Download citation
Download citation
link to html
The crystal structures of 2,2-dimethyl-5-nitroso-1,3-dioxan-5-­yl benzoate, C13H15NO5, (I), 2,2-dimethyl-5-nitroso-1,3-dioxan-5-yl 4-chloro­benzoate, C13H14ClNO5, (II), and 5-nitroso-1,3-dioxan-5-yl 4-chloro­benzoate, C11H11NO5, (III), have been determined in order to gain insight into the conformational preference of α-benzoyl­oxy­nitroso. Unfavourable 1,3-diaxial inter­actions force (I) and (II) to crystallize in the 2,5 twist-boat conformation, whereas compound (III), lacking this destabilizing inter­action, crystallizes in the chair conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107021804/ga3047sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107021804/ga3047Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107021804/ga3047IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107021804/ga3047IIIsup4.hkl
Contains datablock III

CCDC references: 652522; 652523; 652524

Comment top

α-Acyloxynitroso derivatives have elicited recent interest as a new class of HNO donors (Sha et al., 2006). In 2004, we introduced α-acetoxy nitroso derivatives as reactive dienophiles in [4 + 2]-cycloaddition reactions and the synthetic relevance of this new class of nitroso dienophiles has been demonstrated (Calvet et al., 2004, 2005, 2007). The unprecedented behaviour of α-acetoxy nitroso in the presence of a 1,3-diene led us to investigate their conformational preference. This study was expected to trigger the development of more reactive/selective dienophiles. Moreover, the cycloaddition reaction of α-acetoxy nitroso complexed with a metallic salt bearing enantiopure ligands was a very exciting development. Such an investigation required the rational design of a reactive dienophile, which cannot be accomplished without a detailed crystallographic study.

α-Benzoyloxynitroso derivatives (I) and (II) differ only by the nature of the aromatic para-substituent [for (I), R1 = H and R2 = Me; for (II), R1 = Cl and R2 = Me). The 1,3-dioxanyl ring system crystallizes in the 2,5 twist-boat conformation (Figs. 1 and 2), with the NO and the benzoyloxy substituents occupying the isoclinal positions (Freeman & Do, 2002). The puckering parameters for compound (I) are Q = 0.750 (1) Å, θ = 91.7 (1)° and ϕ = 337.0 (1)°, and for (II) Q = 0.759 (1) Å, θ = 92.1 (1)° and ϕ = 334.4 (1)° for the atom sequence O1—C1—O2—C2—C3—C4 (Cremer & Pople, 1975). This twisted conformation occurs in the substituted 1,3-dioxanyl ring in order to relieve unfavourable 1,3-diaxial interaction (Rychnovsky et al., 1993), as in the case of a related 1,3-dioxanyl ring [Cambridge Structural Database (Allen, 2002) refcode OCECUU; Kanoh et al., 2000]. These diaxial interactions [e.g. H5A···H4A = 2.24 Å in (I)] are magnified by the shorter length of the C—O bonds [1.4076 (16)–1.4428 (14) Å] compared with the corresponding cyclohexyl ring (see Tables 1 and 3). The NO bond distance in (II) is slightly longer [0.020 (2) Å] than that observed in (I). This difference could be attributed to the electron-withdrawing character of the p-chlorobenzoyl group (Figs. 1 and 2). The distance between carbonyl atom O5 and atom N1 of the nitroso group is also shorter in (II) by 0.019 (2) Å.

When the isopropylidene ketal unit of derivatives (I) and (II) is replaced by a methylene ketal, the conformation of the 1,3-dioxanyl ring changes dramatically (Fig. 3). α-Benzoyloxynitroso (III) (R1 = H and R2 = H) crystallizes in a chair conformation, with the nitroso unit in equatorial position and the benzoyloxy substituent in axial position. For compound (III), the corresponding puckering parameters are Q = 0.571 (1) Å, θ = 3.4 (1)° and ϕ = 82 (2)°. That the sterically smaller NO substituent adopts the equatorial position could be rationalized in terms of dipole interaction (Abraham et al., 1972) and/or repulsive gauche effect (Eliel & Juaristi, 1978) between the lone pairs of the intracyclic O1 and O2 atoms and the lone pairs of the nitroso group. The nitroso bond length is intermediate between values observed for derivatives (I) and (II). In contrast, the N1—O5 distance is longer than the average of that in (I) and (II) by 0.178 (3) Å. The dihedral angle O4—C3—N1—O3 is -19.51 (15)° for (III), similar to the reported value of -4.3 (1)° for the structure of 2,3,5,6-di-O-isopropylidene-1-C-nitroso-α-D-mannofuranosyl chloride (refcode FADSOS; Felber et al., 1986).

In each of the three molecules, there are weak intramolecular C–H···O hydrogen bonds (Tables 2, 4 and 6). These intramolecular hydrogen bonds affect the molecular conformation and stabilize the twist-boat conformation for (I) and (II). For compound (III), only one weak interaction appears, between C4/H4B and O5. We have also compared the three structures by superposition, maximizing the fit of atoms C3, O4 and C7 (Fig. 4). The figure shows clearly the exact superposition of (I) and (II). For (III), atom O3 is located `outside' the six-membered ring, whereas in (I) and (II), atom O3 adopts a more `inside' position. This allows the formation of an additional C—H···O hydrogen bond.

In (I), no intermolecular C—H···O hydrogen-bond interactions are found. In the other two compounds, the packing of the molecules involves C—H···O hydrogen bonds utilizing atoms O2 and O3. Thus molecules of (II) form dimers (Table 4). The molecules of (III) are linked into a two-dimensional framework by a combination of two C—H···O hydrogen bonds (Table 6). In the shorter of these, C10 acts as a hydrogen-bond donor to atom O2, thereby producing a chain running parallel to the [100] direction, generated by the 21 screw axis along (x, 1/4, 0). In the second C—H···O hydrogen bond, atom C4 acts as a hydrogen-bond donor to O3, so producing a chain running parallel to the [001] direction, as generated by the 21 screw axis along (-1/4, 0, z). In addition, weak C—H···π hydrogen bonds are presents in (I) and (II); for both compounds, atom C5 acts as a hydrogen-bond donor to the C8–C13 ring in an adjacent molecule (Tables 2 and 4).

Related literature top

For related literature, see: Abraham et al. (1972); Allen (2002); Calvet et al. (2004, 2005, 2007); Cremer & Pople (1975); Eliel & Juaristi (1978); Felber et al. (1986); Flack & Schwarzenbach (1988); Freeman & Do (2002); Kanoh et al. (2000); Rychnovsky et al. (1993); Sha et al. (2006); Sheldrick (1997).

Experimental top

To a solution of 2,2-dimethyl-1,3-dioxan-5-one oxime (303 mg, 2.1 mmol) in CH2Cl2 (21 ml) was added iodobenzene dibenzoate (933 mg, 2.1 mmol) portionwise over a preiod of 45 min. The reaction mixture was stirred for 2 h at room temperature before being quenched with an aqueous saturated NaHCO3 solution. The aqueous phase was extracted with CH2Cl2, dried over Na2SO3, filtered and concentrated. Flash chromatography (heptane/ethyl acetate, 9:1 to 7:3) afforded 396 mg (72%) of (I) as a bright-blue solid. Recrystallization from pentane/diethyl ether led to blue crystals, suitable for X-ray diffraction. Please specify details of syntheses of other two compounds. NMR (1H and 13C) and IR spectra were collected for the three compounds; the supplementary material contains these data.

Refinement top

H atoms were positioned geometrically and treated as riding. Refinement of the Flack parameter (Flack & Schwarzenbach, 1988) for (III) was suppressed by the MERG 4 command in SHELXL97 (Sheldrick, 1997).

Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3.2 (Brueggemann & Schmid, 1990); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids depicted at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), with displacement ellipsoids depicted at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecular structure of (III), with displacement ellipsoids depicted at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. Superposition of the three structures (Mercury; Macrae et al., 2006) using atoms C3, O4 and C7 as the common reference points. Compounds (I) and (II) are in wireframe and (III) in capped-sticks style.
(I) 2,2-Dimethyl-5-nitroso-1,3-dioxan-5-yl benzoate top
Crystal data top
C13H15NO5F(000) = 560
Mr = 265.26Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6252 reflections
a = 6.2809 (5) Åθ = 2.3–29.4°
b = 21.9393 (19) ŵ = 0.10 mm1
c = 9.6452 (9) ÅT = 273 K
β = 100.495 (2)°Plate, blue
V = 1306.9 (2) Å30.32 × 0.24 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEX II area-detector
diffractometer
3401 independent reflections
Radiation source: fine-focus sealed tube, X8 Apex II Bruker2914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: ψ scan
(SADABS; Bruker, 2000)
h = 87
Tmin = 0.98, Tmax = 0.99k = 3030
21059 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.3535P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.006
3401 reflectionsΔρmax = 0.60 e Å3
173 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.069 (6)
Crystal data top
C13H15NO5V = 1306.9 (2) Å3
Mr = 265.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2809 (5) ŵ = 0.10 mm1
b = 21.9393 (19) ÅT = 273 K
c = 9.6452 (9) Å0.32 × 0.24 × 0.09 mm
β = 100.495 (2)°
Data collection top
Bruker SMART APEX II area-detector
diffractometer
3401 independent reflections
Absorption correction: ψ scan
(SADABS; Bruker, 2000)
2914 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.022
21059 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.12Δρmax = 0.60 e Å3
3401 reflectionsΔρmin = 0.41 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Treatment on H: H atoms of ligand were added geometrically and refined by riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2925 (2)1.07653 (6)0.20850 (13)0.0340 (3)
C50.1356 (3)1.12731 (7)0.22207 (17)0.0476 (4)
H5B0.08491.14510.13110.071*
H5C0.20721.15790.28500.071*
H5A0.01491.11130.25880.071*
C60.4895 (3)1.09770 (8)0.15200 (18)0.0516 (4)
H6A0.44411.11730.06240.077*
H6B0.57891.06320.14070.077*
H6C0.57031.12600.21700.077*
O20.17344 (16)1.03261 (4)0.11452 (9)0.0381 (3)
C20.2499 (2)0.97268 (6)0.14143 (13)0.0354 (3)
H2A0.40540.97130.14620.042*
H2B0.18240.94570.06650.042*
C30.1930 (2)0.95257 (6)0.28258 (13)0.0316 (3)
C40.2268 (2)1.00621 (6)0.38470 (13)0.0343 (3)
H4A0.08951.02620.38620.041*
H4B0.28430.99180.47920.041*
O10.37409 (15)1.04821 (4)0.34089 (9)0.0345 (2)
N10.0348 (2)0.92740 (7)0.24786 (15)0.0481 (3)
O30.17159 (19)0.96490 (7)0.24833 (18)0.0678 (4)
O40.32776 (16)0.90072 (4)0.32507 (10)0.0369 (2)
C70.2854 (2)0.86946 (6)0.43828 (14)0.0369 (3)
O50.14166 (19)0.88311 (5)0.49898 (13)0.0514 (3)
C80.4347 (2)0.81704 (6)0.47515 (14)0.0370 (3)
C90.3865 (3)0.77541 (7)0.57403 (16)0.0454 (3)
H90.26220.78030.61260.054*
C100.5242 (3)0.72675 (7)0.61472 (18)0.0545 (4)
H100.49200.69880.68040.065*
C110.7080 (3)0.71970 (8)0.55824 (18)0.0555 (4)
H110.80060.68710.58660.067*
C120.7569 (3)0.76063 (8)0.45946 (19)0.0521 (4)
H120.88140.75550.42130.063*
C130.6197 (3)0.80945 (7)0.41742 (16)0.0442 (3)
H130.65160.83700.35080.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (6)0.0354 (6)0.0289 (6)0.0012 (5)0.0021 (5)0.0015 (4)
C50.0523 (9)0.0421 (8)0.0465 (8)0.0102 (6)0.0046 (6)0.0021 (6)
C60.0541 (9)0.0571 (9)0.0467 (8)0.0117 (7)0.0173 (7)0.0032 (7)
O20.0433 (5)0.0386 (5)0.0278 (4)0.0019 (4)0.0058 (4)0.0014 (3)
C20.0409 (7)0.0370 (6)0.0266 (5)0.0028 (5)0.0022 (5)0.0023 (5)
C30.0298 (6)0.0322 (6)0.0315 (6)0.0023 (5)0.0022 (4)0.0010 (4)
C40.0382 (7)0.0370 (6)0.0277 (6)0.0009 (5)0.0063 (5)0.0010 (5)
O10.0338 (5)0.0392 (5)0.0278 (4)0.0040 (4)0.0012 (3)0.0009 (3)
N10.0347 (6)0.0539 (8)0.0530 (8)0.0038 (5)0.0009 (5)0.0006 (6)
O30.0345 (6)0.0734 (9)0.0918 (11)0.0062 (6)0.0017 (6)0.0021 (7)
O40.0380 (5)0.0362 (5)0.0372 (5)0.0073 (4)0.0090 (4)0.0061 (4)
C70.0371 (7)0.0361 (6)0.0372 (6)0.0018 (5)0.0062 (5)0.0036 (5)
O50.0490 (6)0.0537 (6)0.0566 (7)0.0071 (5)0.0233 (5)0.0114 (5)
C80.0412 (7)0.0333 (6)0.0348 (6)0.0009 (5)0.0022 (5)0.0011 (5)
C90.0553 (9)0.0382 (7)0.0420 (7)0.0041 (6)0.0072 (6)0.0039 (6)
C100.0774 (12)0.0369 (7)0.0466 (8)0.0007 (8)0.0041 (8)0.0075 (6)
C110.0704 (11)0.0383 (7)0.0523 (9)0.0130 (7)0.0036 (8)0.0008 (6)
C120.0510 (9)0.0496 (9)0.0543 (9)0.0122 (7)0.0056 (7)0.0036 (7)
C130.0452 (8)0.0429 (7)0.0445 (7)0.0043 (6)0.0081 (6)0.0045 (6)
Geometric parameters (Å, º) top
C1—O11.4286 (15)C4—H4A0.9700
C1—O21.4360 (15)C4—H4B0.9700
C1—C51.509 (2)N1—O31.1901 (19)
C1—C61.513 (2)O4—C71.3563 (16)
O1—C41.4232 (16)C7—O51.2001 (18)
O2—C21.4076 (16)C7—C81.4854 (19)
C5—H5B0.9600C8—C131.387 (2)
C5—H5C0.9600C8—C91.393 (2)
C5—H5A0.9600C9—C101.385 (2)
C6—H6A0.9600C9—H90.9300
C6—H6B0.9600C10—C111.372 (3)
C6—H6C0.9600C10—H100.9300
C2—C31.5340 (18)C11—C121.384 (3)
C2—H2A0.9700C11—H110.9300
C2—H2B0.9700C12—C131.388 (2)
C3—O41.4324 (15)C12—H120.9300
C3—N11.5132 (18)C13—H130.9300
C3—C41.5246 (18)N1—O52.6573 (19)
O1—C1—O2109.47 (10)C4—C3—C2108.89 (10)
O1—C1—C5112.17 (11)O1—C4—C3109.24 (10)
O2—C1—C5106.09 (11)O1—C4—H4A109.8
O1—C1—C6105.76 (11)C3—C4—H4A109.8
O2—C1—C6110.15 (12)O1—C4—H4B109.8
C5—C1—C6113.22 (13)C3—C4—H4B109.8
C4—O1—C1113.58 (9)H4A—C4—H4B108.3
C2—O2—C1112.92 (9)O3—N1—C3113.65 (13)
C1—C5—H5B109.5C7—O4—C3116.08 (10)
C1—C5—H5C109.5O5—C7—O4122.81 (13)
H5B—C5—H5C109.5O5—C7—C8125.07 (13)
C1—C5—H5A109.5O4—C7—C8112.12 (11)
H5B—C5—H5A109.5C13—C8—C9119.91 (14)
H5C—C5—H5A109.5C13—C8—C7122.35 (12)
C1—C6—H6A109.5C9—C8—C7117.72 (13)
C1—C6—H6B109.5C10—C9—C8119.79 (16)
H6A—C6—H6B109.5C10—C9—H9120.1
C1—C6—H6C109.5C8—C9—H9120.1
H6A—C6—H6C109.5C11—C10—C9120.10 (16)
H6B—C6—H6C109.5C11—C10—H10119.9
O2—C2—C3107.79 (10)C9—C10—H10119.9
O2—C2—H2A110.1C10—C11—C12120.56 (15)
C3—C2—H2A110.1C10—C11—H11119.7
O2—C2—H2B110.1C12—C11—H11119.7
C3—C2—H2B110.1C11—C12—C13119.86 (17)
H2A—C2—H2B108.5C11—C12—H12120.1
O4—C3—N1105.02 (10)C13—C12—H12120.1
O4—C3—C4115.01 (10)C8—C13—C12119.76 (15)
N1—C3—C4116.07 (11)C8—C13—H13120.1
O4—C3—C2105.15 (10)C12—C13—H13120.1
N1—C3—C2105.80 (11)
O2—C1—O1—C438.94 (14)N1—C3—O4—C759.79 (14)
C5—C1—O1—C478.54 (14)C4—C3—O4—C769.06 (15)
C6—C1—O1—C4157.59 (12)C2—C3—O4—C7171.18 (11)
O1—C1—O2—C229.53 (15)C3—O4—C7—O51.3 (2)
C5—C1—O2—C2150.76 (12)C3—O4—C7—C8179.37 (10)
C6—C1—O2—C286.36 (14)O5—C7—C8—C13168.74 (15)
C1—O2—C2—C369.48 (14)O4—C7—C8—C1311.97 (19)
O2—C2—C3—O4162.94 (10)O5—C7—C8—C99.7 (2)
O2—C2—C3—N186.22 (13)O4—C7—C8—C9169.60 (12)
O2—C2—C3—C439.20 (14)C13—C8—C9—C100.3 (2)
C1—O1—C4—C365.51 (13)C7—C8—C9—C10178.18 (14)
O4—C3—C4—O195.20 (12)C8—C9—C10—C110.3 (2)
N1—C3—C4—O1141.66 (11)C9—C10—C11—C120.6 (3)
C2—C3—C4—O122.46 (14)C10—C11—C12—C130.3 (3)
O4—C3—N1—O3160.35 (14)C9—C8—C13—C120.6 (2)
C4—C3—N1—O332.14 (19)C7—C8—C13—C12177.85 (14)
C2—C3—N1—O388.73 (16)C11—C12—C13—C80.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O30.972.342.7593 (19)105
C4—H4B···O50.972.573.0016 (17)107
C5—H5C···Cgi0.972.69 (1)3.6482 (18)173
Symmetry code: (i) x+1/2, y1/2, z+1/2.
(II) 2,2-Dimethyl-5-nitroso-1,3-dioxan-5-yl 4-chlorobenzoate top
Crystal data top
C13H14ClNO5F(000) = 1248
Mr = 299.70Dx = 1.461 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7665 reflections
a = 21.716 (3) Åθ = 2.6–32.2°
b = 6.1950 (8) ŵ = 0.30 mm1
c = 20.398 (2) ÅT = 100 K
β = 96.927 (2)°Plate, blue
V = 2724.2 (6) Å30.21 × 0.17 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEX II area-detector
diffractometer
3819 independent reflections
Radiation source: fine-focus sealed tube, X8 APEX II Bruker3425 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 32.2°, θmin = 2.0°
Absorption correction: ψ scan
(SADABS; Bruker, 2000)
h = 3232
Tmin = 0.93, Tmax = 0.96k = 99
26111 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0586P)2 + 3.0066P]
where P = (Fo2 + 2Fc2)/3
3819 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 1.09 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C13H14ClNO5V = 2724.2 (6) Å3
Mr = 299.70Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.716 (3) ŵ = 0.30 mm1
b = 6.1950 (8) ÅT = 100 K
c = 20.398 (2) Å0.21 × 0.17 × 0.15 mm
β = 96.927 (2)°
Data collection top
Bruker SMART APEX II area-detector
diffractometer
3819 independent reflections
Absorption correction: ψ scan
(SADABS; Bruker, 2000)
3425 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.96Rint = 0.021
26111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.09Δρmax = 1.09 e Å3
3819 reflectionsΔρmin = 0.54 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Treatment on H: H atoms of ligand were added geometrically and refined by riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.84646 (5)0.13584 (18)0.02411 (6)0.0136 (2)
C50.82305 (6)0.2938 (2)0.07819 (6)0.0178 (2)
H5A0.77970.32100.07670.027*
H5B0.82890.23380.12040.027*
H5C0.84570.42670.07180.027*
C60.81331 (6)0.0798 (2)0.03048 (6)0.0189 (2)
H6A0.76950.05740.03110.028*
H6B0.82820.16980.00640.028*
H6C0.82120.14870.07080.028*
O20.83643 (4)0.23935 (14)0.03707 (4)0.01448 (17)
C20.87825 (5)0.16434 (19)0.09067 (6)0.0146 (2)
H2A0.87890.00780.09110.018*
H2B0.86550.21440.13200.018*
C30.94290 (5)0.25247 (18)0.08226 (6)0.0128 (2)
C40.95131 (5)0.24842 (18)0.00882 (6)0.0136 (2)
H4B0.94140.38880.01070.016*
H4A0.99410.21510.00360.016*
O10.91115 (4)0.08812 (13)0.02354 (4)0.01377 (17)
N10.94577 (5)0.47326 (17)0.11445 (5)0.0176 (2)
O30.92744 (5)0.61889 (15)0.07763 (5)0.0224 (2)
O40.98503 (4)0.12061 (14)0.12375 (4)0.01527 (18)
C71.04434 (6)0.19282 (19)0.13538 (6)0.0152 (2)
O51.06214 (4)0.35601 (15)0.11115 (5)0.0197 (2)
C81.08273 (6)0.05200 (19)0.18304 (6)0.0151 (2)
C91.14014 (6)0.1290 (2)0.21096 (6)0.0181 (2)
H91.15400.26330.19860.022*
C101.17673 (6)0.0052 (2)0.25731 (6)0.0204 (2)
H101.21500.05570.27650.024*
C111.15495 (6)0.1959 (2)0.27440 (6)0.0199 (3)
C121.09847 (6)0.2771 (2)0.24630 (7)0.0214 (3)
H121.08520.41310.25790.026*
C131.06186 (6)0.1515 (2)0.20035 (6)0.0186 (2)
H131.02360.20260.18120.022*
Cl1.199754 (16)0.34805 (7)0.333945 (17)0.02895 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0105 (5)0.0171 (5)0.0132 (5)0.0008 (4)0.0013 (4)0.0007 (4)
C50.0156 (6)0.0221 (5)0.0155 (5)0.0007 (4)0.0009 (4)0.0034 (4)
C60.0174 (6)0.0191 (5)0.0196 (6)0.0054 (4)0.0005 (5)0.0011 (4)
O20.0118 (4)0.0186 (4)0.0130 (4)0.0014 (3)0.0014 (3)0.0007 (3)
C20.0123 (5)0.0191 (5)0.0126 (5)0.0023 (4)0.0022 (4)0.0015 (4)
C30.0118 (5)0.0140 (4)0.0123 (5)0.0004 (4)0.0007 (4)0.0008 (4)
C40.0118 (5)0.0164 (5)0.0126 (5)0.0028 (4)0.0022 (4)0.0000 (4)
O10.0104 (4)0.0160 (4)0.0148 (4)0.0008 (3)0.0011 (3)0.0033 (3)
N10.0158 (5)0.0169 (4)0.0203 (5)0.0019 (4)0.0035 (4)0.0027 (4)
O30.0231 (5)0.0155 (4)0.0289 (5)0.0015 (3)0.0044 (4)0.0010 (3)
O40.0122 (4)0.0169 (4)0.0161 (4)0.0016 (3)0.0008 (3)0.0037 (3)
C70.0128 (5)0.0186 (5)0.0139 (5)0.0013 (4)0.0004 (4)0.0007 (4)
O50.0171 (4)0.0203 (4)0.0212 (4)0.0044 (3)0.0003 (4)0.0038 (3)
C80.0137 (5)0.0195 (5)0.0121 (5)0.0006 (4)0.0014 (4)0.0001 (4)
C90.0153 (6)0.0237 (5)0.0155 (5)0.0017 (4)0.0022 (5)0.0010 (4)
C100.0131 (6)0.0330 (6)0.0149 (5)0.0000 (5)0.0009 (4)0.0018 (5)
C110.0155 (6)0.0318 (6)0.0123 (5)0.0072 (5)0.0021 (4)0.0030 (4)
C120.0195 (6)0.0247 (6)0.0201 (6)0.0023 (5)0.0022 (5)0.0053 (5)
C130.0162 (6)0.0215 (5)0.0175 (6)0.0013 (4)0.0001 (5)0.0025 (4)
Cl0.01825 (18)0.0473 (2)0.02100 (17)0.01040 (13)0.00116 (13)0.01219 (14)
Geometric parameters (Å, º) top
C1—O11.4344 (14)C4—O11.4296 (14)
C1—O21.4428 (14)C4—H4B0.9700
C1—C61.5154 (16)C4—H4A0.9700
C1—C51.5160 (17)O4—C71.3570 (14)
C5—H5A0.9600C7—O51.2090 (14)
C5—H5B0.9600C7—C81.4852 (17)
C5—H5C0.9600C8—C91.3911 (18)
C6—H6A0.9600C8—C131.3991 (17)
C6—H6B0.9600C9—C101.3902 (19)
C6—H6C0.9600C9—H90.9300
O2—C21.4131 (15)C10—C111.392 (2)
C2—C31.5351 (16)C10—H100.9300
C2—H2A0.9700C11—C121.384 (2)
C2—H2B0.9700C11—Cl1.7393 (13)
C3—O41.4262 (14)C12—C131.3916 (18)
C3—N11.5153 (15)C12—H120.9300
C3—C41.5310 (15)C13—H130.9300
N1—O31.2101 (15)N1—O52.6381 (14)
O1—C1—O2109.54 (9)O3—N1—C3114.25 (10)
O1—C1—C6105.88 (9)O1—C4—C3108.97 (8)
O2—C1—C6110.27 (9)O1—C4—H4B109.9
O1—C1—C5112.40 (9)C3—C4—H4B109.9
O2—C1—C5105.68 (9)O1—C4—H4A109.9
C6—C1—C5113.10 (11)C3—C4—H4A109.9
C1—C5—H5A109.5H4B—C4—H4A108.3
C1—C5—H5B109.5C4—O1—C1113.76 (8)
H5A—C5—H5B109.5C7—O4—C3116.25 (9)
C1—C5—H5C109.5O5—C7—O4123.21 (11)
H5A—C5—H5C109.5O5—C7—C8125.23 (11)
H5B—C5—H5C109.5O4—C7—C8111.52 (10)
C1—C6—H6A109.5C9—C8—C13120.49 (12)
C1—C6—H6B109.5C9—C8—C7118.11 (11)
H6A—C6—H6B109.5C13—C8—C7121.40 (11)
C1—C6—H6C109.5C10—C9—C8119.97 (12)
H6A—C6—H6C109.5C10—C9—H9120.0
H6B—C6—H6C109.5C8—C9—H9120.0
C2—O2—C1111.91 (9)C9—C10—C11118.74 (12)
O2—C2—C3107.92 (9)C9—C10—H10120.6
O2—C2—H2A110.1C11—C10—H10120.6
C3—C2—H2A110.1C12—C11—C10122.16 (12)
O2—C2—H2B110.1C12—C11—Cl119.04 (11)
C3—C2—H2B110.1C10—C11—Cl118.79 (10)
H2A—C2—H2B108.4C11—C12—C13118.78 (12)
O4—C3—N1105.65 (9)C11—C12—H12120.6
O4—C3—C4115.32 (9)C13—C12—H12120.6
N1—C3—C4115.81 (9)C12—C13—C8119.84 (12)
O4—C3—C2105.05 (9)C12—C13—H13120.1
N1—C3—C2105.25 (9)C8—C13—H13120.1
C4—C3—C2108.80 (9)
O1—C1—O2—C232.63 (12)C4—C3—O4—C773.11 (12)
C6—C1—O2—C283.51 (12)C2—C3—O4—C7167.13 (9)
C5—C1—O2—C2153.94 (9)C3—O4—C7—O51.96 (16)
C1—O2—C2—C370.90 (11)C3—O4—C7—C8175.69 (9)
O2—C2—C3—O4162.05 (9)O5—C7—C8—C911.46 (18)
O2—C2—C3—N186.67 (11)O4—C7—C8—C9166.13 (10)
O2—C2—C3—C438.04 (12)O5—C7—C8—C13169.35 (12)
O4—C3—N1—O3159.81 (10)O4—C7—C8—C1313.06 (15)
C4—C3—N1—O330.85 (14)C13—C8—C9—C101.16 (18)
C2—C3—N1—O389.34 (11)C7—C8—C9—C10178.04 (11)
O4—C3—C4—O193.29 (11)C8—C9—C10—C110.53 (18)
N1—C3—C4—O1142.63 (10)C9—C10—C11—C120.65 (18)
C2—C3—C4—O124.39 (12)C9—C10—C11—Cl178.36 (9)
C3—C4—O1—C165.51 (12)C10—C11—C12—C131.18 (19)
O2—C1—O1—C436.24 (12)Cl—C11—C12—C13177.83 (10)
C6—C1—O1—C4155.13 (9)C11—C12—C13—C80.53 (19)
C5—C1—O1—C480.92 (11)C9—C8—C13—C120.62 (18)
N1—C3—O4—C756.14 (11)C7—C8—C13—C12178.55 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O30.972.352.7716 (15)106
C4—H4B···O5i0.972.583.4507 (16)149
C5—H5B···Cgii0.972.78 (1)3.7156 (14)164
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y1, z+3/2.
(III) 5-nitroso-1,3-dioxan-5-yl 4-chlorobenzoate top
Crystal data top
C11H11NO5F(000) = 496
Mr = 237.21Dx = 1.455 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7119 reflections
a = 9.3969 (5) Åθ = 2.7–31.8°
b = 9.4328 (5) ŵ = 0.12 mm1
c = 12.2133 (7) ÅT = 100 K
V = 1082.58 (10) Å3Plate, blue
Z = 40.21 × 0.16 × 0.14 mm
Data collection top
Bruker SMART APEX II area-detector
diffractometer
2327 independent reflections
Radiation source: fine-focus sealed tube, X8 APEX II Bruker2041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 33.9°, θmin = 2.7°
Absorption correction: ψ scan
(SADABS; Bruker, 2000)
h = 1214
Tmin = 0.96, Tmax = 0.99k = 1314
16965 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.0381P]
where P = (Fo2 + 2Fc2)/3
2327 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C11H11NO5V = 1082.58 (10) Å3
Mr = 237.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.3969 (5) ŵ = 0.12 mm1
b = 9.4328 (5) ÅT = 100 K
c = 12.2133 (7) Å0.21 × 0.16 × 0.14 mm
Data collection top
Bruker SMART APEX II area-detector
diffractometer
2327 independent reflections
Absorption correction: ψ scan
(SADABS; Bruker, 2000)
2041 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.99Rint = 0.029
16965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
2327 reflectionsΔρmin = 0.17 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Treatment on H: H atoms of ligand were added geometrically and refined by riding model.

Refinement of the Flack parameter (Flack & Schwarzenbach, 1988) was suppressed by the MERG 4 command in SHELXL97 (Sheldrick, 1997)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41257 (16)1.10525 (16)0.66731 (11)0.0214 (3)
H1A0.40961.20160.63960.026*
H1B0.41031.04130.60520.026*
O20.29252 (10)1.08076 (11)0.73385 (7)0.0194 (2)
C20.28660 (14)1.18248 (14)0.82006 (10)0.0175 (2)
H2A0.20411.16460.86580.021*
H2B0.27781.27700.78960.021*
C30.42241 (13)1.17229 (12)0.88889 (10)0.0145 (2)
C40.55148 (14)1.18430 (15)0.81322 (11)0.0192 (3)
H4A0.55691.27950.78350.023*
H4B0.63781.16640.85450.023*
O10.53999 (11)1.08459 (12)0.72621 (8)0.0217 (2)
N10.42062 (13)1.29968 (12)0.96344 (9)0.0200 (2)
O30.37322 (11)1.27543 (11)1.05311 (8)0.0229 (2)
O40.41342 (10)1.04097 (9)0.94535 (7)0.01517 (17)
C70.51737 (13)1.01089 (13)1.01934 (10)0.0140 (2)
O50.61208 (10)1.09256 (10)1.04222 (8)0.01918 (19)
C80.50125 (13)0.86631 (12)1.06546 (9)0.0134 (2)
C90.60143 (14)0.82179 (13)1.14258 (10)0.0165 (2)
H90.67370.88271.16490.020*
C100.59237 (16)0.68547 (14)1.18585 (10)0.0200 (3)
H100.65820.65531.23770.024*
C110.48514 (16)0.59493 (15)1.15159 (11)0.0206 (3)
H110.47980.50381.18030.025*
C120.38535 (15)0.63910 (14)1.07467 (11)0.0197 (3)
H120.31390.57761.05190.024*
C130.39276 (13)0.77570 (13)1.03195 (10)0.0162 (2)
H130.32560.80630.98130.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0233 (6)0.0248 (6)0.0159 (5)0.0010 (6)0.0009 (5)0.0010 (5)
O20.0208 (5)0.0207 (4)0.0168 (4)0.0025 (4)0.0018 (4)0.0017 (4)
C20.0160 (5)0.0184 (5)0.0182 (5)0.0016 (5)0.0001 (4)0.0028 (5)
C30.0147 (5)0.0130 (4)0.0158 (5)0.0008 (5)0.0008 (4)0.0013 (4)
C40.0166 (5)0.0221 (6)0.0188 (5)0.0025 (5)0.0027 (5)0.0001 (5)
O10.0201 (4)0.0254 (5)0.0197 (4)0.0035 (4)0.0019 (4)0.0016 (4)
N10.0217 (5)0.0168 (5)0.0215 (5)0.0016 (4)0.0002 (5)0.0019 (4)
O30.0254 (5)0.0236 (5)0.0196 (4)0.0062 (4)0.0013 (4)0.0014 (4)
O40.0144 (4)0.0140 (4)0.0171 (4)0.0009 (3)0.0026 (3)0.0031 (3)
C70.0130 (5)0.0142 (5)0.0147 (5)0.0024 (4)0.0006 (4)0.0008 (4)
O50.0171 (4)0.0169 (4)0.0235 (4)0.0018 (4)0.0041 (4)0.0002 (4)
C80.0141 (5)0.0130 (5)0.0130 (5)0.0020 (4)0.0011 (4)0.0010 (4)
C90.0167 (5)0.0169 (5)0.0159 (5)0.0029 (5)0.0007 (4)0.0014 (4)
C100.0235 (6)0.0199 (6)0.0167 (5)0.0061 (5)0.0014 (5)0.0018 (4)
C110.0254 (6)0.0164 (5)0.0201 (5)0.0030 (5)0.0046 (5)0.0043 (5)
C120.0200 (6)0.0164 (5)0.0228 (6)0.0023 (5)0.0022 (5)0.0005 (5)
C130.0160 (5)0.0158 (5)0.0168 (5)0.0002 (4)0.0004 (4)0.0002 (4)
Geometric parameters (Å, º) top
C1—O21.4094 (17)O4—C71.3606 (15)
C1—O11.4104 (17)C7—O51.2098 (16)
C1—H1A0.9700C7—C81.4833 (16)
C1—H1B0.9700C8—C131.3918 (17)
O2—C21.4256 (16)C8—C91.3963 (17)
C2—C31.5312 (18)C9—C101.3928 (18)
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C10—C111.386 (2)
C3—O41.4202 (14)C10—H100.9300
C3—N11.5078 (16)C11—C121.391 (2)
C3—C41.5290 (17)C11—H110.9300
N1—O31.2042 (15)C12—C131.3919 (18)
C4—O11.4233 (17)C12—H120.9300
C4—H4A0.9700C13—H130.9300
C4—H4B0.9700N1—O52.8248 (15)
O2—C1—O1111.27 (10)H4A—C4—H4B108.2
O2—C1—H1A109.4C1—O1—C4110.73 (11)
O1—C1—H1A109.4C7—O4—C3117.49 (10)
O2—C1—H1B109.4O5—C7—O4123.28 (11)
O1—C1—H1B109.4O5—C7—C8124.95 (11)
H1A—C1—H1B108.0O4—C7—C8111.75 (10)
C1—O2—C2110.29 (10)C13—C8—C9120.49 (11)
O2—C2—C3109.31 (10)C13—C8—C7121.86 (11)
O2—C2—H2A109.8C9—C8—C7117.64 (11)
C3—C2—H2A109.8C10—C9—C8119.50 (12)
O2—C2—H2B109.8C10—C9—H9120.2
C3—C2—H2B109.8C8—C9—H9120.2
H2A—C2—H2B108.3C11—C10—C9119.93 (12)
O4—C3—N1113.65 (9)C11—C10—H10120.0
O4—C3—C4113.91 (10)C9—C10—H10120.0
N1—C3—C4108.35 (10)C10—C11—C12120.63 (12)
O4—C3—C2105.77 (10)C10—C11—H11119.7
N1—C3—C2105.79 (10)C12—C11—H11119.7
C4—C3—C2108.95 (10)C11—C12—C13119.78 (13)
O3—N1—C3113.70 (11)C11—C12—H12120.1
O1—C4—C3110.01 (11)C13—C12—H12120.1
O1—C4—H4A109.7C8—C13—C12119.67 (12)
C3—C4—H4A109.7C8—C13—H13120.2
O1—C4—H4B109.7C12—C13—H13120.2
C3—C4—H4B109.7
O1—C1—O2—C264.49 (14)C2—C3—O4—C7175.15 (10)
C1—O2—C2—C359.07 (13)C3—O4—C7—O53.32 (17)
O2—C2—C3—O469.65 (12)C3—O4—C7—C8175.44 (9)
O2—C2—C3—N1169.48 (9)O5—C7—C8—C13177.27 (12)
O2—C2—C3—C453.19 (13)O4—C7—C8—C131.46 (16)
O4—C3—N1—O319.51 (15)O5—C7—C8—C91.19 (18)
C4—C3—N1—O3147.21 (12)O4—C7—C8—C9179.93 (10)
C2—C3—N1—O396.09 (12)C13—C8—C9—C100.13 (18)
O4—C3—C4—O165.45 (13)C7—C8—C9—C10178.35 (11)
N1—C3—C4—O1167.01 (10)C8—C9—C10—C110.51 (19)
C2—C3—C4—O152.36 (13)C9—C10—C11—C120.5 (2)
O2—C1—O1—C463.42 (14)C10—C11—C12—C130.3 (2)
C3—C4—O1—C157.20 (13)C9—C8—C13—C120.84 (18)
N1—C3—O4—C759.53 (13)C7—C8—C13—C12177.58 (11)
C4—C3—O4—C765.23 (13)C11—C12—C13—C80.90 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O50.972.412.9825 (17)117
C4—H4B···O3i0.972.543.4569 (17)157
C10—H10···O2ii0.932.583.2872 (17)133
C13—H13···O40.932.402.7235 (15)100
Symmetry codes: (i) x+1/2, y+5/2, z+2; (ii) x+1/2, y+3/2, z+2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC13H15NO5C13H14ClNO5C11H11NO5
Mr265.26299.70237.21
Crystal system, space groupMonoclinic, P21/nMonoclinic, C2/cOrthorhombic, P212121
Temperature (K)273100100
a, b, c (Å)6.2809 (5), 21.9393 (19), 9.6452 (9)21.716 (3), 6.1950 (8), 20.398 (2)9.3969 (5), 9.4328 (5), 12.2133 (7)
α, β, γ (°)90, 100.495 (2), 9090, 96.927 (2), 9090, 90, 90
V3)1306.9 (2)2724.2 (6)1082.58 (10)
Z484
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.300.12
Crystal size (mm)0.32 × 0.24 × 0.090.21 × 0.17 × 0.150.21 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART APEX II area-detector
diffractometer
Bruker SMART APEX II area-detector
diffractometer
Bruker SMART APEX II area-detector
diffractometer
Absorption correctionψ scan
(SADABS; Bruker, 2000)
ψ scan
(SADABS; Bruker, 2000)
ψ scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.98, 0.990.93, 0.960.96, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
21059, 3401, 2914 26111, 3819, 3425 16965, 2327, 2041
Rint0.0220.0210.029
(sin θ/λ)max1)0.7030.7500.786
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.150, 1.12 0.037, 0.110, 1.09 0.034, 0.091, 1.03
No. of reflections340138192327
No. of parameters173181154
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.411.09, 0.540.36, 0.17

Computer programs: SMART (Bruker, 2001), SMART, SAINT (Bruker, 2001), SHELXTL (Bruker, 2001), SHELXTL, ORTEP-3.2 (Brueggemann & Schmid, 1990).

Selected geometric parameters (Å, º) for (I) top
C1—O11.4286 (15)O2—C21.4076 (16)
C1—O21.4360 (15)N1—O31.1901 (19)
C1—C51.509 (2)C7—O51.2001 (18)
C1—C61.513 (2)N1—O52.6573 (19)
O1—C41.4232 (16)
O4—C3—N1—O3160.35 (14)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O30.97002.34002.7593 (19)105.00
C4—H4B···O50.97002.57003.0016 (17)107.00
C5—H5C···Cgi0.97002.6939 (18)3.6482 (18)172.64
Symmetry code: (i) x+1/2, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
C1—O11.4344 (14)N1—O31.2101 (15)
C1—O21.4428 (14)C4—O11.4296 (14)
C1—C61.5154 (16)C7—O51.2090 (14)
C1—C51.5160 (17)N1—O52.6381 (14)
O2—C21.4131 (15)
O4—C3—N1—O3159.81 (10)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O30.97002.35002.7716 (15)106.00
C4—H4B···O5i0.97002.58003.4507 (16)149.00
C5—H5B···Cgii0.97002.7839 (13)3.7156 (14)163.81
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y1, z+3/2.
Selected geometric parameters (Å, º) for (III) top
C1—O21.4094 (17)N1—O31.2042 (15)
C1—O11.4104 (17)C4—O11.4233 (17)
O2—C21.4256 (16)C7—O51.2098 (16)
C2—C31.5312 (18)N1—O52.8248 (15)
C3—C41.5290 (17)
O4—C3—N1—O319.51 (15)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O50.97002.41002.9825 (17)117.00
C4—H4B···O3i0.97002.54003.4569 (17)157.00
C10—H10···O2ii0.93002.58003.2872 (17)133.00
C13—H13···O40.93002.40002.7235 (15)100.00
Symmetry codes: (i) x+1/2, y+5/2, z+2; (ii) x+1/2, y+3/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds