Download citation
Download citation
link to html
The salts 1-(diamino­methyl­ene)thio­uron-1-ium hydrogen di­fluoride, C2H7N4S+·HF2, (I), and bis­[1-(diamino­methyl­ene)­thio­uron-1-ium] hexa­fluoridosilicate, 2C2H7N4S+·SiF62−, (II), have both been obtained from the reaction of (1-diamino­methyl­ene)thio­urea (HATU) with hydro­fluoric acid. Both compounds contain extensive networks of N—H...F hydrogen bonds. The hydrogen difluoride salt contains four independent asymmetric [HF2] anions. In the hexa­fluoridosilicate salt, the centrosymmetric [SiF6]2− anion is distorted, although this distortion is not clearly correlated with the N—H...F hydrogen-bonding network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109010919/gd3281sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109010919/gd3281Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109010919/gd3281IIsup3.hkl
Contains datablock II

CCDC references: 735114; 735115

Comment top

(1-Diaminomethylene)thiourea (HATU) is known to be capable of participating in an extensive network of interactions (Janczak & Perpétuo, 2008a). This capability has been utilized in cage-like complexes, such as [Ni6(ATU)8Cl](ClO4)3 (Vilar et al., 1998), which could serve as sensors for the identification of chloride anions in solution. HATU also forms complex hydrogen-bonded systems in its simple salts, such as the hydrogen sulfate and dihydrogen phosphate (Janczak & Perpétuo, 2008b). The crystal structures of several halide salts of HATU are also known, namely the chloride, bromide and iodide, all obtained from the reaction of HATU with the corresponding hydrogen halide in aqueous solution (Perpétuo & Janczak, 2008). The products of the reaction of HATU with hydrogen fluoride have not been reported hitherto. The present work is thus a continuation of our studies on the reactivity and complexing properties of (1-diaminomethylene)thiourea (Hołyńska & Kubiak, 2008), in which HATU halides can also be used as substrates.

Compound (I), obtained in the reaction of either concentrated or dilute hydrofluoric acid with HATU in a Teflon reaction vessel, comprises 1-(diaminomethylene)thiouron-1-ium cations and hydrogen difluoride anions (see scheme and Fig. 1). A similar reaction using very dilute hydrofluoric acid in a quartz vessel gave compound (II), while recrystallization of (I) from water in a quartz vessel gave a third product, possibly [HATUH]3[SiF6]F.H2O (see Experimental). The hydrogen difluoride anion is an important model for strong hydrogen bonding (Williams & Schneemeyer, 1973). Such hydrogen bonding has been widely investigated, e.g. for arylammonium (Harmon et al., 1974) or alkylammonium (Gennick, Harmon & Potvin, 1977; Gennick, Harmon & Hartwig, 1977) fluorides.

The [HF2]- anion can be either symmetric (Wilson et al., 1989; Rush et al., 1972) or asymmetric (Williams & Schneemeyer, 1973; Ramos Silva et al., 2000), depending on its local environment. Ramos Silva et al. (2000) reported the structure of L-argininium hydrogen difluoride, which has the shortest F···F distances observed so far for an asymmetric [HF2]- anion, at 2.233 (2) and 2.248 (3) Å in two independent anions [see also Ramos Silva et al. (2000) for a detailed discussion of F···F distances in other hydrogen-bonded compounds]. Recently, the hydrogen difluoride anion has been considered of importance in the description of the magnetism in a new antiferromagnet, [Cu(HF2)(pyz)2][BF4] (pyz is pyrazine; Manson et al., 2006).

Compound (I) contains four independent [HF2]- anions all lying in general positions, with F···F distances in the range 2.287 (2)–2.291 (2) Å, although the degree of asymmetry varies markedly between them (Table 1, Fig. 1). The compound adopts a layered arrangement (Fig. 2a) and each layer is stabilized by N—H···F hydrogen bonds (Fig. 2b). Within each layer, two cation layers can be distinguished, linked by the anions (Fig. 2b). Hydrogen-bonding motifs characteristic of 1-(diaminomethylene)thiouron-1-ium salts (Janczak & Perpétuo, 2008b) are present, such as R12(6) (Etter et al., 1990), with two ammine groups acting as donors and an F atom from an [HF2]- anion acting as acceptor.

Compound (II) comprises 1-(diaminomethylene)thiouron-1-ium cations, and hexafluoridosilicate anions which lie across inversion centres (Fig. 3). The anion is linked via N—H···F hydrogen bonds to six [HATUH]+ cations; the symmetry-independent cation and five cations are related by the following symmetry operations: (-x, 2 - y, -z), (1 - x, 1 - y, -z), (-x, 2 - y, 1 - z), (1 - x, 1 + y, z) and (x, y, z - 1). The distortion of the anion from ideal Oh symmetry can be rationalized in terms of hydrogen bonding (the F atom bonded to the Si atom with the shortest Si—F bond does not participate in any hydrogen bond). In the case of (II), the distortion of the anion is towards D2h and its dependence on the hydrogen-bonding network (Table 3) is not as clear as in the case reported by Reiß (1998). The deformation in (II) affects the Si—F bond lengths, but not the F—Si—F bond angles. For comparison, in cubic K2[SiF6] no such anion distortion is observed and the Si—F distance is 1.683 (2) Å (Loehlin, 1984). The geometric parameters of the 1-(diaminomethylene)thiouron-1-ium cation in both (I) and (II) are normal and comparable with those previously reported for other salts (Janczak & Perpétuo, 2008 [a or b?]; Perpétuo & Janczak, 2008).

In (II), the hydrogen-bonded layers lie perpendicular to [110] (Fig. 4a). Within each such layer, [HATUH]+ cations interact with [SiF6]2- anions through N—H···F hydrogen bonds (Fig. 4b) with the formation of many specific graph-set motifs (Etter et al., 1990), such as R22(8), R12(6) [also present in (I)] and R21(4) [absent from (I)].

It is suspected that the reaction of HATU with hydrofluoric acid carried out at different concentrations of the reagents and at different temperatures will yield further interesting hydrogen-bonded systems, although our preliminary investigations have so far invariably led to compound (I).

Experimental top

CAUTION! Hydrogen fluoride is extremely corrosive and harmful to human tissue, causing painful burns which heal with difficulty. All handling should be conducted in an efficient fume hood and suitable body protection should be worn. Suitable palliative preparations, such as calcium gluconate gel, should be to hand before work with HF commences.

For the synthesis of (I), HATU (Aldrich) (0.05 g) was dissolved in concentrated (40%) hydrofluoric acid in a Teflon vessel. On slow evaporation of the solution, crystals of (I) in the form of colourless plates were obtained. Compound (I) reacts readily with glass and if stored in air it readily loses hydrogen fluoride gas. Compound (I) is also obtained when 5% hydrofluoric acid is used as the substrate. [Please check rephrasing in this paragraph]

The same reaction with an excess of 5% hydrofluoric acid carried out in a quartz glass vessel yields crystalline (II) (colourless blocks). On recrystallization of (I) from water, carried out in a quartz glass vessel, a third crystalline compound, (III), is obtained in the form of colourless blocks. Compound (III) seems to be [HATUH]3[SiF6]F.H2O [P21/n, a = 8.212 (3), b = 22.234 (5), c = 11.806 (4) Å, β = 100.81 (3)°]. Compound (III) comprises three symmetry-independent [HATUH]+ cations, one [SiF6]2- anion lying in a general position and apparently one water molecule along with one fluoride anion disordered over two sites with half-occupancy factors. The assumed structure model is arbitrary and it is difficult to prove it unambiguously using standard analytical methods.

ESI-MS spectra were collected on micrOTOF-Q device for samples prepared as solutions in methanol. Positive ions were analysed. For (I) and (II) the most intensive peak was observed at m/Z 119.0 (ascribed to the [HATUH]+ cation). For comparison purposes, spectra for HATU, (A), and other halides of HATU were also collected. Hydrogen chloride, (B), hydrogen bromide, (C), and hydrogen iodide, (D), were prepared according to the literature procedures of Perpétuo & Janczak (2008). As shown below, their MS spectra lead to some observations worth noting. In the MS spectrum collected for (A) a very weak peak [M+1] at m/Z 119.0 is detected. The highest peak is observed at m/Z 304.3. A similar peak at m/Z 304.3 is observed for (B). In the MS spectrum collected for (C)–(D) [A mixture of the two?] the peak at m/Z 119.0 is more visible than for (A). For (D) the most intense peak in the MS spectrum is at m/Z 365.0 (with characteristic isotope distribution), which is the sum of double the mass of a HATU molecule, a single H+ cation and a single I- anion. Similarly for (C), the highest peak in the MS spectrum (with characteristic isotope distribution) corresponds to the sum of double the mass of a HATU molecule, a single H+ cation and a single Br- anion.

Refinement top

In (I), the H-atom coordinates were freely refined, with Uiso(H) = 1.2Ueq(nearest F atom) or X.XUeq(N) [Please complete]. The range of N—H bond lengths is 0.75 (3)–0.88 (3) Å for (I) and the highest peak in the difference map (0.41 e Å-3) is located 0.82 Å from atom S4. In (II), all H-atom parameters were freely refined. The range of N—H bond lengths is 0.76 (2)–0.89 (2) Å, and the highest peak in the difference map (0.38 e Å-3) is located 0.59 Å from atom N1 and 0.82 Å from atom C1.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the symmetry-independent part of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are denoted by dashed lines.
[Figure 2] Fig. 2. (a) A view of the hydrogen-bonded layers in (I). (b) The building principle of one of the hydrogen-bonded layers in (I). Symmetry-independent atoms are coloured black. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (ii) x + 1, y + 1, z; (iii) -x + 1, -y + 1, -z + 1.]
[Figure 3] Fig. 3. A view of the cation and anion in (II), showing the atom-labelling scheme. Unlabelled atoms are generated by the symmetry operation (-x, -y + 2, -z). Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are denoted by dashed lines. R22(8) and R12(6) graph-set motifs are formed (Etter et al., 1990).
[Figure 4] Fig. 4. Two different views, (a) and (b), of one of the hydrogen-bonded layers present in (II). Hydrogen bonds are denoted by dashed lines. [Symmetry codes: (i) x + 1, y - 1, z; (ii) -x + 1, -y + 1, -z; (iii) x, y, z + 1.]
(I) 1-(diaminomethylene)thiouron-1-ium hydrogen difluoride top
Crystal data top
C2H7N4S+·HF2Z = 8
Mr = 158.18F(000) = 656
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.199 (3) ÅCell parameters from 8334 reflections
b = 12.203 (4) Åθ = 3.0–36.8°
c = 14.158 (4) ŵ = 0.44 mm1
α = 100.78 (3)°T = 100 K
β = 93.87 (3)°Plate, colourless
γ = 104.50 (3)°0.19 × 0.09 × 0.07 mm
V = 1337.5 (8) Å3
Data collection top
Oxford Diffraction KM4 CCD area-detector
diffractometer
7461 independent reflections
Radiation source: fine-focus sealed tube5387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1111
Tmin = 0.897, Tmax = 0.979k = 1712
20685 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129Only H-atom coordinates refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0671P)2]
where P = (Fo2 + 2Fc2)/3
7461 reflections(Δ/σ)max = 0.003
421 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C2H7N4S+·HF2γ = 104.50 (3)°
Mr = 158.18V = 1337.5 (8) Å3
Triclinic, P1Z = 8
a = 8.199 (3) ÅMo Kα radiation
b = 12.203 (4) ŵ = 0.44 mm1
c = 14.158 (4) ÅT = 100 K
α = 100.78 (3)°0.19 × 0.09 × 0.07 mm
β = 93.87 (3)°
Data collection top
Oxford Diffraction KM4 CCD area-detector
diffractometer
7461 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
5387 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.979Rint = 0.051
20685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.129Only H-atom coordinates refined
S = 1.01Δρmax = 0.41 e Å3
7461 reflectionsΔρmin = 0.29 e Å3
421 parameters
Special details top

Experimental. IR spectra were collected on BRUKER spectrometer for samples suspended in nujol mull (KBr windows). (I): 435.6 (w), 516.0 (vw), 560.2 (vw), 632.2 (w), 734.4 (m), 829.5 (vw), 910.6 (vw), 993.2 (vw), 1105.1 (w), 1180.5 (m), 1248.0 (s), 1338.7 (s), 1462.3 (m), 1511.5 (s), 1530.3 (s), 1607.5 (vs), 1647.3 (s), 1710.1 (vs), 2854.1 (s), 2924.6 (vs), 3118.0 (vs), 3351.6 (vs)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65033 (8)0.34420 (5)1.07733 (5)0.02187 (15)
C110.4967 (3)0.2312 (2)1.01349 (17)0.0168 (5)
C210.4187 (3)0.3087 (2)0.87042 (17)0.0160 (5)
N110.4074 (3)0.22647 (18)0.92489 (15)0.0165 (4)
H110.332 (4)0.160 (3)0.902 (2)0.020*
N210.4466 (3)0.13422 (19)1.04580 (17)0.0195 (4)
H2110.378 (4)0.078 (3)1.012 (2)0.023*
H2210.501 (4)0.129 (3)1.100 (2)0.023*
N310.3180 (3)0.2799 (2)0.78807 (16)0.0207 (5)
H3110.253 (4)0.211 (3)0.769 (2)0.025*
H3210.329 (4)0.327 (3)0.754 (2)0.025*
N410.5254 (3)0.41215 (19)0.89735 (18)0.0224 (5)
H4110.582 (4)0.423 (3)0.948 (2)0.027*
H4210.520 (4)0.455 (3)0.862 (2)0.027*
S20.58023 (8)0.77907 (6)0.56529 (5)0.02171 (15)
C120.7568 (3)0.8815 (2)0.61651 (17)0.0165 (5)
C220.8175 (3)0.8187 (2)0.77058 (17)0.0159 (5)
N120.8497 (3)0.88734 (18)0.70460 (15)0.0161 (4)
H120.935 (4)0.943 (3)0.717 (2)0.019*
N220.8237 (3)0.9687 (2)0.57484 (17)0.0209 (5)
H2120.919 (4)1.017 (3)0.600 (2)0.025*
H2220.777 (4)0.967 (3)0.523 (2)0.025*
N320.9254 (3)0.84630 (19)0.85032 (16)0.0199 (4)
H3121.015 (4)0.904 (3)0.856 (2)0.024*
H3220.916 (4)0.802 (3)0.889 (2)0.024*
N420.6839 (3)0.72842 (19)0.75633 (17)0.0205 (5)
H4120.610 (4)0.715 (3)0.702 (2)0.025*
H4220.679 (4)0.693 (3)0.796 (2)0.025*
S30.94092 (8)0.68826 (6)0.40442 (5)0.02431 (16)
C130.8619 (3)0.6004 (2)0.47814 (17)0.0158 (5)
C231.0729 (3)0.6814 (2)0.62613 (17)0.0151 (5)
N130.9309 (3)0.60576 (18)0.57172 (15)0.0155 (4)
H130.869 (4)0.554 (3)0.599 (2)0.019*
N230.7215 (3)0.51430 (18)0.44971 (17)0.0180 (4)
H2130.681 (4)0.475 (3)0.491 (2)0.022*
H2230.664 (4)0.512 (2)0.396 (2)0.022*
N331.1119 (3)0.6634 (2)0.71263 (16)0.0205 (5)
H3131.050 (4)0.613 (3)0.732 (2)0.025*
H3231.196 (4)0.713 (3)0.747 (2)0.025*
N431.1657 (3)0.76801 (19)0.59415 (18)0.0216 (5)
H4131.139 (4)0.773 (3)0.535 (2)0.026*
H4231.248 (4)0.810 (3)0.631 (2)0.026*
S40.89831 (9)0.13769 (6)0.91483 (5)0.02482 (16)
C140.9121 (3)0.2595 (2)0.87298 (17)0.0176 (5)
C240.6875 (3)0.1886 (2)0.73083 (18)0.0161 (5)
N140.8184 (3)0.26871 (18)0.79072 (15)0.0175 (4)
H140.838 (4)0.334 (3)0.779 (2)0.021*
N241.0205 (3)0.35896 (19)0.91640 (16)0.0204 (5)
H2141.025 (4)0.421 (3)0.893 (2)0.024*
H2241.077 (4)0.359 (3)0.970 (2)0.024*
N440.6221 (3)0.08607 (19)0.74982 (17)0.0206 (5)
H3140.667 (4)0.286 (3)0.642 (2)0.025*
H3240.547 (4)0.174 (3)0.618 (2)0.025*
N340.6283 (3)0.2179 (2)0.65343 (17)0.0212 (5)
H4140.663 (4)0.066 (3)0.800 (2)0.025*
H4240.553 (4)0.046 (3)0.713 (2)0.025*
F110.24069 (19)0.00178 (12)0.87552 (11)0.0228 (3)
F210.37400 (19)0.11575 (13)0.77898 (11)0.0221 (3)
H11F0.318 (4)0.075 (3)0.820 (2)0.027*
F120.12625 (19)0.06459 (13)0.69533 (11)0.0258 (3)
F220.3311 (2)0.01618 (13)0.60668 (11)0.0243 (3)
H12F0.230 (4)0.037 (3)0.648 (2)0.029*
F130.78898 (19)0.62194 (12)0.90490 (11)0.0227 (3)
F230.92486 (19)0.50839 (12)0.81046 (11)0.0235 (3)
H13F0.866 (4)0.568 (3)0.860 (2)0.028*
F140.68870 (18)0.44053 (12)0.62464 (11)0.0222 (3)
F240.49078 (19)0.48832 (12)0.71916 (10)0.0217 (3)
H14F0.584 (4)0.469 (3)0.675 (2)0.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0207 (3)0.0180 (3)0.0223 (3)0.0009 (2)0.0049 (2)0.0036 (2)
C110.0149 (11)0.0184 (12)0.0171 (11)0.0053 (9)0.0032 (9)0.0023 (9)
C210.0151 (11)0.0150 (11)0.0181 (11)0.0038 (9)0.0042 (9)0.0032 (9)
N110.0179 (10)0.0119 (9)0.0172 (10)0.0004 (8)0.0020 (8)0.0038 (8)
N210.0199 (11)0.0174 (11)0.0174 (10)0.0019 (9)0.0031 (9)0.0052 (8)
N310.0231 (11)0.0188 (11)0.0184 (11)0.0002 (9)0.0006 (9)0.0073 (9)
N410.0296 (12)0.0162 (11)0.0186 (11)0.0004 (9)0.0013 (9)0.0074 (9)
S20.0169 (3)0.0234 (3)0.0202 (3)0.0019 (2)0.0036 (2)0.0055 (2)
C120.0184 (11)0.0159 (11)0.0155 (11)0.0056 (9)0.0033 (9)0.0021 (9)
C220.0171 (11)0.0132 (11)0.0180 (11)0.0059 (9)0.0044 (9)0.0015 (9)
N120.0146 (10)0.0143 (10)0.0164 (10)0.0013 (8)0.0010 (8)0.0041 (8)
N220.0199 (11)0.0211 (11)0.0186 (11)0.0005 (9)0.0020 (9)0.0064 (9)
N320.0194 (11)0.0162 (11)0.0214 (11)0.0003 (9)0.0031 (9)0.0062 (9)
N420.0203 (11)0.0192 (11)0.0206 (11)0.0000 (9)0.0012 (9)0.0095 (9)
S30.0200 (3)0.0306 (4)0.0223 (3)0.0002 (3)0.0021 (3)0.0146 (3)
C130.0153 (11)0.0173 (11)0.0160 (11)0.0060 (9)0.0021 (9)0.0039 (9)
C230.0133 (11)0.0135 (11)0.0179 (11)0.0041 (9)0.0020 (9)0.0015 (9)
N130.0147 (10)0.0148 (10)0.0153 (10)0.0000 (8)0.0009 (8)0.0049 (8)
N230.0157 (10)0.0182 (10)0.0174 (10)0.0002 (8)0.0023 (8)0.0055 (8)
N330.0225 (11)0.0180 (11)0.0164 (10)0.0016 (9)0.0019 (9)0.0036 (9)
N430.0183 (11)0.0186 (11)0.0228 (11)0.0049 (9)0.0015 (9)0.0067 (9)
S40.0347 (4)0.0173 (3)0.0218 (3)0.0058 (3)0.0042 (3)0.0067 (2)
C140.0173 (12)0.0206 (12)0.0151 (11)0.0057 (10)0.0046 (9)0.0027 (9)
C240.0149 (11)0.0159 (11)0.0180 (11)0.0044 (9)0.0050 (9)0.0032 (9)
N140.0191 (10)0.0140 (10)0.0178 (10)0.0008 (8)0.0030 (8)0.0063 (8)
N240.0231 (11)0.0175 (11)0.0182 (11)0.0007 (9)0.0036 (9)0.0067 (9)
N440.0216 (11)0.0152 (11)0.0215 (11)0.0019 (9)0.0032 (9)0.0063 (9)
N340.0179 (11)0.0186 (11)0.0244 (11)0.0015 (9)0.0038 (9)0.0088 (9)
F110.0217 (7)0.0177 (7)0.0246 (8)0.0007 (6)0.0036 (6)0.0038 (6)
F210.0247 (8)0.0187 (7)0.0201 (7)0.0012 (6)0.0002 (6)0.0043 (6)
F120.0236 (8)0.0258 (8)0.0221 (8)0.0050 (6)0.0009 (6)0.0071 (6)
F220.0235 (8)0.0229 (8)0.0238 (8)0.0005 (6)0.0018 (6)0.0092 (6)
F130.0238 (8)0.0198 (7)0.0228 (8)0.0023 (6)0.0021 (6)0.0066 (6)
F230.0284 (8)0.0174 (7)0.0232 (8)0.0019 (6)0.0005 (6)0.0073 (6)
F140.0221 (7)0.0210 (7)0.0224 (8)0.0007 (6)0.0031 (6)0.0090 (6)
F240.0220 (7)0.0219 (8)0.0193 (7)0.0013 (6)0.0008 (6)0.0070 (6)
Geometric parameters (Å, º) top
S1—C111.678 (3)C23—N331.317 (3)
C11—N211.328 (3)C23—N131.369 (3)
C11—N111.393 (3)N13—H130.87 (3)
C21—N411.314 (3)N23—H2130.86 (3)
C21—N311.318 (3)N23—H2230.86 (3)
C21—N111.365 (3)N33—H3130.80 (3)
N11—H110.87 (3)N33—H3230.84 (3)
N21—H2110.82 (3)N43—H4130.87 (3)
N21—H2210.88 (3)N43—H4230.82 (3)
N31—H3110.86 (3)S4—C141.681 (3)
N31—H3210.81 (3)C14—N241.322 (3)
N41—H4110.79 (3)C14—N141.389 (3)
N41—H4210.79 (3)C24—N341.313 (3)
S2—C121.673 (3)C24—N441.317 (3)
C12—N221.329 (3)C24—N141.367 (3)
C12—N121.397 (3)N14—H140.82 (3)
C22—N421.318 (3)N24—H2140.87 (3)
C22—N321.321 (3)N24—H2240.86 (3)
C22—N121.364 (3)N44—H4140.87 (3)
N12—H120.83 (3)N44—H4240.75 (3)
N22—H2120.86 (3)N34—H3140.86 (3)
N22—H2220.80 (3)N34—H3240.81 (3)
N32—H3120.87 (3)F11—H11F1.38 (3)
N32—H3220.83 (3)F21—H11F0.92 (3)
N42—H4120.91 (3)F12—H12F1.20 (3)
N42—H4220.76 (3)F22—H12F1.10 (3)
S3—C131.680 (3)F13—H13F1.16 (3)
C13—N231.328 (3)F23—H13F1.14 (3)
C13—N131.388 (3)F14—H14F1.23 (3)
C23—N431.313 (3)F24—H14F1.06 (3)
N21—C11—N11112.6 (2)N23—C13—N13112.4 (2)
N21—C11—S1121.2 (2)N23—C13—S3121.35 (19)
N11—C11—S1126.21 (19)N13—C13—S3126.24 (19)
N41—C21—N31120.6 (2)N43—C23—N33121.4 (2)
N41—C21—N11122.3 (2)N43—C23—N13121.9 (2)
N31—C21—N11117.1 (2)N33—C23—N13116.7 (2)
C21—N11—C11130.0 (2)C23—N13—C13129.9 (2)
C21—N11—H11116.4 (19)C23—N13—H13117.5 (19)
C11—N11—H11113.5 (19)C13—N13—H13112.6 (19)
C11—N21—H211120 (2)C13—N23—H213118 (2)
C11—N21—H221118 (2)C13—N23—H223117 (2)
H211—N21—H221121 (3)H213—N23—H223123 (3)
C21—N31—H311121 (2)C23—N33—H313120 (2)
C21—N31—H321117 (2)C23—N33—H323117 (2)
H311—N31—H321121 (3)H313—N33—H323123 (3)
C21—N41—H411115 (2)C23—N43—H413118 (2)
C21—N41—H421115 (2)C23—N43—H423117 (2)
H411—N41—H421130 (3)H413—N43—H423125 (3)
N22—C12—N12112.5 (2)N24—C14—N14112.4 (2)
N22—C12—S2121.5 (2)N24—C14—S4121.7 (2)
N12—C12—S2125.90 (19)N14—C14—S4125.84 (19)
N42—C22—N32120.8 (2)N34—C24—N44121.0 (2)
N42—C22—N12121.8 (2)N34—C24—N14117.4 (2)
N32—C22—N12117.4 (2)N44—C24—N14121.6 (2)
C22—N12—C12130.1 (2)C24—N14—C14130.0 (2)
C22—N12—H12118 (2)C24—N14—H14115 (2)
C12—N12—H12112 (2)C14—N14—H14115 (2)
C12—N22—H212120 (2)C14—N24—H214120 (2)
C12—N22—H222116 (2)C14—N24—H224116 (2)
H212—N22—H222124 (3)H214—N24—H224124 (3)
C22—N32—H312119 (2)C24—N44—H414121 (2)
C22—N32—H322120 (2)C24—N44—H424115 (2)
H312—N32—H322120 (3)H414—N44—H424124 (3)
C22—N42—H412117.6 (19)C24—N34—H314121 (2)
C22—N42—H422115 (2)C24—N34—H324120 (2)
H412—N42—H422128 (3)H314—N34—H324119 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
F21—H11F···F110.92 (3)1.38 (3)2.291 (2)172 (3)
F22—H12F···F121.10 (3)1.20 (3)2.291 (2)177 (3)
F23—H13F···F131.14 (3)1.16 (3)2.287 (2)172 (3)
F24—H14F···F141.06 (3)1.23 (3)2.289 (2)177 (3)
N11—H11···F110.87 (3)1.89 (3)2.711 (3)157 (3)
N21—H211···F110.82 (3)2.10 (3)2.823 (3)148 (3)
N21—H221···F21i0.88 (3)2.00 (3)2.873 (3)179 (3)
N31—H311···F120.86 (3)1.90 (3)2.732 (3)166 (3)
N31—H321···F240.81 (3)2.24 (3)2.955 (3)147 (3)
N41—H421···F240.79 (3)2.14 (3)2.867 (3)152 (3)
N12—H12···F12ii0.83 (3)1.96 (3)2.744 (3)159 (3)
N22—H212···F12ii0.86 (3)1.99 (3)2.768 (3)151 (3)
N22—H222···F22iii0.80 (3)2.05 (3)2.847 (3)173 (3)
N32—H312···F11ii0.87 (3)1.89 (3)2.734 (3)165 (3)
N32—H322···F130.83 (3)2.24 (3)2.953 (3)144 (3)
N42—H422···F130.76 (3)2.16 (3)2.862 (3)153 (3)
N13—H13···F140.87 (3)1.87 (3)2.708 (3)162 (3)
N23—H213···F140.86 (3)2.01 (3)2.796 (3)151 (3)
N23—H223···F24iii0.86 (3)1.99 (3)2.851 (3)173 (3)
N33—H323···F21ii0.84 (3)2.18 (3)2.940 (3)150 (3)
N33—H313···F230.80 (3)1.98 (3)2.768 (3)166 (3)
N43—H423···F21ii0.82 (3)2.20 (3)2.928 (3)149 (3)
N43—H423···F22ii0.82 (3)2.53 (3)2.958 (3)114 (3)
N14—H14···F230.82 (3)2.02 (3)2.789 (3)156 (3)
N24—H214···F230.87 (3)1.99 (3)2.788 (3)151 (3)
N24—H224···F13iv0.86 (3)1.96 (3)2.821 (3)174 (3)
N34—H324···F220.81 (3)2.24 (3)2.933 (3)145 (3)
N34—H314···F140.86 (3)1.92 (3)2.750 (3)163 (3)
N44—H424···F210.75 (3)2.52 (3)2.891 (3)112 (3)
N44—H424···F220.75 (3)2.19 (3)2.865 (3)151 (3)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+2.
(II) bis[1-(diaminomethylene)thiouron-1-ium] hexafluoridosilicate top
Crystal data top
2C2H7N4S+·SiF62Z = 1
Mr = 380.44F(000) = 194
Triclinic, P1Dx = 1.830 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.537 (3) ÅCell parameters from 3979 reflections
b = 7.390 (3) Åθ = 3.4–36.7°
c = 7.884 (4) ŵ = 0.55 mm1
α = 83.65 (3)°T = 100 K
β = 83.44 (3)°Plate, colourless
γ = 66.15 (3)°0.25 × 0.23 × 0.09 mm
V = 345.2 (3) Å3
Data collection top
Oxford Diffraction KM4 CCD area-detector
diffractometer
1837 independent reflections
Radiation source: fine-focus sealed tube1582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 30.0°, θmin = 3.4°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 98
Tmin = 0.870, Tmax = 0.953k = 1010
4487 measured reflectionsl = 107
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
1837 reflections(Δ/σ)max = 0.001
125 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
2C2H7N4S+·SiF62γ = 66.15 (3)°
Mr = 380.44V = 345.2 (3) Å3
Triclinic, P1Z = 1
a = 6.537 (3) ÅMo Kα radiation
b = 7.390 (3) ŵ = 0.55 mm1
c = 7.884 (4) ÅT = 100 K
α = 83.65 (3)°0.25 × 0.23 × 0.09 mm
β = 83.44 (3)°
Data collection top
Oxford Diffraction KM4 CCD area-detector
diffractometer
1837 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
1582 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.953Rint = 0.021
4487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071All H-atom parameters refined
S = 1.01Δρmax = 0.38 e Å3
1837 reflectionsΔρmin = 0.28 e Å3
125 parameters
Special details top

Experimental. IR spectra were collected on BRUKER spectrometer for samples suspended in nujol mull (KBr windows). (2): 431.3 (w), 466.3 (w), 475.8 (w), 557.5 (w), 672.9 (m), 724.3 (m), 781.4 (w), 911.0 (vw), 990.8 (vw), 1103.8 (w), 1153.3 (w), 1180.6 (w), 1248.5 (m), 1341.1 (s), 1376.6 (s), 1462.6 (s), 1516.1 (m), 1611.3 (vs), 1711.5 (s), 2854.0 (vs), 2923.9 (vs), 3106.4 (s), 3241.6 (s), 3336.2 (s), 3423.6 (s)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.00001.00000.00000.01013 (12)
F10.24934 (12)0.95426 (11)0.11350 (10)0.01524 (18)
F20.10377 (12)1.04449 (11)0.17299 (10)0.01523 (18)
F30.08812 (13)0.75883 (11)0.06702 (10)0.01587 (18)
S10.68023 (5)0.61828 (5)0.59622 (4)0.01390 (10)
C10.4908 (2)0.76695 (18)0.46135 (16)0.0112 (2)
C20.6659 (2)0.61699 (19)0.18499 (16)0.0112 (2)
N10.51467 (18)0.76054 (16)0.28476 (14)0.0117 (2)
H10.409 (3)0.847 (3)0.230 (2)0.019 (4)*
N20.29919 (18)0.90823 (17)0.51676 (15)0.0136 (2)
H210.204 (3)0.998 (3)0.451 (3)0.035 (5)*
H220.272 (2)0.926 (2)0.623 (2)0.008 (4)*
N30.6347 (2)0.63905 (18)0.02024 (15)0.0144 (2)
H310.518 (3)0.734 (3)0.020 (3)0.037 (6)*
H320.717 (3)0.537 (3)0.041 (2)0.028 (5)*
N40.83427 (19)0.46546 (17)0.24824 (16)0.0135 (2)
H410.849 (4)0.453 (3)0.363 (3)0.038 (5)*
H420.906 (3)0.383 (3)0.190 (2)0.015 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0101 (2)0.0095 (2)0.0082 (2)0.00097 (17)0.00135 (17)0.00098 (17)
F10.0119 (4)0.0166 (4)0.0138 (4)0.0025 (3)0.0008 (3)0.0014 (3)
F20.0147 (4)0.0156 (4)0.0126 (4)0.0015 (3)0.0048 (3)0.0033 (3)
F30.0182 (4)0.0095 (4)0.0156 (4)0.0013 (3)0.0018 (3)0.0004 (3)
S10.01318 (16)0.01599 (17)0.00995 (17)0.00279 (12)0.00338 (11)0.00034 (12)
C10.0129 (5)0.0116 (6)0.0104 (6)0.0063 (4)0.0012 (4)0.0002 (5)
C20.0110 (5)0.0124 (6)0.0116 (6)0.0061 (4)0.0007 (4)0.0010 (5)
N10.0117 (5)0.0114 (5)0.0092 (5)0.0015 (4)0.0022 (4)0.0002 (4)
N20.0137 (5)0.0140 (5)0.0094 (6)0.0018 (4)0.0000 (4)0.0016 (4)
N30.0146 (5)0.0150 (5)0.0107 (5)0.0026 (4)0.0018 (4)0.0015 (4)
N40.0128 (5)0.0123 (5)0.0119 (6)0.0006 (4)0.0015 (4)0.0031 (4)
Geometric parameters (Å, º) top
Si1—F11.6911 (11)C2—N31.3198 (18)
Si1—F21.7086 (10)C2—N11.3711 (18)
Si1—F31.6788 (11)N1—H10.848 (18)
Si1—F3i1.6789 (10)N2—H210.87 (2)
Si1—F1i1.6911 (11)N2—H220.848 (17)
Si1—F2i1.7086 (10)N3—H310.86 (2)
S1—C11.6774 (14)N3—H320.89 (2)
C1—N21.3296 (18)N4—H410.91 (2)
C1—N11.3870 (18)N4—H420.763 (19)
C2—N41.3113 (17)
F1—Si1—F290.02 (5)N1—C1—S1125.24 (10)
F3—Si1—F189.77 (5)N4—C2—N3121.12 (13)
F3—Si1—F290.12 (5)N4—C2—N1122.29 (12)
F3—Si1—F3i180.0N3—C2—N1116.59 (12)
F3i—Si1—F190.23 (5)C2—N1—C1129.51 (11)
F3—Si1—F1i90.23 (5)C2—N1—H1113.3 (12)
F3i—Si1—F1i89.77 (5)C1—N1—H1116.3 (12)
F1—Si1—F1i180.0C1—N2—H21125.0 (14)
F3i—Si1—F289.88 (5)C1—N2—H22119.6 (10)
F1i—Si1—F289.98 (5)H21—N2—H22114.9 (16)
F3—Si1—F2i89.88 (5)C2—N3—H31121.0 (14)
F3i—Si1—F2i90.12 (5)C2—N3—H32116.4 (12)
F1—Si1—F2i89.98 (5)H31—N3—H32120.7 (18)
F1i—Si1—F2i90.02 (5)C2—N4—H41118.8 (14)
F2—Si1—F2i180.0C2—N4—H42118.8 (13)
N2—C1—N1112.97 (11)H41—N4—H42121.8 (18)
N2—C1—S1121.79 (11)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F20.85 (2)2.01 (2)2.823 (2)162 (2)
N2—H22···F1ii0.85 (2)2.10 (2)2.938 (2)173 (2)
N2—H21···F20.87 (2)2.31 (2)3.023 (2)139 (2)
N3—H31···F10.86 (2)2.00 (2)2.864 (2)179 (2)
N3—H32···F3iii0.89 (2)2.05 (2)2.873 (2)153 (2)
N4—H42···F2iv0.76 (2)2.32 (2)2.978 (2)146 (2)
N4—H42···F3iii0.76 (2)2.38 (2)3.021 (2)143 (2)
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC2H7N4S+·HF22C2H7N4S+·SiF62
Mr158.18380.44
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)100100
a, b, c (Å)8.199 (3), 12.203 (4), 14.158 (4)6.537 (3), 7.390 (3), 7.884 (4)
α, β, γ (°)100.78 (3), 93.87 (3), 104.50 (3)83.65 (3), 83.44 (3), 66.15 (3)
V3)1337.5 (8)345.2 (3)
Z81
Radiation typeMo KαMo Kα
µ (mm1)0.440.55
Crystal size (mm)0.19 × 0.09 × 0.070.25 × 0.23 × 0.09
Data collection
DiffractometerOxford Diffraction KM4 CCD area-detector
diffractometer
Oxford Diffraction KM4 CCD area-detector
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Analytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.897, 0.9790.870, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
20685, 7461, 5387 4487, 1837, 1582
Rint0.0510.021
(sin θ/λ)max1)0.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.129, 1.01 0.026, 0.071, 1.01
No. of reflections74611837
No. of parameters421125
H-atom treatmentOnly H-atom coordinates refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.41, 0.290.38, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and SHELXTL-NT (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
F21—H11F···F110.92 (3)1.38 (3)2.291 (2)172 (3)
F22—H12F···F121.10 (3)1.20 (3)2.291 (2)177 (3)
F23—H13F···F131.14 (3)1.16 (3)2.287 (2)172 (3)
F24—H14F···F141.06 (3)1.23 (3)2.289 (2)177 (3)
N11—H11···F110.87 (3)1.89 (3)2.711 (3)157 (3)
N21—H211···F110.82 (3)2.10 (3)2.823 (3)148 (3)
N21—H221···F21i0.88 (3)2.00 (3)2.873 (3)179 (3)
N31—H311···F120.86 (3)1.90 (3)2.732 (3)166 (3)
N31—H321···F240.81 (3)2.24 (3)2.955 (3)147 (3)
N41—H421···F240.79 (3)2.14 (3)2.867 (3)152 (3)
N12—H12···F12ii0.83 (3)1.96 (3)2.744 (3)159 (3)
N22—H212···F12ii0.86 (3)1.99 (3)2.768 (3)151 (3)
N22—H222···F22iii0.80 (3)2.05 (3)2.847 (3)173 (3)
N32—H312···F11ii0.87 (3)1.89 (3)2.734 (3)165 (3)
N32—H322···F130.83 (3)2.24 (3)2.953 (3)144 (3)
N42—H422···F130.76 (3)2.16 (3)2.862 (3)153 (3)
N13—H13···F140.87 (3)1.87 (3)2.708 (3)162 (3)
N23—H213···F140.86 (3)2.01 (3)2.796 (3)151 (3)
N23—H223···F24iii0.86 (3)1.99 (3)2.851 (3)173 (3)
N33—H323···F21ii0.84 (3)2.18 (3)2.940 (3)150 (3)
N33—H313···F230.80 (3)1.98 (3)2.768 (3)166 (3)
N43—H423···F21ii0.82 (3)2.20 (3)2.928 (3)149 (3)
N43—H423···F22ii0.82 (3)2.53 (3)2.958 (3)114 (3)
N14—H14···F230.82 (3)2.02 (3)2.789 (3)156 (3)
N24—H214···F230.87 (3)1.99 (3)2.788 (3)151 (3)
N24—H224···F13iv0.86 (3)1.96 (3)2.821 (3)174 (3)
N34—H324···F220.81 (3)2.24 (3)2.933 (3)145 (3)
N34—H314···F140.86 (3)1.92 (3)2.750 (3)163 (3)
N44—H424···F210.75 (3)2.52 (3)2.891 (3)112 (3)
N44—H424···F220.75 (3)2.19 (3)2.865 (3)151 (3)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+2.
Selected geometric parameters (Å, º) for (II) top
Si1—F11.6911 (11)Si1—F31.6788 (11)
Si1—F21.7086 (10)
F1—Si1—F290.02 (5)F3—Si1—F290.12 (5)
F3—Si1—F189.77 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F20.85 (2)2.01 (2)2.823 (2)162 (2)
N2—H22···F1i0.85 (2)2.10 (2)2.938 (2)173 (2)
N2—H21···F20.87 (2)2.31 (2)3.023 (2)139 (2)
N3—H31···F10.86 (2)2.00 (2)2.864 (2)179 (2)
N3—H32···F3ii0.89 (2)2.05 (2)2.873 (2)153 (2)
N4—H42···F2iii0.76 (2)2.32 (2)2.978 (2)146 (2)
N4—H42···F3ii0.76 (2)2.38 (2)3.021 (2)143 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds