Download citation
Download citation
link to html
In the title compound, {[Co2(C14H8O4)2(C10H8N2)2(H2O)2]·2C14H10O4}n, each CoII ion is six-coordinate in a slightly distorted octa­hedral geometry. Both CoII ions are located on twofold axes. One is surrounded by two O atoms from two biphenyl-2,2′-dicarboxyl­ate (dpa) dianions, two N atoms from two 4,4′-bipyridine (bpy) ligands and two water mol­ecules, while the second is surrounded by four O atoms from two dpa dianions and two N atoms from two bpy ligands. The coordinated dpa dianion functions as a κ3-bridge between the two CoII ions. One carboxyl­ate group of a dpa dianion bridges two adjacent CoII ions, and one O atom of the other carboxyl­ate group also chelates to a CoII ion. The CoII ions are bridged by dpa dianions and bpy ligands to form a chiral sheet. There are several strong inter­molecular hydrogen bonds between the H2dpa solvent mol­ecule and the chiral sheet, which result in a sandwich structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109044205/fn3036sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109044205/fn3036Isup2.hkl
Contains datablock I

CCDC reference: 774019

Comment top

2,2'-Biphenyldicarboxylate (dpa) has the capability of affording new coordination polymers (Xu et al., 2006) for several reasons. Firstly, the freedom of rotation about the biphenyl central bond enables dpa to link metal ions or clusters into macrocycles or helical chains (Wang et al., 2002, 2005; Wang, Hong et al., 2003). Secondly, the dpa ligand contains two bridging moieties, which can lead to a variety of coordination modes with metals and provides abundant structural motifs (Wang, Zheng et al., 2003; Lu & Schauss, 2003; Rueff et al., 2002). Finally, it can act not only as a hydrogen-bond donor but also as an acceptor, which makes it a candidate for the construction of supramolecular networks. Many metal–organic frameworks based on the dpa ligand have been reported (Hu et al., 2007; Rueff et al., 2003; Wang et al., 2004; Yin et al., 2007). However, it is interesting that in all these dpa-containing structures, only a few simple coordination modes are known, although a variety are anticipated in metal–organic frameworks under appropriate conditions. Here, the title compound, {[Co(bpy)(dpa)(H2O)].H2dpa}n (bpy is 4,4'-bipyridine), (I), represents a novel example.

As shown in Fig. 1, the asymmetric unit of (I) consists of two crystallographically unique CoII atoms located on two-fold axes. Both are six-coordinate in a slightly distorted octahedral geometry, but the environments of the two are different. Ion Co1 is surrounded by two O atoms from two dpa dianions, two N atoms from two trans monodentate bpy ligands, and two water molecules (O5) occupying the axial positions. The N—Co1 bond lengths are 2.125 (3) and 2.177 (3) Å, which are typical metal–N distances (Wang et al., 2004), and the Co1—O distances are 2.067 (2) and 2.107 (2) Å, which fall within the typical range of Co—O bond lengths for octahedra (Rueff et al., 2003, 2002; Hu et al., 2007). The O5—Co1—O5(-x, -y + 1, z) bond angle is 178.20 (14)°, which is close to linear, and the N—Co—O bond angles range from 85.67 (7) to 94.33 (7)°, consistent with the distorted octahedral coordination environment of Co1. Ion Co2 is six-coordinated by two chelating carboxylate groups of two dpa dianions, with Co2—O2 and Co2—O3 distances of 2.085 (19) and 2.179 (2) Å, respectively, and by two N atoms of two bpy ligands in trans-positions, with Co2—N distances of 2.129 (3) and 2.161 (3) Å. Atoms O2 and O2i [symmetry code: (i) -x, -y + 2, z] are located in axial positions, with an O2—Co—O2i angle of 176.67 (11)°, whereas the N—Co2—O bond angles around the Co2 centre range from 85.43 (5) to 94.57 (5)°. Just as for ion Co1, all the bond lengths and angles fall within commonly observed ranges (Wang et al., 2004).

Ions Co1 and Co2 are bridged by a dpa dianion, which adopts an anti conformation and acts as a µ3-bridge, forming a one-dimensional chain along the b axis, as shown in Fig. 2. The Co···Co separation across the dpa bridge is 5.176 (4) Å. One carboxylate group of a dpa dianion bridges two adjacent CoII ions, and one of the O atoms of the other carboxylate group also bonds to a CoII ion. Due to steric hindrance, the dihedral angle between the carboxylic acid group [There is no carboxylic acid group except in the solvate - please clarify by reference to specific atoms] and the linking phenyl ring [48.4 (4)°] is larger than that between the carboxylate group and the linking phenyl ring [Again, please clarify by reference to specific atoms] [34.58 (3)°] (Wang et al., 2004). The chains are further connected by bpy ligands to form a two-dimensional chiral structure (Fig. 2). The two pyridyl rings in bpy are not coplanar, the dihedral angle being 156.9 (3)°. The structure can be regarded as grid sheets with a (4,4) net topology, which is constructed through CoII centres bridged by dpa dianions along the b axis and bpy ligands along the c axis.

The most striking feature of (I) is that adjacent two-dimensional sheets are parallel and stacked without interpenetrating, to generate nanoscale rectangular channels which are not filled with solvent molecules. There are uncoordinated H2dpa solvent molecules between adjacent two-dimensional sheets, and there are multi-molecular interactions between the solvent H2dpa molecules and the two-dimensional sheets. Hydrogen-bonding interactions extend the two-dimensional sheets and solvent H2dpa molecules into a three-dimensional sandwich structure.

Experimental top

An aqueous solution (10 ml) of cobalt sulfate heptahydrate (0.85 g, 3.02 mmol) was added dropwise to a solution (10 ml) of dimethylformamide containing 4,4'-bipyridine (0.47 g, 3.01 mmol), 2,2'-diphenyldicarboxylic acid (0.73 g, 3.01 mmol) and 2,2'-dithiosalicylic acid (0.92 g, 3.00 mmol) at room temperature. The reaction mixture was filtered and the filtrate was left to stand for about four weeks until red single crystals were obtained (yield 53% based on Co). Red block-shaped crystals of (I) suitable for X-ray diffraction were collected by filtration, washed with water and ethanol, and finally dried in air.

Refinement top

The water and carboxylic acid H atoms were refined subject to the restraint O—H = 0.82 (5) Å. All other H atoms were included in the refinement in calculated positions in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Atoms labelled with an asterisk (*) are at the symmetry position (x, y, z - 1) and those labelled with a hash sign (#) are at the symmetry position (x, y, z - 2).
[Figure 2] Fig. 2. A perspective view of the two-dimensional sheet of (I), along the c axis. [Please provide correct figure]
Poly[[trans-diaquabis(µ2-biphenyl-2,2'-dicarboxylato)bis(µ2-4,4'- bipyridine)dicobalt(II)] biphenyl-2,2'-dicarboxylic acid disolvate] top
Crystal data top
[Co2(C14H8O4)2(C10H8N2)2(H2O)2]·2C14H10O4F(000) = 1476
Mr = 1431.11Dx = 1.447 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P22abCell parameters from 5858 reflections
a = 10.1264 (10) Åθ = 1.8–25.1°
b = 28.487 (3) ŵ = 0.58 mm1
c = 11.3835 (11) ÅT = 298 K
V = 3283.8 (6) Å3Block, red
Z = 40.40 × 0.17 × 0.08 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
5840 independent reflections
Radiation source: X-ray tube5236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scanθmax = 25.1°, θmin = 1.8°
Absorption correction: integration
(SADABS; Bruker, 2001)
h = 1112
Tmin = 0.89, Tmax = 0.95k = 3432
17371 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.3862P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5840 reflectionsΔρmax = 0.61 e Å3
468 parametersΔρmin = 0.42 e Å3
4 restraintsAbsolute structure: Flack (1983), with 1476 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (15)
Crystal data top
[Co2(C14H8O4)2(C10H8N2)2(H2O)2]·2C14H10O4V = 3283.8 (6) Å3
Mr = 1431.11Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 10.1264 (10) ŵ = 0.58 mm1
b = 28.487 (3) ÅT = 298 K
c = 11.3835 (11) Å0.40 × 0.17 × 0.08 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
5840 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2001)
5236 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.95Rint = 0.040
17371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.61 e Å3
S = 1.05Δρmin = 0.42 e Å3
5840 reflectionsAbsolute structure: Flack (1983), with 1476 Friedel pairs
468 parametersAbsolute structure parameter: 0.013 (15)
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.62712 (4)0.02339 (14)
Co21.00000.00000.72147 (4)0.02310 (14)
C10.7549 (3)0.05627 (10)0.6450 (3)0.0217 (7)
C20.8355 (3)0.09575 (11)0.5926 (3)0.0257 (7)
C30.8471 (3)0.09872 (12)0.4709 (3)0.0353 (8)
H30.79730.07900.42320.042*
C40.9320 (4)0.13080 (14)0.4210 (3)0.0465 (10)
H40.94140.13200.33980.056*
C51.0027 (5)0.16078 (12)0.4905 (3)0.0483 (9)
H51.05970.18250.45650.058*
C60.9895 (4)0.15887 (11)0.6103 (3)0.0423 (8)
H61.03700.17970.65690.051*
C70.9062 (3)0.12634 (11)0.6635 (3)0.0282 (7)
C80.8906 (3)0.12515 (11)0.7937 (3)0.0308 (7)
C90.7710 (4)0.13858 (13)0.8454 (4)0.0463 (10)
H90.70030.14690.79760.056*
C100.7560 (4)0.13972 (15)0.9653 (4)0.0573 (12)
H100.67580.14850.99850.069*
C110.8610 (5)0.12769 (14)1.0354 (4)0.0563 (11)
H110.85140.12851.11660.068*
C120.9799 (4)0.11453 (12)0.9877 (3)0.0423 (9)
H121.05010.10671.03650.051*
C130.9953 (4)0.11290 (10)0.8664 (3)0.0335 (7)
C141.1220 (3)0.09543 (12)0.8135 (3)0.0299 (7)
C150.8872 (3)0.00113 (14)0.9702 (2)0.0312 (6)
H150.80780.00200.92920.037*
C160.8829 (3)0.00113 (14)1.0913 (2)0.0317 (7)
H160.80210.00191.13000.038*
C171.00000.00001.1553 (3)0.0286 (9)
C181.00000.00001.2848 (3)0.0287 (9)
C191.0953 (3)0.02377 (12)1.3493 (3)0.0321 (8)
H191.16170.04031.31080.039*
C201.0918 (3)0.02296 (12)1.4694 (3)0.0321 (8)
H201.15690.03931.51020.038*
C210.4776 (4)0.03882 (11)0.8747 (3)0.0356 (8)
H210.46380.06650.83330.043*
C220.4735 (4)0.04065 (12)0.9956 (3)0.0361 (9)
H220.45340.06861.03400.043*
C230.50000.00001.0595 (3)0.0297 (9)
C240.50000.00001.1889 (3)0.0309 (9)
C250.5204 (4)0.04059 (11)1.2533 (3)0.0389 (9)
H250.53490.06891.21490.047*
C260.5192 (4)0.03899 (12)1.3745 (3)0.0393 (9)
H260.53260.06681.41540.047*
C270.3764 (4)0.15065 (13)0.4153 (4)0.0417 (9)
C280.4632 (3)0.18346 (12)0.3475 (3)0.0385 (9)
C290.5976 (4)0.17791 (14)0.3584 (4)0.0485 (10)
H290.63100.15700.41360.058*
C300.6831 (4)0.20302 (15)0.2886 (4)0.0573 (11)
H300.77380.19920.29700.069*
C310.6343 (4)0.23356 (15)0.2068 (4)0.0570 (11)
H310.69170.24960.15720.068*
C320.5004 (5)0.24065 (12)0.1979 (3)0.0453 (8)
H320.46860.26230.14370.054*
C330.4111 (3)0.21627 (11)0.2680 (3)0.0334 (8)
C340.2692 (3)0.22840 (11)0.2601 (3)0.0330 (8)
C350.2130 (4)0.25924 (12)0.3396 (3)0.0409 (9)
H350.26230.26900.40410.049*
C360.0873 (4)0.27574 (14)0.3262 (4)0.0513 (10)
H360.05100.29570.38230.062*
C370.0146 (5)0.26283 (14)0.2299 (4)0.0589 (11)
H370.06950.27510.21870.071*
C380.0660 (4)0.23178 (14)0.1501 (4)0.0561 (11)
H380.01600.22280.08530.067*
C390.1929 (4)0.21344 (12)0.1650 (3)0.0412 (9)
C400.2414 (4)0.17543 (13)0.0868 (4)0.0466 (10)
H5A0.378 (5)0.0798 (12)0.602 (4)0.070*
H5B0.303 (4)0.0552 (17)0.664 (4)0.070*
H7A0.284 (5)0.1323 (15)0.281 (3)0.070*
H9A0.235 (5)0.1561 (13)0.065 (4)0.070*
N10.50000.00001.4359 (3)0.0279 (7)
N20.50000.00000.8138 (3)0.0286 (7)
N31.00000.00000.9085 (3)0.0264 (7)
N41.00000.00001.5316 (3)0.0280 (7)
O10.6378 (2)0.05326 (7)0.6134 (2)0.0302 (6)
O20.81146 (19)0.02930 (7)0.71615 (17)0.0263 (5)
O31.1170 (2)0.06391 (7)0.73674 (18)0.0284 (5)
O41.2301 (2)0.11247 (9)0.8483 (2)0.0455 (7)
O50.3586 (2)0.05426 (9)0.6242 (2)0.0312 (6)
O60.3950 (3)0.14281 (10)0.5180 (3)0.0628 (8)
O70.2842 (3)0.12818 (10)0.3567 (3)0.0533 (7)
O80.2910 (3)0.13965 (9)0.1284 (2)0.0610 (8)
O90.2217 (3)0.18213 (9)0.0238 (3)0.0564 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0238 (3)0.0343 (3)0.0120 (3)0.0021 (3)0.0000.000
Co20.0220 (3)0.0350 (3)0.0123 (3)0.0003 (3)0.0000.000
C10.0241 (17)0.0260 (16)0.0150 (15)0.0018 (12)0.0013 (13)0.0026 (12)
C20.0211 (16)0.0302 (16)0.0258 (17)0.0061 (13)0.0007 (13)0.0044 (14)
C30.0321 (19)0.045 (2)0.0290 (19)0.0014 (16)0.0021 (15)0.0094 (16)
C40.047 (2)0.057 (2)0.035 (2)0.006 (2)0.0106 (18)0.0179 (19)
C50.045 (2)0.0418 (19)0.057 (2)0.000 (2)0.016 (3)0.0216 (17)
C60.034 (2)0.0352 (17)0.057 (2)0.0078 (18)0.001 (2)0.0012 (15)
C70.0249 (17)0.0247 (16)0.0351 (19)0.0049 (13)0.0010 (14)0.0033 (14)
C80.0302 (18)0.0261 (17)0.036 (2)0.0026 (14)0.0013 (15)0.0064 (14)
C90.040 (2)0.045 (2)0.054 (3)0.0062 (17)0.0027 (19)0.010 (2)
C100.047 (3)0.065 (3)0.060 (3)0.006 (2)0.019 (2)0.013 (2)
C110.066 (3)0.063 (3)0.040 (2)0.002 (2)0.014 (2)0.022 (2)
C120.049 (3)0.046 (2)0.0316 (18)0.0006 (18)0.0003 (18)0.0106 (15)
C130.0382 (17)0.0304 (15)0.0318 (17)0.0021 (17)0.001 (2)0.0086 (12)
C140.0319 (19)0.0337 (18)0.0242 (18)0.0023 (15)0.0003 (14)0.0000 (14)
C150.0263 (15)0.0476 (17)0.0198 (14)0.0012 (19)0.0023 (12)0.001 (2)
C160.0247 (15)0.0521 (18)0.0184 (14)0.002 (2)0.0025 (11)0.0005 (19)
C170.035 (2)0.038 (2)0.0124 (19)0.005 (3)0.0000.000
C180.030 (2)0.039 (2)0.017 (2)0.001 (3)0.0000.000
C190.0293 (18)0.047 (2)0.0198 (17)0.0099 (15)0.0053 (14)0.0019 (15)
C200.0308 (18)0.0467 (19)0.0186 (17)0.0077 (15)0.0045 (14)0.0040 (15)
C210.050 (2)0.0373 (17)0.0192 (16)0.0046 (17)0.0047 (16)0.0014 (13)
C220.050 (3)0.0390 (18)0.0194 (16)0.0066 (16)0.0008 (15)0.0032 (13)
C230.032 (2)0.044 (2)0.0126 (19)0.000 (3)0.0000.000
C240.033 (2)0.041 (2)0.019 (2)0.003 (3)0.0000.000
C250.062 (3)0.0350 (17)0.0199 (16)0.0041 (18)0.0003 (17)0.0058 (13)
C260.056 (3)0.0427 (18)0.0194 (16)0.0020 (18)0.0036 (17)0.0030 (13)
C270.041 (2)0.040 (2)0.044 (2)0.0026 (17)0.0015 (18)0.0047 (18)
C280.040 (2)0.0349 (18)0.041 (2)0.0021 (15)0.0000 (16)0.0034 (16)
C290.045 (2)0.048 (2)0.052 (3)0.0033 (19)0.003 (2)0.008 (2)
C300.032 (2)0.065 (3)0.075 (3)0.002 (2)0.004 (2)0.011 (2)
C310.050 (3)0.060 (3)0.060 (3)0.001 (2)0.014 (2)0.013 (2)
C320.052 (2)0.0448 (19)0.0385 (19)0.003 (2)0.003 (2)0.0052 (15)
C330.040 (2)0.0294 (17)0.0312 (19)0.0028 (15)0.0017 (15)0.0043 (15)
C340.042 (2)0.0236 (16)0.0330 (19)0.0019 (15)0.0028 (16)0.0037 (14)
C350.043 (2)0.040 (2)0.040 (2)0.0060 (17)0.0014 (18)0.0026 (17)
C360.048 (3)0.048 (2)0.058 (3)0.0008 (19)0.014 (2)0.003 (2)
C370.039 (2)0.052 (2)0.085 (3)0.008 (2)0.003 (3)0.002 (2)
C380.052 (3)0.052 (2)0.065 (3)0.006 (2)0.023 (2)0.000 (2)
C390.044 (2)0.0357 (19)0.044 (2)0.0011 (16)0.0079 (17)0.0009 (17)
C400.052 (3)0.041 (2)0.047 (2)0.0043 (18)0.015 (2)0.0095 (18)
N10.0315 (19)0.0408 (19)0.0115 (16)0.000 (2)0.0000.000
N20.0280 (18)0.038 (2)0.0201 (17)0.001 (2)0.0000.000
N30.0231 (17)0.0376 (18)0.0185 (17)0.000 (2)0.0000.000
N40.0303 (18)0.0400 (19)0.0137 (16)0.000 (2)0.0000.000
O10.0239 (13)0.0376 (13)0.0290 (14)0.0052 (10)0.0059 (10)0.0050 (11)
O20.0238 (11)0.0352 (12)0.0198 (11)0.0027 (9)0.0009 (9)0.0047 (10)
O30.0304 (12)0.0316 (11)0.0231 (12)0.0001 (10)0.0058 (10)0.0050 (10)
O40.0311 (14)0.0568 (17)0.0487 (17)0.0008 (12)0.0061 (12)0.0207 (14)
O50.0253 (14)0.0426 (14)0.0258 (14)0.0020 (11)0.0055 (10)0.0050 (12)
O60.081 (2)0.0600 (19)0.0472 (19)0.0118 (16)0.0086 (16)0.0176 (15)
O70.0526 (17)0.0498 (16)0.0575 (18)0.0129 (13)0.0074 (16)0.0053 (15)
O80.093 (2)0.0387 (15)0.0513 (18)0.0164 (15)0.0215 (16)0.0135 (13)
O90.081 (2)0.0441 (16)0.0441 (17)0.0032 (15)0.0147 (15)0.0124 (14)
Geometric parameters (Å, º) top
Co1—O1i2.067 (2)C20—H200.9300
Co1—O12.067 (2)C21—N21.325 (3)
Co1—O52.107 (2)C21—C221.378 (4)
Co1—O5i2.107 (2)C21—H210.9300
Co1—N22.125 (3)C22—C231.394 (4)
Co1—N1ii2.177 (3)C22—H220.9300
Co2—O2iii2.0847 (19)C23—C22i1.394 (4)
Co2—O22.0847 (19)C23—C241.473 (5)
Co2—N32.129 (3)C24—C251.384 (4)
Co2—N4ii2.161 (3)C24—C25i1.384 (4)
Co2—O32.179 (2)C25—C261.380 (4)
Co2—O3iii2.179 (2)C25—H250.9300
C1—O11.242 (4)C26—N11.327 (4)
C1—O21.254 (3)C26—H260.9300
C1—C21.513 (4)C27—O61.205 (4)
C2—C71.386 (4)C27—O71.315 (5)
C2—C31.393 (4)C27—C281.498 (5)
C3—C41.378 (5)C28—C291.375 (5)
C3—H30.9300C28—C331.404 (5)
C4—C51.366 (6)C29—C301.376 (6)
C4—H40.9300C29—H290.9300
C5—C61.372 (5)C30—C311.366 (6)
C5—H50.9300C30—H300.9300
C6—C71.391 (5)C31—C321.375 (6)
C6—H60.9300C31—H310.9300
C7—C81.491 (5)C32—C331.391 (5)
C8—C131.390 (5)C32—H320.9300
C8—C91.400 (5)C33—C341.480 (5)
C9—C101.373 (6)C34—C351.384 (5)
C9—H90.9300C34—C391.397 (5)
C10—C111.373 (6)C35—C361.366 (5)
C10—H100.9300C35—H350.9300
C11—C121.373 (6)C36—C371.371 (6)
C11—H110.9300C36—H360.9300
C12—C131.390 (4)C37—C381.370 (6)
C12—H120.9300C37—H370.9300
C13—C141.502 (5)C38—C391.397 (5)
C14—O31.254 (4)C38—H380.9300
C14—O41.261 (4)C39—C401.486 (5)
C15—N31.341 (3)C40—O81.231 (4)
C15—C161.379 (4)C40—O91.289 (5)
C15—H150.9300N1—C26i1.327 (4)
C16—C171.392 (3)N1—Co1iv2.177 (3)
C16—H160.9300N2—C21i1.325 (3)
C17—C16iii1.392 (3)N3—C15iii1.341 (3)
C17—C181.474 (5)N4—C20iii1.339 (4)
C18—C191.389 (4)N4—Co2iv2.161 (3)
C18—C19iii1.389 (4)O5—H5A0.79 (3)
C19—C201.368 (4)O5—H5B0.72 (4)
C19—H190.9300O7—H7A0.87 (3)
C20—N41.339 (4)O9—H9A0.89 (4)
O1i—Co1—O1171.35 (13)C20—C19—H19119.9
O1i—Co1—O594.51 (8)C18—C19—H19119.9
O1—Co1—O585.35 (8)N4—C20—C19123.7 (3)
O1i—Co1—O5i85.35 (8)N4—C20—H20118.2
O1—Co1—O5i94.51 (8)C19—C20—H20118.2
O5—Co1—O5i178.20 (14)N2—C21—C22124.0 (3)
O1i—Co1—N294.33 (7)N2—C21—H21118.0
O1—Co1—N294.33 (7)C22—C21—H21118.0
O5—Co1—N290.90 (7)C21—C22—C23118.9 (3)
O5i—Co1—N290.90 (7)C21—C22—H22120.5
O1i—Co1—N1ii85.67 (7)C23—C22—H22120.5
O1—Co1—N1ii85.67 (7)C22i—C23—C22117.1 (4)
O5—Co1—N1ii89.10 (7)C22i—C23—C24121.46 (18)
O5i—Co1—N1ii89.10 (7)C22—C23—C24121.46 (18)
N2—Co1—N1ii180.000 (1)C25—C24—C25i116.1 (4)
O2iii—Co2—O2176.67 (11)C25—C24—C23121.96 (18)
O2iii—Co2—N391.66 (6)C25i—C24—C23121.96 (18)
O2—Co2—N391.66 (6)C26—C25—C24120.0 (3)
O2iii—Co2—N4ii88.34 (6)C26—C25—H25120.0
O2—Co2—N4ii88.34 (6)C24—C25—H25120.0
N3—Co2—N4ii180.000 (1)N1—C26—C25123.7 (3)
O2iii—Co2—O380.72 (8)N1—C26—H26118.1
O2—Co2—O399.55 (8)C25—C26—H26118.1
N3—Co2—O385.43 (5)O6—C27—O7120.9 (4)
N4ii—Co2—O394.57 (5)O6—C27—C28121.6 (4)
O2iii—Co2—O3iii99.55 (8)O7—C27—C28117.3 (3)
O2—Co2—O3iii80.72 (8)C29—C28—C33120.4 (3)
N3—Co2—O3iii85.43 (5)C29—C28—C27117.5 (3)
N4ii—Co2—O3iii94.57 (5)C33—C28—C27121.8 (3)
O3—Co2—O3iii170.85 (11)C28—C29—C30120.7 (4)
O1—C1—O2125.5 (3)C28—C29—H29119.6
O1—C1—C2116.9 (3)C30—C29—H29119.6
O2—C1—C2117.6 (3)C31—C30—C29119.8 (4)
C7—C2—C3119.8 (3)C31—C30—H30120.1
C7—C2—C1121.1 (3)C29—C30—H30120.1
C3—C2—C1118.9 (3)C30—C31—C32120.0 (4)
C4—C3—C2120.2 (3)C30—C31—H31120.0
C4—C3—H3119.9C32—C31—H31120.0
C2—C3—H3119.9C31—C32—C33121.7 (3)
C5—C4—C3120.2 (3)C31—C32—H32119.2
C5—C4—H4119.9C33—C32—H32119.2
C3—C4—H4119.9C32—C33—C28117.2 (3)
C4—C5—C6120.0 (4)C32—C33—C34118.6 (3)
C4—C5—H5120.0C28—C33—C34124.0 (3)
C6—C5—H5120.0C35—C34—C39118.2 (4)
C5—C6—C7121.2 (4)C35—C34—C33120.5 (3)
C5—C6—H6119.4C39—C34—C33120.9 (3)
C7—C6—H6119.4C36—C35—C34121.9 (4)
C2—C7—C6118.6 (3)C36—C35—H35119.0
C2—C7—C8120.6 (3)C34—C35—H35119.0
C6—C7—C8120.8 (3)C35—C36—C37119.8 (4)
C13—C8—C9118.5 (3)C35—C36—H36120.1
C13—C8—C7121.1 (3)C37—C36—H36120.1
C9—C8—C7120.2 (3)C38—C37—C36120.0 (4)
C10—C9—C8121.4 (4)C38—C37—H37120.0
C10—C9—H9119.3C36—C37—H37120.0
C8—C9—H9119.3C37—C38—C39120.7 (4)
C11—C10—C9119.1 (4)C37—C38—H38119.7
C11—C10—H10120.5C39—C38—H38119.7
C9—C10—H10120.5C38—C39—C34119.3 (4)
C10—C11—C12121.2 (4)C38—C39—C40120.3 (4)
C10—C11—H11119.4C34—C39—C40120.2 (3)
C12—C11—H11119.4O8—C40—O9124.2 (4)
C11—C12—C13120.0 (4)O8—C40—C39120.5 (4)
C11—C12—H12120.0O9—C40—C39115.2 (4)
C13—C12—H12120.0C26i—N1—C26116.4 (3)
C12—C13—C8119.8 (4)C26i—N1—Co1iv121.78 (17)
C12—C13—C14120.4 (3)C26—N1—Co1iv121.78 (17)
C8—C13—C14119.7 (3)C21—N2—C21i116.8 (3)
O3—C14—O4121.9 (3)C21—N2—Co1121.58 (17)
O3—C14—C13118.9 (3)C21i—N2—Co1121.58 (17)
O4—C14—C13119.2 (3)C15iii—N3—C15116.8 (3)
N3—C15—C16123.4 (3)C15iii—N3—Co2121.59 (16)
N3—C15—H15118.3C15—N3—Co2121.59 (16)
C16—C15—H15118.3C20iii—N4—C20116.2 (3)
C15—C16—C17119.7 (3)C20iii—N4—Co2iv121.91 (17)
C15—C16—H16120.1C20—N4—Co2iv121.91 (17)
C17—C16—H16120.1C1—O1—Co1132.3 (2)
C16—C17—C16iii116.9 (3)C1—O2—Co2133.02 (19)
C16—C17—C18121.56 (17)C14—O3—Co2132.5 (2)
C16iii—C17—C18121.56 (17)Co1—O5—H5A121 (4)
C19—C18—C19iii116.1 (4)Co1—O5—H5B123 (4)
C19—C18—C17121.93 (18)H5A—O5—H5B111 (5)
C19iii—C18—C17121.93 (18)C27—O7—H7A116 (3)
C20—C19—C18120.2 (3)C40—O9—H9A112 (3)
O1—C1—C2—C7128.1 (3)C32—C33—C34—C3596.3 (4)
O2—C1—C2—C752.2 (4)C28—C33—C34—C3579.6 (5)
O1—C1—C2—C357.3 (4)C32—C33—C34—C3976.3 (4)
O2—C1—C2—C3122.5 (3)C28—C33—C34—C39107.8 (4)
C7—C2—C3—C42.4 (5)C39—C34—C35—C361.1 (5)
C1—C2—C3—C4172.4 (3)C33—C34—C35—C36171.6 (3)
C2—C3—C4—C51.9 (6)C34—C35—C36—C372.0 (6)
C3—C4—C5—C60.3 (6)C35—C36—C37—C382.9 (6)
C4—C5—C6—C70.8 (6)C36—C37—C38—C390.8 (6)
C3—C2—C7—C61.2 (5)C37—C38—C39—C342.4 (6)
C1—C2—C7—C6173.4 (3)C37—C38—C39—C40172.3 (4)
C3—C2—C7—C8177.2 (3)C35—C34—C39—C383.3 (5)
C1—C2—C7—C88.2 (4)C33—C34—C39—C38169.5 (3)
C5—C6—C7—C20.3 (5)C35—C34—C39—C40171.4 (3)
C5—C6—C7—C8178.8 (4)C33—C34—C39—C4015.9 (5)
C2—C7—C8—C13115.7 (3)C38—C39—C40—O8129.7 (4)
C6—C7—C8—C1365.9 (4)C34—C39—C40—O844.9 (6)
C2—C7—C8—C967.3 (4)C38—C39—C40—O947.2 (5)
C6—C7—C8—C9111.1 (4)C34—C39—C40—O9138.2 (4)
C13—C8—C9—C100.1 (6)C25—C26—N1—C26i0.2 (3)
C7—C8—C9—C10177.2 (4)C25—C26—N1—Co1iv179.8 (3)
C8—C9—C10—C110.4 (6)C22—C21—N2—C21i1.5 (3)
C9—C10—C11—C120.2 (7)C22—C21—N2—Co1178.5 (3)
C10—C11—C12—C130.4 (6)O1i—Co1—N2—C21125.8 (2)
C11—C12—C13—C80.7 (5)O1—Co1—N2—C2154.2 (2)
C11—C12—C13—C14175.8 (3)O5—Co1—N2—C2131.2 (2)
C9—C8—C13—C120.5 (5)O5i—Co1—N2—C21148.8 (2)
C7—C8—C13—C12176.6 (3)N1ii—Co1—N2—C21102 (61)
C9—C8—C13—C14176.1 (3)O1i—Co1—N2—C21i54.2 (2)
C7—C8—C13—C146.8 (5)O1—Co1—N2—C21i125.8 (2)
C12—C13—C14—O3128.2 (3)O5—Co1—N2—C21i148.8 (2)
C8—C13—C14—O348.4 (4)O5i—Co1—N2—C21i31.2 (2)
C12—C13—C14—O451.1 (5)N1ii—Co1—N2—C21i78 (53)
C8—C13—C14—O4132.4 (3)C16—C15—N3—C15iii0.1 (3)
N3—C15—C16—C170.1 (6)C16—C15—N3—Co2179.9 (3)
C15—C16—C17—C16iii0.1 (3)O2iii—Co2—N3—C15iii22.0 (2)
C15—C16—C17—C18179.9 (3)O2—Co2—N3—C15iii158.0 (2)
C16—C17—C18—C19143.4 (2)N4ii—Co2—N3—C15iii178 (100)
C16iii—C17—C18—C1936.6 (2)O3—Co2—N3—C15iii58.5 (2)
C16—C17—C18—C19iii36.6 (2)O3iii—Co2—N3—C15iii121.5 (2)
C16iii—C17—C18—C19iii143.4 (2)O2iii—Co2—N3—C15158.0 (2)
C19iii—C18—C19—C200.1 (2)O2—Co2—N3—C1522.0 (2)
C17—C18—C19—C20179.9 (2)N4ii—Co2—N3—C152 (100)
C18—C19—C20—N40.1 (5)O3—Co2—N3—C15121.5 (2)
N2—C21—C22—C233.0 (5)O3iii—Co2—N3—C1558.5 (2)
C21—C22—C23—C22i1.4 (2)C19—C20—N4—C20iii0.1 (2)
C21—C22—C23—C24178.6 (2)C19—C20—N4—Co2iv179.9 (2)
C22i—C23—C24—C25156.8 (3)O2—C1—O1—Co115.3 (5)
C22—C23—C24—C2523.2 (3)C2—C1—O1—Co1164.5 (2)
C22i—C23—C24—C25i23.2 (3)O1i—Co1—O1—C1117.5 (3)
C22—C23—C24—C25i156.8 (3)O5—Co1—O1—C1153.0 (3)
C25i—C24—C25—C260.2 (3)O5i—Co1—O1—C128.8 (3)
C23—C24—C25—C26179.8 (3)N2—Co1—O1—C162.5 (3)
C24—C25—C26—N10.4 (6)N1ii—Co1—O1—C1117.5 (3)
O6—C27—C28—C2948.0 (6)O1—C1—O2—Co2140.4 (3)
O7—C27—C28—C29127.6 (4)C2—C1—O2—Co239.3 (4)
O6—C27—C28—C33137.2 (4)O2iii—Co2—O2—C131.1 (3)
O7—C27—C28—C3347.3 (5)N3—Co2—O2—C1148.9 (3)
C33—C28—C29—C302.5 (6)N4ii—Co2—O2—C131.1 (3)
C27—C28—C29—C30172.4 (4)O3—Co2—O2—C163.2 (3)
C28—C29—C30—C310.5 (7)O3iii—Co2—O2—C1126.1 (3)
C29—C30—C31—C322.8 (7)O4—C14—O3—Co2137.5 (3)
C30—C31—C32—C332.1 (6)C13—C14—O3—Co241.8 (4)
C31—C32—C33—C280.9 (5)O2iii—Co2—O3—C14121.4 (3)
C31—C32—C33—C34175.3 (4)O2—Co2—O3—C1461.9 (3)
C29—C28—C33—C323.2 (5)N3—Co2—O3—C1429.0 (3)
C27—C28—C33—C32171.5 (3)N4ii—Co2—O3—C14151.0 (3)
C29—C28—C33—C34172.8 (4)O3iii—Co2—O3—C1429.0 (3)
C27—C28—C33—C3412.5 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+2, y, z; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O60.79 (3)2.04 (3)2.821 (4)167 (5)
O7—H7A···O80.87 (3)1.75 (3)2.620 (4)177 (5)
O9—H9A···O4v0.89 (4)1.59 (4)2.462 (4)168 (5)
O5—H5B···O3vi0.72 (4)2.08 (4)2.775 (3)164 (5)
Symmetry codes: (v) x1, y, z1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co2(C14H8O4)2(C10H8N2)2(H2O)2]·2C14H10O4
Mr1431.11
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)10.1264 (10), 28.487 (3), 11.3835 (11)
V3)3283.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.40 × 0.17 × 0.08
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionIntegration
(SADABS; Bruker, 2001)
Tmin, Tmax0.89, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
17371, 5840, 5236
Rint0.040
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.100, 1.05
No. of reflections5840
No. of parameters468
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.42
Absolute structureFlack (1983), with 1476 Friedel pairs
Absolute structure parameter0.013 (15)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O60.79 (3)2.04 (3)2.821 (4)167 (5)
O7—H7A···O80.87 (3)1.75 (3)2.620 (4)177 (5)
O9—H9A···O4i0.89 (4)1.59 (4)2.462 (4)168 (5)
O5—H5B···O3ii0.72 (4)2.08 (4)2.775 (3)164 (5)
Symmetry codes: (i) x1, y, z1; (ii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds