Download citation
Download citation
link to html
The title compound, [Pt(C4H10O3PS)(C15H10ClN3)](C24H20B), has a distorted square-planar coordination geometry at the platinum(II) centre, due to the constraints of the tridentate ter­pyridine ligand. The PtII-bound diethyl­phosphino­thio­ate ligand takes up a conformation to avoid non-bonding contacts with atoms H6 and H6''.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100020023/gd1116sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100020023/gd1116Isup2.hkl
Contains datablock I

CCDC reference: 162558

Comment top

Platinum(II) complexes of 2,2':6',2''-terpyridine ligands are of interest due to their photophysical properties (Tzeng et al., 1999), fast ligand-substitution kinetics (Mureinik & Bidani, 1978; Carr et al., 2000), and antitumour (Lowe, Droz, Vilaivan, Weaver, Park et al., 1999) and antiparasitic activity (Lowe, Droz, Vilaivan, Weaver, Tweedale et al., 1999). Intercalation into nucleic acids (McCoubrey et al., 1996) and irreversible enzyme inhibition (Bonse et al., 2000) have been implicated as possible modes of action of this class of compounds in vivo. Oligo(deoxy)ribonucleotides containing phosphinothioate linkages have been proposed as potential antisense or antigene agents, due to their resistance to enzymatic hydrolysis in vivo (Eckstein, 2000). Binding of platinum complexes to the phosphinothioate linkage of oligonucleotides has been reported by Elmroth & Lippard (1995), and crosslinking of oligonucleotides using binuclear platinum complexes has also been reported (Gruff & Orgel, 1991). In addition, phosphinothioates have been used as chemoprotective agents for platinum antitumour agents (Thompson et al., 1995). We describe herein the first single-crystal X-ray structure of a mononuclear platinum(II)-phosphinothioate complex, (I). \sch

The distorted square planar geometry of the Pt centre in (I) [N5—Pt1—N16 161.61 (14)°; Fig. 1] is in agreement with other reported (terpyridine)platinum(II) complexes (Chernega et al., 1996; Jennette et al., 1976; Tzeng et al., 1999). The Pt1—S21—P22 bond angle of 96.84 (5)° is quite acute and compares with the equivalent Pt—S—P angles of 107.0 (1) and 104.6 (1)° in a related PtII—ZnII bridged dialkylphosphinothioate complex reported by Poat et al. (1990).

The N5—Pt1—S21—P22 torsion angle of 97.0 (3)° illustrates the necessity for the phosphinothioate ligand to adopt a conformation which avoids non-bonding contacts with atoms H6 and H6'' (H61 and H171 in the present atom-labelling scheme) of the terpyridine ligand. This torsion angle leads to the P centre being displaced significantly from the (terpyridine)platinum(II) plane. Thus, intercalation of this complex into double-stranded nucleic acids would almost certainly lead to steric interactions between the phosphinothioate group and adjacent base-pairs. Interestingly, O23 is displaced 2.58 (2) Å from the mean plane defined by Pt1, N5, N2, N16 and S21, which may facilitate hydrogen-bonding interactions between O23 and the adjacent base-pairs of DNA upon intercalation.

The crystal structure of (I) shows that the cations are arranged in a stacked manner in the solid state (Fig. 2). This has been observed previously with (terpyridine)platinum(II) complexes (Chernega et al., 1996; Tzeng et al., 1999), and is a good indication of the ability of these compounds to intercalate and also to stack in solution (Jennette et al., 1976). The intramolecular (or inter?) stacking distance [3.59 (5) Å between the equivalent mean planes described above] and antiparallel orientation are consistent with previously reported structures. The intermolecular Pt1—Pt1' distance is 4.29 (5) Å.

Finally, the structural parameters for the present platinum(II)-phosphinothioate complex will prove useful in predicting how the (terpyridine)platinum(II) fragment will bind to nucleic acids containing the phosphinothioate linkage.

Related literature top

For related literature, see: Bonse et al. (2000); Carr et al. (2000); Chernega et al. (1996); Eckstein (2000); Elmroth & Lippard (1995); Gruff & Orgel (1991); Jennette et al. (1976); Lowe & Vilaivan (1996); Lowe, Droz, Vilaivan, Weaver, Park, Pratt, Tweedale & Kelland (1999); Lowe, Droz, Vilaivan, Weaver, Tweedale, Pratt, Rock, Yardley & Croft (1999); McCoubrey et al. (1996); Mureinik & Bidani (1978); Poat et al. (1990); Reynolds et al. (1983); Thompson et al. (1995); Tzeng et al. (1999).

Experimental top

Complex (I) was prepared as its nitrate salt in 71% yield following the general method of Lowe & Vilaivan (1996). Triethylammonium diethylphosphinothioate was prepared as described previously by Reynolds et al. (1983). Dissolution of the nitrate salt in water followed by the addition of excess sodium tetraphenylborate afforded a yellow precipitate which was redissolved by the addition of acetonitrile. Evaporation of this water/acetonitrile solution afforded single crystals of (I) (m.p. > 503 K). Spectroscopic analysis: 1H NMR (200 MHz, d6-DMSO, δ, p.p.m.): 1.12 (6H, t), 4.01 (4H, quin), 8.02 (2H, dd), 8.51 (2H, dd), 8.57 (2H, d), 9.00 (2H, s), 9.23 (2H, d); 31P NMR (101 MHz, d6-DMSO, δ, p.p.m.) 31.93 (J195Pt-31P = 88 Hz); elemental analysis calculated (for hexafluorophosphate salt): C 29.3, H 2.6, N 5.4%; found: C 29.4, H 2.6, N 5.4%.

Refinement top

H atoms were placed geometrically after each cycle. The short C28—C280 bond is probably a consequence of librational disorder, but it could not be reliably modelled on this basis.

Computing details top

Data collection: XPRESS (MacScience, 1989); cell refinement: DENZO; data reduction: DENZO (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin, Prout, Carruthers & Betteridge, 1996); molecular graphics: CAMERON (Watkin, Prout & Pearce, 1996); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the ?% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The intermolecular stacking interactions of the cationic units of (I).
(4'-Chloro-2,2':6',2''-terpyridine-N,N',N'')(diethylphopshinothioato-S)platinu m(II) tetraphenylborate top
Crystal data top
[Pt(C15H10ClN3)(C4H10O3PS)](C24H20B)F(000) = 1896.0
Mr = 951.20Dx = 1.62 Mg m3
Monoclinic, P21/nMelting point: not measured K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71069 Å
a = 10.7550 (5) ÅCell parameters from 16185 reflections
b = 13.5230 (3) Åθ = 0–27°
c = 26.764 (1) ŵ = 3.82 mm1
β = 87.356 (2)°T = 190 K
V = 3888.4 Å3Prism, yellow
Z = 40.8 × 0.2 × 0.2 mm
Data collection top
Enraf-nonius DIP2000
diffractometer
5773 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.05
ω scansθmax = 26.6°, θmin = 0.0°
Absorption correction: multi-scan
DENZO (Otwinowski & Minor, 1996)
h = 1313
Tmin = 0.46, Tmax = 0.46k = 016
7838 measured reflectionsl = 033
7838 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters not refined
wR(F2) = 0.037 Chebychev polynomial with 3 parameters (Carruthers & Watkin, 1979) 1.66 0.505 1.28
S = 1.03(Δ/σ)max < 0.001
5773 reflectionsΔρmax = 1.69 e Å3
487 parametersΔρmin = 0.84 e Å3
Crystal data top
[Pt(C15H10ClN3)(C4H10O3PS)](C24H20B)V = 3888.4 Å3
Mr = 951.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7550 (5) ŵ = 3.82 mm1
b = 13.5230 (3) ÅT = 190 K
c = 26.764 (1) Å0.8 × 0.2 × 0.2 mm
β = 87.356 (2)°
Data collection top
Enraf-nonius DIP2000
diffractometer
7838 independent reflections
Absorption correction: multi-scan
DENZO (Otwinowski & Minor, 1996)
5773 reflections with I > 3σ(I)
Tmin = 0.46, Tmax = 0.46Rint = 0.05
7838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030487 parameters
wR(F2) = 0.037H-atom parameters not refined
S = 1.03Δρmax = 1.69 e Å3
5773 reflectionsΔρmin = 0.84 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.818682 (14)0.021608 (12)0.035006 (5)0.0332
Cl120.70224 (12)0.1349 (1)0.18851 (4)0.0547
S210.85760 (11)0.01859 (9)0.11721 (4)0.0445
P220.71700 (9)0.06262 (9)0.14998 (4)0.0372
O230.5934 (3)0.0481 (2)0.12959 (12)0.0450
O240.7176 (3)0.0408 (3)0.20754 (12)0.0492
O270.7660 (3)0.1719 (2)0.14592 (13)0.0495
N20.7884 (3)0.0525 (3)0.03440 (12)0.0365
N50.9434 (3)0.1321 (3)0.02400 (13)0.0401
N160.6797 (3)0.0760 (2)0.02372 (12)0.0374
C30.8553 (4)0.1259 (3)0.05681 (15)0.0368
C40.9460 (4)0.1697 (3)0.02342 (16)0.0388
C61.0205 (4)0.1697 (4)0.05733 (17)0.0493
C71.1009 (5)0.2474 (4)0.0444 (2)0.0572
C81.1031 (4)0.2853 (4)0.0030 (2)0.0570
C91.0249 (4)0.2450 (4)0.03800 (18)0.0478
C100.8317 (4)0.1523 (3)0.10539 (16)0.0408
C110.7375 (4)0.1020 (3)0.12879 (15)0.0389
C130.6693 (4)0.0275 (3)0.10530 (15)0.0367
C140.6973 (4)0.0033 (3)0.05698 (16)0.0351
C150.6348 (4)0.0708 (3)0.02327 (15)0.0370
C170.6261 (4)0.1383 (3)0.05680 (16)0.0436
C180.5274 (5)0.1980 (3)0.04506 (18)0.0487
C190.4839 (4)0.1944 (3)0.00247 (18)0.0474
C200.5382 (4)0.1295 (3)0.03740 (17)0.0428
C250.6224 (5)0.0229 (4)0.23231 (18)0.0548
C260.6418 (7)0.1284 (5)0.2197 (2)0.0763
C280.6870 (6)0.2500 (5)0.1663 (3)0.0780
C290.6268 (3)0.4748 (3)0.15966 (15)0.0345
C300.5943 (4)0.5028 (3)0.20755 (16)0.0423
C310.4891 (4)0.4675 (4)0.22983 (16)0.0442
C320.4124 (4)0.4010 (4)0.20442 (18)0.0459
C330.4402 (4)0.3717 (4)0.15770 (19)0.0481
C340.5455 (4)0.4083 (3)0.13517 (16)0.0417
C360.7334 (4)0.5075 (3)0.07264 (16)0.0364
C370.6558 (4)0.5713 (3)0.04498 (17)0.0434
C380.6308 (5)0.5603 (4)0.00578 (19)0.0515
C390.6854 (5)0.4872 (4)0.03252 (18)0.0501
C400.7609 (5)0.4212 (5)0.0063 (2)0.0713
C410.7839 (5)0.4317 (5)0.04469 (19)0.0642
C420.8731 (3)0.4471 (3)0.15289 (15)0.0343
C430.8674 (4)0.3736 (3)0.18968 (18)0.0436
C440.9693 (5)0.3135 (4)0.2028 (2)0.0529
C451.0807 (4)0.3245 (4)0.1797 (2)0.0550
C461.0909 (4)0.3975 (4)0.1439 (2)0.0523
C470.9897 (4)0.4572 (3)0.13064 (17)0.0429
C480.7742 (4)0.6310 (3)0.15192 (14)0.0351
C490.6748 (4)0.6979 (3)0.15197 (16)0.0399
C500.6873 (4)0.7958 (3)0.16670 (18)0.0475
C510.8023 (5)0.8315 (4)0.18273 (19)0.0510
C520.9034 (4)0.7697 (4)0.18385 (19)0.0511
C530.8894 (4)0.6711 (3)0.16949 (17)0.0427
C2800.7269 (8)0.3438 (5)0.1484 (3)0.0888
B350.7533 (4)0.5156 (4)0.13416 (18)0.0350
H611.01920.14180.09170.0573*
H711.15760.27510.06940.0684*
H811.16050.34120.01290.0690*
H911.02590.27140.07290.0568*
H1010.88090.20590.12300.0474*
H1310.60160.00740.12260.0430*
H1710.65890.14130.09180.0503*
H1810.48750.24380.07130.0574*
H1910.41470.23830.01180.0555*
H2010.50710.12590.07210.0508*
H2510.62690.01390.26920.0660*
H2520.53890.00170.22150.0660*
H2610.57640.16870.23720.0889*
H2620.72610.14940.23030.0889*
H2630.63810.13720.18260.0889*
H3010.64870.55120.22620.0505*
H3110.46930.49030.26380.0536*
H3210.33570.37480.22000.0542*
H3310.38560.32240.13910.0568*
H3410.56340.38610.10060.0504*
H3710.61580.62750.06230.0526*
H3810.57170.60670.02340.0598*
H3910.67040.48220.06950.0591*
H4010.80050.36660.02440.0825*
H4110.83810.38150.06220.0756*
H4310.78870.36410.20730.0508*
H4410.96160.26180.22940.0616*
H4511.15280.28010.18880.0654*
H4611.17220.40700.12770.0602*
H4710.99980.50870.10460.0515*
H4910.59030.67370.14040.0480*
H5010.61210.84020.16520.0570*
H5110.81190.90250.19370.0602*
H5210.98810.79420.19550.0614*
H5310.96320.62640.17150.0510*
H28010.67350.39830.16330.0918*
H28020.81640.35740.15780.0918*
H28030.72480.34700.11110.0918*
H2810.69160.24960.20410.0500*
H2820.60000.23920.15740.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03424 (9)0.0327 (1)0.03306 (9)0.00364 (7)0.00512 (5)0.00252 (7)
Cl120.0641 (7)0.0628 (8)0.0378 (5)0.0147 (6)0.0100 (5)0.0076 (5)
S210.0460 (6)0.0488 (6)0.0393 (5)0.0133 (5)0.0084 (4)0.0010 (5)
P220.0359 (5)0.0380 (6)0.0382 (5)0.0004 (4)0.0068 (4)0.0016 (5)
O230.0397 (15)0.0507 (19)0.0454 (16)0.0030 (13)0.0101 (12)0.0008 (14)
O240.0541 (18)0.055 (2)0.0397 (16)0.0012 (15)0.0104 (13)0.0024 (14)
O270.0431 (16)0.0404 (17)0.065 (2)0.0011 (14)0.0007 (14)0.0028 (15)
N20.0395 (17)0.0358 (18)0.0345 (16)0.0004 (15)0.0045 (13)0.0054 (14)
N50.0365 (17)0.043 (2)0.0411 (18)0.0022 (15)0.0060 (14)0.0041 (15)
N160.0482 (19)0.0268 (17)0.0375 (17)0.0010 (14)0.0045 (14)0.0009 (13)
C30.0342 (19)0.035 (2)0.040 (2)0.0016 (16)0.0025 (16)0.0017 (17)
C40.0324 (19)0.041 (2)0.043 (2)0.0031 (17)0.0016 (16)0.0052 (18)
C60.043 (2)0.062 (3)0.043 (2)0.001 (2)0.0075 (18)0.010 (2)
C70.049 (3)0.064 (3)0.060 (3)0.015 (2)0.013 (2)0.011 (2)
C80.046 (3)0.056 (3)0.070 (3)0.011 (2)0.007 (2)0.008 (3)
C90.043 (2)0.049 (3)0.052 (3)0.002 (2)0.0016 (19)0.001 (2)
C100.036 (2)0.045 (2)0.041 (2)0.0059 (17)0.0036 (16)0.0042 (18)
C110.040 (2)0.041 (2)0.036 (2)0.0011 (18)0.0018 (16)0.0021 (17)
C130.041 (2)0.034 (2)0.0355 (19)0.0003 (17)0.0012 (15)0.0058 (17)
C140.0330 (18)0.035 (2)0.037 (2)0.0033 (15)0.0029 (15)0.0060 (16)
C150.043 (2)0.029 (2)0.040 (2)0.0015 (17)0.0026 (16)0.0017 (17)
C170.059 (3)0.032 (2)0.040 (2)0.0016 (19)0.0025 (19)0.0010 (17)
C180.064 (3)0.033 (2)0.048 (2)0.007 (2)0.002 (2)0.0023 (19)
C190.052 (3)0.033 (2)0.058 (3)0.0094 (19)0.005 (2)0.0001 (19)
C200.043 (2)0.038 (2)0.048 (2)0.0020 (18)0.0044 (18)0.0009 (19)
C250.067 (3)0.055 (3)0.042 (2)0.004 (3)0.004 (2)0.001 (2)
C260.111 (5)0.056 (3)0.060 (3)0.001 (3)0.017 (3)0.003 (3)
C280.063 (3)0.050 (3)0.119 (5)0.003 (3)0.020 (3)0.020 (3)
C290.0297 (17)0.033 (2)0.040 (2)0.0010 (16)0.0021 (14)0.0047 (17)
C300.036 (2)0.051 (3)0.039 (2)0.0043 (18)0.0020 (16)0.0004 (18)
C310.041 (2)0.054 (3)0.038 (2)0.0006 (19)0.0054 (17)0.0041 (19)
C320.034 (2)0.050 (3)0.054 (3)0.0015 (18)0.0080 (18)0.009 (2)
C330.038 (2)0.046 (3)0.061 (3)0.0104 (19)0.0066 (19)0.004 (2)
C340.038 (2)0.042 (2)0.044 (2)0.0052 (18)0.0038 (17)0.0049 (18)
C360.0299 (18)0.038 (2)0.042 (2)0.0042 (16)0.0054 (15)0.0004 (17)
C370.044 (2)0.038 (2)0.048 (2)0.0031 (19)0.0032 (17)0.0009 (19)
C380.056 (3)0.043 (2)0.055 (3)0.003 (2)0.010 (2)0.006 (2)
C390.047 (2)0.065 (3)0.039 (2)0.004 (2)0.0017 (18)0.001 (2)
C400.061 (3)0.099 (5)0.054 (3)0.032 (3)0.004 (2)0.023 (3)
C410.065 (3)0.078 (4)0.048 (3)0.035 (3)0.010 (2)0.013 (3)
C420.0285 (17)0.036 (2)0.0379 (19)0.0026 (15)0.0022 (14)0.0041 (16)
C430.037 (2)0.040 (2)0.053 (3)0.0014 (18)0.0024 (18)0.0018 (19)
C440.054 (3)0.041 (3)0.062 (3)0.001 (2)0.012 (2)0.001 (2)
C450.042 (2)0.049 (3)0.072 (3)0.014 (2)0.017 (2)0.012 (2)
C460.030 (2)0.059 (3)0.068 (3)0.006 (2)0.0024 (19)0.015 (2)
C470.0312 (19)0.049 (3)0.048 (2)0.0027 (17)0.0008 (16)0.0046 (19)
C480.036 (2)0.036 (2)0.0333 (18)0.0037 (16)0.0053 (15)0.0013 (16)
C490.034 (2)0.041 (2)0.044 (2)0.0015 (17)0.0014 (16)0.0006 (18)
C500.046 (2)0.038 (2)0.059 (3)0.0038 (19)0.004 (2)0.001 (2)
C510.062 (3)0.035 (2)0.055 (3)0.000 (2)0.003 (2)0.005 (2)
C520.045 (2)0.045 (3)0.062 (3)0.008 (2)0.010 (2)0.004 (2)
C530.036 (2)0.040 (2)0.052 (2)0.0010 (18)0.0024 (17)0.0009 (19)
C2800.124 (6)0.042 (3)0.097 (5)0.014 (3)0.027 (4)0.012 (3)
B350.0294 (19)0.033 (2)0.043 (2)0.0014 (18)0.0004 (16)0.001 (2)
Geometric parameters (Å, º) top
Pt1—S212.3230 (11)C29—C341.396 (6)
Pt1—N21.946 (3)C29—B351.646 (6)
Pt1—N52.020 (4)C30—C311.387 (6)
Pt1—N162.027 (3)C30—H3011.00
Cl12—C111.718 (4)C31—C321.379 (7)
S21—P222.0346 (16)C31—H3110.99
P22—O231.473 (3)C32—C331.358 (7)
P22—O241.569 (3)C32—H3211.01
P22—O271.571 (3)C33—C341.397 (6)
O24—C251.471 (6)C33—H3311.01
O27—C281.447 (6)C34—H3411.00
N2—C31.351 (5)C36—C371.390 (6)
N2—C141.350 (5)C36—C411.394 (7)
N5—C41.367 (6)C36—B351.654 (6)
N5—C61.346 (6)C37—C381.381 (6)
N16—C151.369 (5)C37—H3711.00
N16—C171.334 (5)C38—C391.369 (8)
C3—C41.477 (6)C38—H3811.00
C3—C101.383 (6)C39—C401.376 (8)
C4—C91.371 (6)C39—H3911.00
C6—C71.394 (7)C40—C411.384 (7)
C6—H610.99C40—H4010.99
C7—C81.369 (8)C41—H4111.00
C7—H711.00C42—C431.403 (6)
C8—C91.397 (7)C42—C471.420 (6)
C8—H811.00C42—B351.646 (6)
C9—H911.00C43—C441.396 (6)
C10—C111.393 (6)C43—H4311.00
C10—H1011.00C44—C451.383 (8)
C11—C131.380 (6)C44—H4411.00
C13—C141.381 (6)C45—C461.382 (8)
C13—H1311.00C45—H4511.00
C14—C151.489 (6)C46—C471.388 (6)
C15—C201.374 (6)C46—H4611.00
C17—C181.381 (7)C47—H4711.00
C17—H1711.02C48—C491.401 (6)
C18—C191.376 (7)C48—C531.413 (6)
C18—H1811.02C48—B351.643 (6)
C19—C201.391 (6)C49—C501.386 (6)
C19—H1910.99C49—H4911.00
C20—H2011.00C50—C511.377 (7)
C25—C261.479 (8)C50—H5011.01
C25—H2511.00C51—C521.370 (7)
C25—H2521.00C51—H5111.01
C26—H2610.99C52—C531.394 (6)
C26—H2621.00C52—H5211.01
C26—H2631.00C53—H5311.00
C28—C2801.415 (9)C280—H28011.01
C28—H2811.02C280—H28021.02
C28—H2820.99C280—H28031.00
C29—C301.396 (6)
S21—Pt1—N2178.6 (1)H281—C28—H282109
S21—Pt1—N599.4 (1)C30—C29—C34115.3 (4)
N2—Pt1—N580.87 (14)C30—C29—B35122.4 (4)
S21—Pt1—N1698.9 (1)C34—C29—B35122.2 (4)
N2—Pt1—N1680.82 (14)C29—C30—C31123.0 (4)
N5—Pt1—N16161.61 (14)C29—C30—H301118
Pt1—S21—P2296.84 (5)C31—C30—H301119
S21—P22—O23115.69 (15)C30—C31—C32119.6 (4)
S21—P22—O24106.56 (14)C30—C31—H311120
O23—P22—O24112.52 (19)C32—C31—H311120
S21—P22—O27103.76 (13)C31—C32—C33119.5 (4)
O23—P22—O27113.92 (19)C31—C32—H321121
O24—P22—O27103.22 (19)C33—C32—H321120
P22—O24—C25121.2 (3)C32—C33—C34120.7 (4)
P22—O27—C28118.2 (3)C32—C33—H331120
Pt1—N2—C3118.2 (3)C34—C33—H331119
Pt1—N2—C14118.6 (3)C29—C34—C33121.9 (4)
C3—N2—C14123.1 (4)C29—C34—H341119
Pt1—N5—C4113.3 (3)C33—C34—H341119
Pt1—N5—C6127.5 (3)C37—C36—C41114.2 (4)
C4—N5—C6119.2 (4)C37—C36—B35122.4 (4)
Pt1—N16—C15113.4 (3)C41—C36—B35123.2 (4)
Pt1—N16—C17127.7 (3)C36—C37—C38122.8 (4)
C15—N16—C17118.8 (4)C36—C37—H371119
N2—C3—C4112.3 (4)C38—C37—H371118
N2—C3—C10119.3 (4)C37—C38—C39121.6 (4)
C4—C3—C10128.4 (4)C37—C38—H381119
N5—C4—C3115.3 (4)C39—C38—H381119
N5—C4—C9121.8 (4)C38—C39—C40117.3 (4)
C3—C4—C9122.9 (4)C38—C39—H391121
N5—C6—C7121.0 (5)C40—C39—H391122
N5—C6—H61119C39—C40—C41120.7 (5)
C7—C6—H61120C39—C40—H401120
C6—C7—C8119.7 (4)C41—C40—H401120
C6—C7—H71121C36—C41—C40123.3 (5)
C8—C7—H71120C36—C41—H411119
C7—C8—C9119.4 (5)C40—C41—H411118
C7—C8—H81121C43—C42—C47115.5 (4)
C9—C8—H81120C43—C42—B35123.6 (3)
C4—C9—C8118.9 (5)C47—C42—B35120.8 (4)
C4—C9—H91121C42—C43—C44122.1 (4)
C8—C9—H91120C42—C43—H431119
C3—C10—C11117.8 (4)C44—C43—H431119
C3—C10—H101121C43—C44—C45120.7 (5)
C11—C10—H101121C43—C44—H441120
Cl12—C11—C10119.2 (3)C45—C44—H441120
Cl12—C11—C13118.5 (3)C44—C45—C46119.0 (4)
C10—C11—C13122.3 (4)C44—C45—H451120
C11—C13—C14117.7 (4)C46—C45—H451120
C11—C13—H131121C45—C46—C47120.4 (4)
C14—C13—H131121C45—C46—H461119
N2—C14—C13119.8 (4)C47—C46—H461120
N2—C14—C15112.2 (4)C42—C47—C46122.3 (4)
C13—C14—C15128.0 (4)C42—C47—H471119
N16—C15—C14115.0 (3)C46—C47—H471119
N16—C15—C20121.8 (4)C49—C48—C53114.1 (4)
C14—C15—C20123.3 (4)C49—C48—B35121.3 (3)
N16—C17—C18122.1 (4)C53—C48—B35124.5 (4)
N16—C17—H171119C48—C49—C50123.6 (4)
C18—C17—H171119C48—C49—H491118
C17—C18—C19119.2 (4)C50—C49—H491118
C17—C18—H181120C49—C50—C51119.8 (4)
C19—C18—H181121C49—C50—H501119
C18—C19—C20119.5 (4)C51—C50—H501121
C18—C19—H191120C50—C51—C52119.6 (4)
C20—C19—H191120C50—C51—H511120
C15—C20—C19118.6 (4)C52—C51—H511120
C15—C20—H201121C51—C52—C53120.1 (4)
C19—C20—H201120C51—C52—H521121
O24—C25—C26112.0 (4)C53—C52—H521119
O24—C25—H251108C48—C53—C52122.8 (4)
C26—C25—H251109C48—C53—H531118
O24—C25—H252109C52—C53—H531119
C26—C25—H252109C28—C280—H2801111
H251—C25—H252110C28—C280—H2802111
C25—C26—H261110H2801—C280—H2802107
C25—C26—H262109C28—C280—H2803111
H261—C26—H262110H2801—C280—H2803109
C25—C26—H263109H2802—C280—H2803108
H261—C26—H263110C29—B35—C36108.6 (3)
H262—C26—H263109C29—B35—C42109.6 (3)
O27—C28—C280111.3 (5)C36—B35—C42109.2 (3)
O27—C28—H281109C29—B35—C48107.6 (3)
C280—C28—H281108C36—B35—C48111.1 (3)
O27—C28—H282110C42—B35—C48110.6 (3)
C280—C28—H282109

Experimental details

Crystal data
Chemical formula[Pt(C15H10ClN3)(C4H10O3PS)](C24H20B)
Mr951.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)190
a, b, c (Å)10.7550 (5), 13.5230 (3), 26.764 (1)
β (°) 87.356 (2)
V3)3888.4
Z4
Radiation typeMo Kα
µ (mm1)3.82
Crystal size (mm)0.8 × 0.2 × 0.2
Data collection
DiffractometerEnraf-nonius DIP2000
diffractometer
Absorption correctionMulti-scan
DENZO (Otwinowski & Minor, 1996)
Tmin, Tmax0.46, 0.46
No. of measured, independent and
observed [I > 3σ(I)] reflections
7838, 7838, 5773
Rint0.05
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.037, 1.03
No. of reflections5773
No. of parameters487
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.69, 0.84

Computer programs: XPRESS (MacScience, 1989), DENZO (Otwinowski & Minor, 1996), SIR92 (Altomare et al., 1994), CRYSTALS (Watkin, Prout, Carruthers & Betteridge, 1996), CAMERON (Watkin, Prout & Pearce, 1996), CRYSTALS.

Selected geometric parameters (Å, º) top
Pt1—S212.3230 (11)P22—O241.569 (3)
Pt1—N21.946 (3)P22—O271.571 (3)
Pt1—N52.020 (4)O24—C251.471 (6)
Pt1—N162.027 (3)O27—C281.447 (6)
S21—P222.0346 (16)C25—C261.479 (8)
P22—O231.473 (3)C28—C2801.415 (9)
S21—Pt1—N2178.6 (1)S21—P22—O24106.56 (14)
S21—Pt1—N599.4 (1)O23—P22—O24112.52 (19)
N2—Pt1—N580.87 (14)S21—P22—O27103.76 (13)
S21—Pt1—N1698.9 (1)O23—P22—O27113.92 (19)
N2—Pt1—N1680.82 (14)O24—P22—O27103.22 (19)
N5—Pt1—N16161.61 (14)P22—O24—C25121.2 (3)
Pt1—S21—P2296.84 (5)P22—O27—C28118.2 (3)
S21—P22—O23115.69 (15)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds