C9—C8—C15—O2356.6 (3)
O21—C6—C7—C8179.2 (2)C11—C12—C16—C17129.2 (3)
C8—C9—C11—O22105.6 (3)O23—C15—C16—C12105.4 (3)
O22—C11—C12—C1655.9 (3)C8—C15—C16—C17168.4 (3)
Ring-puckring parameters (Å, °) for eight rings top
Ringq2q3QTθ
A0.014 (3)-0.517 (3)0.518 (3)178.5 (3)
B0.205 (2)-0.655 (2)0.686 (2)162.7 (2)
C0.805 (3)0.021 (3)0.805 (3)88.5 (2)
D0.149 (3)-0.668 (3)0.684 (3)167.4 (2)
E0.788 (3)-0.051 (3)0.789 (3)93.7 (2)
F0.929 (3)-0.022 (3)0.929 (3)91.4 (2)
G0.557 (3)
H0.549 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds