Download citation
Download citation
link to html
The supra­molecular architectures of three dicarboxylic acid–biimidazole compounds, namely, 2,2′-biimidazolium malonate, C6H8N42+·C3H2O42−, (I), 2,2′-bi(1H-imidazole) succinic acid, C6H6N4·C4H6O4, (II), and 2,2′-biimidazolium 2,2′-iminio­diacetate chloride, C6H8N42+·C4H6NO4·Cl, (III), are reported. The crystal structures are assembled by the same process, namely double conventional N—H...O or O—H...N hydrogen bonds link the dicarboxyl­ates and biimidazoles to form tapes, which are stacked in parallel through lone-pair–aromatic inter­actions between carbonyl O atoms and biimidazole groups and are further linked via weak C—H...O inter­actions. The C=O...π inter­actions involved in stacking the tapes in (II) and the C—H...O inter­actions involved in linking the tapes in (II) and (III) demonstrate the crucial role of these inter­actions in the crystal packing. There is crystallographically imposed symmetry in all three structures. In (I), two independent malonate anions have their central C atoms on twofold axes and two biimidazolium dications each lie about independent inversion centres; in (II), the components lie about inversion centres, while in (III), the unique cation lies about an inversion centre and the iminiodiacetate and chloride anions lie across and on a mirror plane, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109005836/fg3076sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005836/fg3076Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005836/fg3076IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005836/fg3076IIIsup4.hkl
Contains datablock III

CCDC references: 730085; 730086; 730087

Comment top

Noncovalent weak interactions, such as C—H···O and CO···π, have attracted much interest. These weak interactions have been widely discussed in realtion to the crystal packing of organic molecules and the determination of the folded structures of biological molecules (Derewenda et al., 1995; Desiraju, 1996; 2005; Khurram et al., 2006; Jain et al., 2007; Lu et al., 2007; Wan et al., 2008). However, self-assembled supramolecular architectures are often stabilized as a result of the synergy of a variety of weak interactions (Khurram et al., 2006; Shukla et al., 2007; Wan et al., 2008). It is difficult to distinguish the effect of an individual weak interaction. Desiraju (2005) suggested that weak interactions can be classified as innocuous, supportive or intrusive. We describe here the decisive role of carbonyl–π and C—H···O interactions in the assembly of the supramolecular architectures of three dicarboxylic acid–biimidazole compounds.

The asymmetric unit of (I) contains two independent malonate anions with their central C atoms on twofold axes and two biimidazolium cations each lying about independent inversion centres (Fig. 1). Strong N—H···O and hydrogen bonds (Fig. 1 and Table 1) link the malonate and biimidazolium moieties to form two distinct units, which further assemble into two different zigzag tapes designated as A and B respectively, as shown as Fig. 2. Four C—H···O interactions (Fig. 2 and Table 1) link two tapes into a three-dimensional network, and concomitantly there are three possible C O···π(imidazole ring) interactions, one of which takes part in the stacking of tapes A while the the other two link tapes B, as described in Table 1 (Cg1 and Cg2 are the centroids of the N1/C1/N2/C3/C2 and N3/C4/N4/C6/C5 rings, respectively) and shown as Fig. 3.

In (II), there is crystallographically imposed inversion symmetry with the succinic acid and biimidazole neutral molecules lying about inversion centres. The succinic acid and biimidazole molecules are linked by pairs of O—H···N and N—H···O hydrogen bonds (Fig. 4 and Table 2), leading to linear tapes which are further linked to form sheets in the (102) plane by a C3—H3···O2(x + 1, -y + 1/2, z + 1/2) interaction (Fig. 5 and Table 2). The sheets assemble into a three-dimensional structure by a C4O1···π(imidazole ring)(-x + 1, -y + 1, -z + 1) interaction (Fig.6 and Table 2, where Cg3 is the centroid of the N1/C1/N2/C3/C2 ring).

In (III) (Fig. 7), the biimidazolium cation lies about an inversion centre, the iminodiacetate ion lies across a mirror plane and the chloride ion lies on a mirror plane. Iminodiacetate anions and biimidazolium cations are linked to form wave-like tapes by pairs of N—H···O hydrogen bonds (Fig. 8 and Table 3). These tapes are linked to form sheets by C3—H3···O1(1 - x,1 - y,-z) weak interactions (Fig. 8 and Table 3). The sheets are packed to form a three-dimensional network via two N—H···Cl hydrogen bonds and two C5O1···π interactions to imidazole rings at (-x, -y + 1, -z) and (-x + 1, -y + 1, -z +1) (Fig. 9 and Table 3, where Cg4 is the centroid of the N1/C1/N2/C2/C3 ring).

The supramolecular structures of (I), (II) and (III) reveal that they are assembled by same process, namely that pairs of N—H···O or O—H···N hydrogen bonds link the dicarboxylates and biimidazoles to form tapes, which are stacked in parallel through lone-pair–aromatic interactions between carbonyl O atoms and biimidazole groups and are further linked via weak C—H···O interaction.

Related literature top

For related literature, see: Derewenda et al. (1995); Desiraju (1996, 2005); Jain et al. (2007); Khurram et al. (2006); Lu et al. (2007); Shukla et al. (2007); Wan et al. (2008).

Experimental top

Diimizazole (1 mmol) and malonic, succinic or iminodiacetic acid (1 mmol) were dissolved in 10 ml of water by adding 0.7–0.9 ml of 2M HCl while stirring. The solutions were left standing at room temperature, and several days later, colorless crystals (I), (II) and (III) were obtained.

Refinement top

For compound (III), the systematic absences permitted P21 or P21/m as possible space groups; P21/m was selected, and confirmed by the structure analysis. H atoms attached to C atoms of (I), (II), and (III) were placed in geometrically idealized positions and refined with Uiso(H) values of 1.2Ueq(C). H atoms attached to N and O atoms were located from difference Fourier maps and refined using a riding model, with Uiso(H) values of 1.2Ueq(N) or 1.5Ueq(O) of their parent atoms.

Computing details top

For all compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Version 6.10; Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Version 6.10; Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), with displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds. [Symmetry codes: (i) -x + 1, -y, -z +1; (ii) -x, -y, -z + 1; (iv) -x, y, -z + 1/2; (ix) -x + 1, y, -z + 1/2.]
[Figure 2] Fig. 2. The structure built from N—H···O hydrogen bonds and C—H···O interactions in (I). Tape Ais the lower shown in the lower part of the figure and tape Bin the upper part. Dashed lines represent hydrogen bonds. [Symmetry codes: (ii) -x, -y, -z + 1; (v) x, -y + 1, z + 1/2; (vi) -x + 1, -y + 1, -z + 1; (viii) x, y + 1, z.]
[Figure 3] Fig. 3. The CO···π interaction (double dashed lines) between neighbouring A tapes and B tapes in (I). Dotted lines represent hydrogen bonds. [Symmetry codes: (iv) -x, y, -z + 3/2; (v) x, -y + 1, z + 1/2; (vi) -x + 1, -y + 1, -z + 1; (viii) x, y + 1, z; (x) -x, y + 1, -z + 3/2.]
[Figure 4] Fig. 4. A view of the structure of (II), with displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds. [Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (iv) -x, -y + 1, -z.]
[Figure 5] Fig. 5. Part of the two-dimensional sheet assembled from O—H···N, N—H···O and C—H···O interactions in (II). Dashed lines represent hydrogen bonds. [Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x + 1, -y + 1/2, z + 1/2; (v) -x + 1, y - 1/2, -z + 1/2.]
[Figure 6] Fig. 6. The CO···π interaction (double dashed lines) between neighbouring sheets in (II). Dotted lines represent hydrogen bonds. [Symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (vi) x + 2, y, z + 1; (vii) -x + 3, -y + 1, -z + 2.]
[Figure 7] Fig. 7. A view of the structure of (III), with displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds. [Symmetry codes: (i) -x, -y + 1, -z + 1; (vii) x, -y + 3/2, z.]
[Figure 8] Fig. 8. The two-dimensional sheet assembled from N—H···O and C—H···O interactions in (III). Dashed lines represent hydrogen bonds. [Symmetry codes: (i) -x, -y + 1, -z + 1; (iii) -x + 1, y - 1/2, -z + 1; (iv) -x +1, -y + 1, -z; (viii) x, y, z - 1.]
[Figure 9] Fig. 9. The CO···π interactions (double dashed lines) between neighbouring sheets in (III). Dotted lines represent hydrogen bonds. [Symmetry codes: (vii) x, -y + 3/2, z; (ix) -x, y + 3/2, -z +1; (x) x + 1, y, z + 1; (xi) x + 1, -y + 3/2, z + 1; (xii) -x + 1, -y, -z + 1.]
(I) 2,2'-biimidazol-1-ium malonate top
Crystal data top
C6H8N42+·C3H2O42F(000) = 496
Mr = 238.21Dx = 1.518 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 2156 reflections
a = 15.663 (5) Åθ = 2.6–26.6°
b = 4.4319 (14) ŵ = 0.12 mm1
c = 18.221 (4) ÅT = 298 K
β = 124.517 (18)°Block, colorless
V = 1042.2 (5) Å30.40 × 0.40 × 0.40 mm
Z = 4
Data collection top
SMART 1K CCD area detector
diffractometer
1841 independent reflections
Radiation source: fine-focus sealed tube1519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1817
Tmin = 0.845, Tmax = 0.953k = 45
4027 measured reflectionsl = 1321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.1574P]
where P = (Fo2 + 2Fc2)/3
1841 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H8N42+·C3H2O42V = 1042.2 (5) Å3
Mr = 238.21Z = 4
Monoclinic, P2/cMo Kα radiation
a = 15.663 (5) ŵ = 0.12 mm1
b = 4.4319 (14) ÅT = 298 K
c = 18.221 (4) Å0.40 × 0.40 × 0.40 mm
β = 124.517 (18)°
Data collection top
SMART 1K CCD area detector
diffractometer
1841 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1519 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.953Rint = 0.014
4027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
1841 reflectionsΔρmin = 0.23 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.38756 (10)0.0994 (3)0.50257 (10)0.0448 (4)
H10.40770.23240.54360.054*
N20.38848 (10)0.2261 (3)0.41376 (9)0.0447 (4)
H2A0.40950.33690.38820.054*
C10.44579 (11)0.0313 (4)0.47993 (10)0.0376 (4)
C20.29033 (12)0.0153 (5)0.44903 (12)0.0526 (5)
H20.23360.03700.45020.063*
C30.29036 (13)0.2176 (4)0.39402 (13)0.0524 (5)
H30.23400.33080.35060.063*
N30.11051 (10)0.0743 (3)0.61516 (10)0.0477 (4)
H3A0.09080.20650.63720.057*
N40.10929 (10)0.2374 (3)0.52270 (10)0.0467 (4)
H40.08860.33940.47530.056*
C40.05320 (11)0.0398 (4)0.53333 (11)0.0403 (4)
C50.20623 (13)0.0560 (5)0.65788 (13)0.0557 (5)
H50.26190.01810.71610.067*
C60.20550 (13)0.2493 (4)0.60057 (13)0.0547 (5)
H60.26050.36910.61190.066*
O10.07742 (9)0.4454 (3)0.29230 (8)0.0592 (4)
O20.08014 (10)0.6000 (4)0.39643 (9)0.0658 (4)
C70.00159 (12)0.5995 (4)0.31838 (11)0.0408 (4)
C80.00000.7940 (5)0.25000.0447 (6)
H8A0.06090.92240.27890.054*0.50
H8B0.06090.92240.22110.054*0.50
O30.58047 (9)0.4586 (3)0.37051 (9)0.0566 (4)
O40.42010 (10)0.5977 (4)0.31770 (10)0.0686 (5)
C90.49928 (12)0.6059 (4)0.31758 (11)0.0407 (4)
C100.50000.8000 (5)0.25000.0434 (6)
H10A0.56080.92850.28000.052*0.50
H10B0.43920.92850.22000.052*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0378 (7)0.0500 (8)0.0458 (8)0.0010 (6)0.0232 (7)0.0005 (7)
N20.0378 (7)0.0511 (8)0.0404 (8)0.0052 (6)0.0194 (6)0.0035 (6)
C10.0323 (8)0.0425 (9)0.0350 (8)0.0004 (6)0.0172 (7)0.0048 (6)
C20.0336 (9)0.0674 (12)0.0551 (11)0.0027 (8)0.0241 (8)0.0051 (9)
C30.0334 (8)0.0626 (11)0.0480 (10)0.0092 (8)0.0151 (8)0.0009 (9)
N30.0406 (8)0.0572 (9)0.0433 (8)0.0044 (6)0.0226 (7)0.0001 (7)
N40.0391 (7)0.0549 (9)0.0469 (8)0.0069 (6)0.0249 (7)0.0025 (7)
C40.0351 (8)0.0472 (9)0.0411 (9)0.0023 (7)0.0231 (8)0.0062 (7)
C50.0365 (9)0.0726 (13)0.0455 (10)0.0029 (8)0.0157 (8)0.0012 (9)
C60.0373 (9)0.0652 (12)0.0571 (12)0.0119 (8)0.0240 (9)0.0062 (9)
O10.0486 (7)0.0735 (9)0.0468 (8)0.0200 (6)0.0218 (6)0.0017 (6)
O20.0457 (7)0.0886 (10)0.0462 (8)0.0187 (7)0.0160 (6)0.0089 (7)
C70.0361 (8)0.0439 (9)0.0435 (10)0.0018 (7)0.0232 (8)0.0071 (7)
C80.0434 (13)0.0409 (12)0.0472 (14)0.0000.0241 (11)0.000
O30.0428 (7)0.0682 (8)0.0576 (8)0.0090 (6)0.0277 (6)0.0194 (7)
O40.0509 (8)0.0927 (11)0.0728 (10)0.0197 (7)0.0414 (8)0.0330 (8)
C90.0383 (8)0.0430 (9)0.0381 (9)0.0016 (7)0.0200 (7)0.0069 (7)
C100.0429 (12)0.0403 (12)0.0457 (14)0.0000.0243 (11)0.000
Geometric parameters (Å, º) top
N1—C11.328 (2)C4—C4ii1.443 (3)
N1—C21.359 (2)C5—C61.346 (3)
N1—H10.8600C5—H50.9300
N2—C11.333 (2)C6—H60.9300
N2—C31.366 (2)O1—C71.248 (2)
N2—H2A0.8600O2—C71.246 (2)
C1—C1i1.445 (3)C7—C81.504 (2)
C2—C31.345 (3)C8—C7iii1.504 (2)
C2—H20.9300C8—H8A0.9700
C3—H30.9300C8—H8B0.9700
N3—C41.330 (2)O3—C91.258 (2)
N3—C51.366 (2)O4—C91.242 (2)
N3—H3A0.8600C9—C101.508 (2)
N4—C41.330 (2)C10—C9iv1.508 (2)
N4—C61.365 (2)C10—H10A0.9700
N4—H40.8600C10—H10B0.9700
C1—N1—C2107.55 (15)C6—C5—N3107.65 (16)
C1—N1—H1126.2C6—C5—H5126.2
C2—N1—H1126.2N3—C5—H5126.2
C1—N2—C3107.50 (15)C5—C6—N4107.51 (15)
C1—N2—H2A126.3C5—C6—H6126.2
C3—N2—H2A126.3N4—C6—H6126.2
N1—C1—N2109.53 (14)O2—C7—O1124.07 (17)
N1—C1—C1i125.16 (19)O2—C7—C8119.12 (14)
N2—C1—C1i125.31 (19)O1—C7—C8116.81 (14)
C3—C2—N1108.11 (16)C7—C8—C7iii110.04 (19)
C3—C2—H2125.9C7—C8—H8A109.7
N1—C2—H2125.9C7iii—C8—H8A109.7
C2—C3—N2107.31 (15)C7—C8—H8B109.7
C2—C3—H3126.3C7iii—C8—H8B109.7
N2—C3—H3126.3H8A—C8—H8B108.2
C4—N3—C5107.68 (16)O4—C9—O3124.07 (16)
C4—N3—H3A126.2O4—C9—C10119.19 (14)
C5—N3—H3A126.2O3—C9—C10116.74 (13)
C4—N4—C6107.78 (15)C9—C10—C9iv110.39 (19)
C4—N4—H4126.1C9—C10—H10A109.6
C6—N4—H4126.1C9iv—C10—H10A109.6
N3—C4—N4109.38 (14)C9—C10—H10B109.6
N3—C4—C4ii125.1 (2)C9iv—C10—H10B109.6
N4—C4—C4ii125.5 (2)H10A—C10—H10B108.1
C2—N1—C1—N20.15 (19)C6—N4—C4—N30.1 (2)
C2—N1—C1—C1i179.1 (2)C6—N4—C4—C4ii180.0 (2)
C3—N2—C1—N10.01 (19)C4—N3—C5—C60.1 (2)
C3—N2—C1—C1i179.2 (2)N3—C5—C6—N40.0 (2)
C1—N1—C2—C30.3 (2)C4—N4—C6—C50.0 (2)
N1—C2—C3—N20.3 (2)O2—C7—C8—C7iii113.09 (17)
C1—N2—C3—C20.2 (2)O1—C7—C8—C7iii66.74 (13)
C5—N3—C4—N40.1 (2)O4—C9—C10—C9iv110.35 (17)
C5—N3—C4—C4ii180.0 (2)O3—C9—C10—C9iv69.08 (14)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z+1/2; (iv) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.861.782.612 (2)163
N2—H2A···O40.861.802.646 (2)166
N3—H3A···O1ii0.861.772.609 (2)166
N4—H4···O20.861.792.626 (2)164
C2—H2···O2v0.932.583.401 (2)148
C3—H3···O1iii0.932.413.292 (2)158
C5—H5···O4vi0.932.703.317 (2)125
C6—H6···O3vii0.932.453.345 (2)162
C7—O1···Cg2viii1.25 (1)3.49 (1)3.714 (3)90
C9—O3···Cg1vii1.26 (1)3.54 (1)3.796 (2)92
C9—O4···Cg1ix1.24 (1)3.68 (1)4.538 (3)127
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z+1/2; (v) x, y1, z; (vi) x, y+1, z+1/2; (vii) x+1, y+1, z+1; (viii) x, y+1, z+1; (ix) x, y+1, z.
(II) 2,2'-bi(1H-imidazole) succinic acid top
Crystal data top
C6H6N4·C4H6O4F(000) = 264
Mr = 252.24Dx = 1.457 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 903 reflections
a = 4.906 (3) Åθ = 2.8–23.3°
b = 13.887 (8) ŵ = 0.12 mm1
c = 8.468 (5) ÅT = 298 K
β = 94.839 (8)°Block, colorless
V = 574.9 (6) Å30.30 × 0.30 × 0.27 mm
Z = 2
Data collection top
SMART 1K CCD area detector
diffractometer
1055 independent reflections
Radiation source: fine-focus sealed tube868 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 53
Tmin = 0.845, Tmax = 0.970k = 1516
2390 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.054P)2 + 0.1478P]
where P = (Fo2 + 2Fc2)/3
1055 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C6H6N4·C4H6O4V = 574.9 (6) Å3
Mr = 252.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.906 (3) ŵ = 0.12 mm1
b = 13.887 (8) ÅT = 298 K
c = 8.468 (5) Å0.30 × 0.30 × 0.27 mm
β = 94.839 (8)°
Data collection top
SMART 1K CCD area detector
diffractometer
1055 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
868 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.970Rint = 0.026
2390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
1055 reflectionsΔρmin = 0.15 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7906 (3)0.39353 (12)0.44355 (19)0.0466 (5)
N21.1535 (3)0.39751 (11)0.61309 (19)0.0447 (5)
H2B1.29330.41910.67040.054*
C10.9846 (3)0.44912 (13)0.5131 (2)0.0390 (5)
C20.8420 (4)0.30310 (15)0.5024 (3)0.0569 (6)
H2A0.73930.24860.47400.068*
C31.0633 (4)0.30485 (15)0.6073 (3)0.0557 (6)
H31.13980.25290.66460.067*
O10.4082 (3)0.54988 (10)0.17524 (16)0.0513 (4)
O20.3784 (3)0.39482 (10)0.23405 (17)0.0573 (5)
H20.51240.40250.30280.086*
C40.2966 (4)0.47178 (14)0.1573 (2)0.0401 (5)
C50.0499 (4)0.45539 (14)0.0442 (2)0.0425 (5)
H5A0.09670.43050.10260.051*
H5B0.09290.40670.03210.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0446 (10)0.0426 (10)0.0494 (10)0.0011 (7)0.0151 (8)0.0019 (7)
N20.0421 (9)0.0427 (10)0.0460 (9)0.0028 (7)0.0160 (7)0.0019 (7)
C10.0364 (10)0.0419 (10)0.0371 (10)0.0029 (8)0.0068 (8)0.0017 (8)
C20.0585 (13)0.0397 (12)0.0678 (14)0.0041 (9)0.0214 (11)0.0030 (10)
C30.0614 (13)0.0385 (11)0.0630 (13)0.0026 (9)0.0202 (10)0.0072 (10)
O10.0479 (9)0.0457 (9)0.0559 (9)0.0044 (6)0.0222 (7)0.0007 (7)
O20.0549 (9)0.0490 (9)0.0620 (9)0.0050 (6)0.0301 (7)0.0089 (7)
C40.0361 (10)0.0440 (11)0.0388 (10)0.0009 (8)0.0047 (8)0.0006 (8)
C50.0389 (10)0.0453 (11)0.0412 (10)0.0030 (8)0.0097 (8)0.0009 (8)
Geometric parameters (Å, º) top
N1—C11.324 (2)C3—H30.9300
N1—C21.366 (3)O1—C41.219 (2)
N2—C11.341 (2)O2—C41.297 (2)
N2—C31.360 (3)O2—H20.8475
N2—H2B0.8603C4—C51.497 (3)
C1—C1i1.440 (4)C5—C5ii1.507 (4)
C2—C31.344 (3)C5—H5A0.9700
C2—H2A0.9300C5—H5B0.9700
C1—N1—C2105.66 (15)N2—C3—H3126.8
C1—N2—C3107.51 (16)C4—O2—H2115.5
C1—N2—H2B126.2O1—C4—O2123.67 (17)
C3—N2—H2B126.3O1—C4—C5123.09 (17)
N1—C1—N2110.60 (17)O2—C4—C5113.24 (16)
N1—C1—C1i125.76 (19)C4—C5—C5ii113.81 (19)
N2—C1—C1i123.6 (2)C4—C5—H5A108.8
C3—C2—N1109.78 (18)C5ii—C5—H5A108.8
C3—C2—H2A125.1C4—C5—H5B108.8
N1—C2—H2A125.1C5ii—C5—H5B108.8
C2—C3—N2106.44 (17)H5A—C5—H5B107.7
C2—C3—H3126.8
C2—N1—C1—N20.4 (2)N1—C2—C3—N20.6 (3)
C2—N1—C1—C1i179.5 (2)C1—N2—C3—C20.4 (2)
C3—N2—C1—N10.0 (2)O1—C4—C5—C5ii0.6 (3)
C3—N2—C1—C1i179.9 (2)O2—C4—C5—C5ii179.2 (2)
C1—N1—C2—C30.6 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.851.742.575 (2)169
N2—H2B···O1i0.861.932.779 (2)170
C3—H3···O2iii0.932.413.309 (3)162
C4—O1···Cg1iv1.22 (1)3.37 (1)3.720 (3)97
Symmetry codes: (i) x+2, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
(III) 2,2'-biimidazol-1-ium 2,2'-iminiodiacetate chloride top
Crystal data top
C6H8N42+·C4H6NO4·ClF(000) = 316
Mr = 303.71Dx = 1.526 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1551 reflections
a = 5.3095 (13) Åθ = 3.6–26.6°
b = 22.941 (6) ŵ = 0.31 mm1
c = 5.7023 (14) ÅT = 298 K
β = 107.930 (3)°Block, yellow
V = 660.8 (3) Å30.40 × 0.40 × 0.40 mm
Z = 2
Data collection top
SMART 1K CCD area detector
diffractometer
1158 independent reflections
Radiation source: fine-focus sealed tube1027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25.0°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 65
Tmin = 0.747, Tmax = 0.886k = 2026
3079 measured reflectionsl = 66
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0925P)2 + 0.8396P]
where P = (Fo2 + 2Fc2)/3
1158 reflections(Δ/σ)max < 0.001
94 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C6H8N42+·C4H6NO4·ClV = 660.8 (3) Å3
Mr = 303.71Z = 2
Monoclinic, P21/mMo Kα radiation
a = 5.3095 (13) ŵ = 0.31 mm1
b = 22.941 (6) ÅT = 298 K
c = 5.7023 (14) Å0.40 × 0.40 × 0.40 mm
β = 107.930 (3)°
Data collection top
SMART 1K CCD area detector
diffractometer
1158 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1027 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.886Rint = 0.017
3079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.05Δρmax = 0.69 e Å3
1158 reflectionsΔρmin = 0.32 e Å3
94 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2023 (5)0.49819 (11)0.2887 (5)0.0385 (7)
H10.23870.53100.25270.046*
N20.0893 (5)0.42347 (11)0.4647 (5)0.0416 (7)
H2A0.02470.40290.54920.050*
C10.0703 (5)0.48133 (12)0.4398 (5)0.0346 (7)
C20.2378 (7)0.40320 (14)0.3255 (6)0.0469 (8)
H20.28230.36450.30910.056*
C30.3078 (6)0.44979 (14)0.2159 (6)0.0445 (8)
H30.41000.44910.10960.053*
O10.3315 (5)0.59463 (9)0.1183 (5)0.0482 (7)
O20.1026 (6)0.65277 (10)0.2873 (6)0.0662 (9)
N30.2625 (12)0.75000.1448 (11)0.0686 (15)
H3A0.30340.75000.31010.082*
H3B0.08480.75000.08200.082*
C40.3658 (8)0.69548 (13)0.0673 (8)0.0532 (10)
H4A0.55760.69520.12940.064*
H4B0.31310.69340.11110.064*
C50.2559 (7)0.64376 (13)0.1683 (6)0.0442 (8)
Cl10.7269 (4)0.75000.6775 (3)0.0716 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0461 (14)0.0283 (13)0.0448 (14)0.0015 (10)0.0197 (11)0.0002 (10)
N20.0540 (16)0.0257 (13)0.0506 (15)0.0004 (11)0.0241 (12)0.0024 (11)
C10.0385 (15)0.0265 (14)0.0396 (15)0.0005 (11)0.0132 (12)0.0016 (11)
C20.0575 (19)0.0282 (16)0.059 (2)0.0077 (14)0.0236 (16)0.0040 (14)
C30.0507 (18)0.0394 (18)0.0483 (18)0.0012 (14)0.0226 (15)0.0063 (14)
O10.0655 (15)0.0243 (11)0.0662 (15)0.0022 (10)0.0370 (12)0.0005 (9)
O20.097 (2)0.0305 (12)0.101 (2)0.0020 (12)0.0743 (18)0.0044 (12)
N30.108 (4)0.0205 (19)0.115 (4)0.0000.088 (3)0.000
C40.077 (2)0.0213 (17)0.081 (2)0.0016 (14)0.053 (2)0.0007 (14)
C50.0587 (19)0.0276 (16)0.0560 (19)0.0009 (14)0.0318 (16)0.0001 (13)
Cl10.1025 (12)0.0356 (7)0.0912 (11)0.0000.0512 (9)0.000
Geometric parameters (Å, º) top
N1—C11.324 (4)O1—C51.258 (4)
N1—C31.365 (4)O2—C51.227 (4)
N1—H10.8192N3—C41.486 (4)
N2—C11.335 (4)N3—C4ii1.486 (4)
N2—C21.361 (4)N3—H3A0.9000
N2—H2A0.8209N3—H3B0.9000
C1—C1i1.442 (6)C4—C51.512 (4)
C2—C31.347 (5)C4—H4A0.9700
C2—H20.9300C4—H4B0.9700
C3—H30.9300
C1—N1—C3108.0 (2)C4—N3—C4ii114.6 (4)
C1—N1—H1130.1C4—N3—H3A108.6
C3—N1—H1121.4C4ii—N3—H3A108.6
C1—N2—C2108.4 (3)C4—N3—H3B108.6
C1—N2—H2A127.0C4ii—N3—H3B108.6
C2—N2—H2A124.6H3A—N3—H3B107.6
N1—C1—N2108.8 (3)N3—C4—C5109.0 (3)
N1—C1—C1i126.3 (3)N3—C4—H4A109.9
N2—C1—C1i124.9 (3)C5—C4—H4A109.9
C3—C2—N2106.9 (3)N3—C4—H4B109.9
C3—C2—H2126.5C5—C4—H4B109.9
N2—C2—H2126.5H4A—C4—H4B108.3
C2—C3—N1107.9 (3)O2—C5—O1126.1 (3)
C2—C3—H3126.1O2—C5—C4118.5 (3)
N1—C3—H3126.1O1—C5—C4115.4 (3)
C3—N1—C1—N20.0 (3)N2—C2—C3—N10.0 (4)
C3—N1—C1—C1i179.6 (4)C1—N1—C3—C20.0 (3)
C2—N2—C1—N10.0 (4)C4ii—N3—C4—C5177.2 (3)
C2—N2—C1—C1i179.6 (4)N3—C4—C5—O21.5 (5)
C1—N2—C2—C30.0 (4)N3—C4—C5—O1179.1 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.821.792.592 (3)167
N2—H2A···O2i0.821.832.643 (3)171
N3—H3A···Cl10.902.563.271 (7)137
N3—H3B···Cl1iii0.902.503.244 (7)141
C2—H2···Cl1iv0.932.633.520 (3)161
C3—H3···O1v0.932.383.253 (4)156
C5—O1···Cg1vi1.26 (1)3.33 (1)3.816 (4)103
C5—O1···Cg1vii1.26 (1)3.50 (1)4.029 (4)106
Symmetry codes: (i) x, y+1, z+1; (iii) x1, y, z1; (iv) x+1, y1/2, z+1; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) x+1, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC6H8N42+·C3H2O42C6H6N4·C4H6O4C6H8N42+·C4H6NO4·Cl
Mr238.21252.24303.71
Crystal system, space groupMonoclinic, P2/cMonoclinic, P21/cMonoclinic, P21/m
Temperature (K)298298298
a, b, c (Å)15.663 (5), 4.4319 (14), 18.221 (4)4.906 (3), 13.887 (8), 8.468 (5)5.3095 (13), 22.941 (6), 5.7023 (14)
β (°) 124.517 (18) 94.839 (8) 107.930 (3)
V3)1042.2 (5)574.9 (6)660.8 (3)
Z422
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.120.120.31
Crystal size (mm)0.40 × 0.40 × 0.400.30 × 0.30 × 0.270.40 × 0.40 × 0.40
Data collection
DiffractometerSMART 1K CCD area detector
diffractometer
SMART 1K CCD area detector
diffractometer
SMART 1K CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Multi-scan
(SADABS; Sheldrick, 2000)
Multi-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.845, 0.9530.845, 0.9700.747, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
4027, 1841, 1519 2390, 1055, 868 3079, 1158, 1027
Rint0.0140.0260.017
(sin θ/λ)max1)0.5950.6060.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.07 0.046, 0.117, 1.05 0.064, 0.180, 1.05
No. of reflections184110551158
No. of parameters1558294
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.230.19, 0.150.69, 0.32

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Version 6.10; Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.861.782.612 (2)163.0
N2—H2A···O40.861.802.646 (2)165.7
N3—H3A···O1ii0.861.772.609 (2)165.8
N4—H4···O20.861.792.626 (2)164.0
C2—H2···O2iii0.932.583.401 (2)148
C3—H3···O1iv0.932.413.292 (2)158
C5—H5···O4v0.932.703.317 (2)125
C6—H6···O3vi0.932.453.345 (2)162
C7—O1···Cg2vii1.248 (2)3.488 (2)3.714 (3)90
C9—O3···Cg1vi1.258 (2)3.543 (2)3.796 (2)92
C9—O4···Cg1viii1.242 (2)3.680 (2)4.538 (3)127
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y1, z; (iv) x, y, z+1/2; (v) x, y+1, z+1/2; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.851.742.575 (2)169
N2—H2B···O1i0.861.932.779 (2)170
C3—H3···O2ii0.932.413.309 (3)162
C4—O1···Cg1iii1.219 (2)3.373 (3)3.720 (3)97
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.821.792.592 (3)167
N2—H2A···O2i0.821.832.643 (3)171
N3—H3A···Cl10.902.563.271 (7)137
N3—H3B···Cl1ii0.902.503.244 (7)141
C2—H2···Cl1iii0.932.633.520 (3)161
C3—H3···O1iv0.932.383.253 (4)156
C5—O1···Cg1v1.258 (4)3.334 (3)3.816 (4)103
C5—O1···Cg1vi1.258 (4)3.498 (3)4.029 (4)106
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z1; (iii) x+1, y1/2, z+1; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds