metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Oxalate complexes of the (η6-p-cymene)ruthenium(II) fragment: μ-oxalato-κ2O1,O2:κ2O1′,O2′-bis­­[(η6-p-cymene)(tri­phenyl­phosphine-κP)ruthenium(II)] bis­­(tetra­fluoro­borate) and (η6-p-cymene)(oxalato-κ2O,O′)(pyridine-3,5-di­carboxylic acid-κN)ruthenium(II)

CROSSMARK_Color_square_no_text.svg

aSchool of Natural Sciences (Chemistry), Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England, and bChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
*Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

(Received 26 January 2006; accepted 1 March 2006; online 31 March 2006)

The crystal structure of dimeric μ-oxalato-bis­[(η6-p-cymene)­(tri­phenyl­phosphine)ruthenium(II)] bis­(tetra­fluoro­borate), [Ru2(C2O4)(C10H14)2(C18H15P)2](BF4)2, has the cation lying on an inversion centre. The complex demonstrates the trans bond-weakening influence, with the longest Ru—C(η6-p-cymene) bonds in the complex lying trans to the phosphine group. The related mononuclear species (η6-p-cymene)(oxalato)­(pyridine-3,5-dicarboxylic acid)ruthenium(II), [Ru(C2O4)(C10H14)(C7H5NO4)], crystallizes as hydrogen-bonded tapes linked through O—H⋯O hydrogen bonds.

Comment

Using a synthetic method first introduced by Winkhaus & Singer (1967[Winkhaus, G. & Singer, H. (1967). J. Organomet. Chem. 7, 487-491.]) and later adapted by others (Iwata & Ogata, 1973[Iwata, R. & Ogata, I. (1973). Tetrahedron, 29, 2753-2758.]; Bennett & Smith, 1974[Bennett, M. A. & Smith, A. K. (1974). J. Chem. Soc. Dalton Trans. pp. 233-241.]; Bennett et al., 1982[Bennett, M. A., Huang, T.-N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74-78.]), the reaction of cyclohexa-1,3-dienes with RuCl3·xH2O via a reductive dehydrogenation reaction in a mixed EtOH–H2O solvent affords air-stable [RuCl2(η6-arene)]2 chloro-bridged dimer complexes. These dimeric starting materials can be reacted with a wide variety of ligands, resulting in mononuclear half-sandwich `piano-stool' complexes (Bennett & Smith, 1974[Bennett, M. A. & Smith, A. K. (1974). J. Chem. Soc. Dalton Trans. pp. 233-241.]; Maitlis, 1981[Maitlis, P. M. (1981). Chem. Soc. Rev. 10, 1-48.]). Such (η6-arene)ruthenium complexes have been shown to have both stoichiometric (Pigge & Coniglio, 2001[Pigge, F. C. & Coniglio, J. J. (2001). Curr. Org. Chem. 5, 757-784.]) and catalytic (Ogo et al., 2002[Ogo, S., Abura, R. & Watanabe, Y. (2002). Organometallics, 21, 2964-2969.]; Hafner et al., 1997[Hafner, A., van der Mühlebach, A. & Schaaf, P. A. (1997). Angew. Chem. Int. Ed. Engl. 36, 2121-2124.]; Akiyama & Kobayashi, 2002[Akiyama, R. & Kobayashi, S. (2002). Angew. Chem. Int. Ed. 41, 2602-2604.]) applications in organic chemistry. More recently, (η6-arene)ruthenium complexes have been shown to exhibit anti­bacterial, anti­viral and anti­cancer properties (Allardyce et al., 2003[Allardyce, C. S., Dyson, P. J., Ellis, D. J., Salter, P. A. & Scopelliti, R. (2003). J. Organomet. Chem. 668, 35-42.]; Morris et al., 2001[Morris, R. E., Aird, R. E., del Socorro Murdoch, P., Chen, H. M., Cummings, J., Hughes, N. D., Parsons, S., Parkin, A., Boyd, G., Jodrell, D. I. & Sadler, P. J. (2001). J. Med. Chem. 44, 3616-3621.]; Wang et al., 2002[Wang, F. Y., Chen, H. M., Parkinson, J. A., del Socorro Murdoch, P. & Sadler, P. J. (2002). Inorg. Chem. 41, 4509-4523.]).

Yan and co-workers have investigated the synthesis of dimeric (η6-arene)ruthenium complexes. The oxalate (C2O42−) ligand replaces the bridging Cl ligands upon reaction with [RuCl2(η6-p-cymene)]2, producing the dimeric compound

[Scheme 1]
{Ru(η6-p-cymene)}2(μ-oxalato)Cl2 (Yan et al., 1997[Yan, H., Süss-Fink, G., Neels, A. & Stoeckli-Evans, H. (1997). J. Chem. Soc. Dalton Trans. pp. 4345-4350.]). The Cl anions of this compound can be displaced by PPh3, producing the cation [{Ru(η6-p-cymene)}2(μ-oxalato)(PPh3)2]2+, and may also be removed upon reaction with Ag+ salts before addition of a monodentate ligand. This latter reaction was used to synthesize the `mol­ecular box', [{Ru(η6-p-cymene)}4(μ-oxalato)2(μ-4,4′-bipy)2]4+. Our investigations have con­tinued from this work, with the aim of introducing ligands bearing hydrogen-bonding functionality to the [{Ru(η6-arene)}2(μ-oxalate)]2+ fragment. Initial reactions introduced PPh3 to the system through the prior removal of the Cl anions using Ag+ salts, allowing the crystallization of the [{Ru(η6-p-cymene)}2(μ-oxalato)(PPh3)2]2+ cation as its BF4 salt, (I)[link]. [Yan et al. (1997[Yan, H., Süss-Fink, G., Neels, A. & Stoeckli-Evans, H. (1997). J. Chem. Soc. Dalton Trans. pp. 4345-4350.]) synthesized the cation as its trifluoro­methane­sulfonate salt, but did not crystallographically characterize the compound.] The reaction of {Ru(η6-p-cymene)}2(μ-oxalato)Cl2 with Ag+, followed by addition of the monodentate ligand pyridine-3,5-dicarboxylic acid, resulted in an ambiguous mixture of compounds (spectro­scopic data were inconclusive). However, one crystal was grown from the recrystallization of the mixture, from which the structure of Ru(η6-p-cymene)(oxalato)(pyridine-3,5-dicarboxylic acid), (II)[link], was determined, rather than the intended dimeric compound [{Ru(η6-p-cymene)}2(μ-oxalato)(pyridine-3,5-dicarboxylic acid)2](BF4)2.

Compound (I)[link], [{Ru(η6-p-cymene)}2(μ-oxalato)(PPh3)2](BF4)2, has the cation positioned on an inversion centre (Fig. 1[link]). The compound represents only the fifth oxalate-bridged (η6-arene)ruthenium complex to be structurally characterized to date. The original four complexes were characterized by Yan et al. (1997[Yan, H., Süss-Fink, G., Neels, A. & Stoeckli-Evans, H. (1997). J. Chem. Soc. Dalton Trans. pp. 4345-4350.]), with Cl (two conformational isomers), methanol and 4,4′-bipyridine ligands filling the remaining coordination sites of the RuII ions.

The geometry of the cation in (I)[link] is summarized in Table 1[link]. Table 5[link] shows the results of a search of the Cambridge Structural Database (CSD; Version 5.27 plus one update, January 2006; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) for (oxalato)ruthenium complexes in the presence and absence of η6-arene ligands. The bond lengths within the oxalate ligand are in good agreement with the results of the CSD survey, with little difference observed in the C—C and C—O bond lengths whether an η6 ligand is present or not. Ru—O bond lengths appear to be slightly shorter in the presence of an η6-arene ligand, and the O—Ru—O angle slightly narrower, whereas in the case of (I)[link], the Ru—O bond lengths are longer than the averages in Table 5[link] and the O—Ru—O angle narrower still. This is presumably due to the steric and electronic effects of the PPh3 ligand. The average Ru—P bond length from 60 Ru(η6-arene)(PPh3) structures in the CSD is 2.35 (3) Å (range 2.262–2.404 Å), showing good agreement with that observed in (I)[link].

The Ru—C bond lengths in (I)[link] [2.184 (3)–2.256 (3) Å] are average-to-long compared with the search statistics (Table 5[link]). Complexes containing η6-arene and phosphine ligands have been shown to demonstrate the trans bond-weakening influence, in which the Ru—C bonds positioned trans to the phosphine group are elongated with respect to the others (Bennett et al., 1972[Bennett, M. A., Robertson, G. B. & Smith, A. K. (1972). J. Organomet. Chem. 43, C41-C43.]; Elsegood & Tocher, 1995[Elsegood, M. R. J. & Tocher, D. A. (1995). Polyhedron, 14, 3147-3156.]). The trans influence is observed in compound (I)[link], where atoms C2 and C3, having the longest Ru—C bond lengths within the η6-coordination of the arene ligand, lie trans to the phosphine ligand. The distance between the RuII ion and the least-squares plane of the p-cymene aromatic ring is 1.6971 (13) Å. The cations and anions are linked together into a three-dimensional structure through a series of weak C—H⋯F hydrogen bonds (Table 2[link]).

Compound (II)[link], Ru(η6-p-cymene)(oxalato)(pyridine-3,5-dicarboxylic acid), crystallizes with the asymmetric unit comprising one formula unit (Fig. 2[link]). The compound represents only the second Ru(η6-arene)(oxalato)L complex (L is a monodentate ligand) to be structurally characterized to date, the other being an η6-p-cymene–PPh3 complex (Yan et al., 1997[Yan, H., Süss-Fink, G., Neels, A. & Stoeckli-Evans, H. (1997). J. Chem. Soc. Dalton Trans. pp. 4345-4350.]). The C—O and C—C bond lengths of the oxalate ligand show good agreement with those observed in (oxalato)ruthenium complexes in both the presence and absence of an η6-arene ligand. The data shown in Table 5[link] indicate that the presence of an η6-arene narrows the O—Ru—O angle, as observed in oxalate dimeric complexes, whereas in the case of monomeric complexes, the presence of an η6-arene ligand increases the Ru—O bond lengths. The geometry of compound (II)[link] therefore shows closer agreement with that of a monomeric complex than the dimeric species. However, it is unclear why the monomeric species has formed. The average Ru—N(pyridyl) bond length from 119 Ru(η6-arene)(PPh3) structures in the CSD is 2.12 (3) Å (range 2.054–2.189 Å), showing good agreement with that observed in (II)[link]. The Ru—C bond lengths are in the range 2.164 (3)–2.218 (3) Å, with the longest bond lying trans to the pyridyl N atom. The distance between the RuII ion and the least-squares plane of the p-cymene aromatic ring is 1.6650 (11) Å.

The presence of the two carboxylic acid groups on opposite sides of the pyridine ring in (II)[link] allows the formation of hydrogen-bonded tapes, propagating in the [101] direction (Table 4[link] and Fig. 3[link]). Each CO2H group forms an O—H⋯O hydrogen bond to a terminal O atom of an oxalate ligand in a neighbouring complex. Close packing of the chains is aided by the alternation of the bulky p-cymene ligands above and below the hydrogen-bonded tapes.

We are continuing our work towards the synthesis and structural characterization of dimeric [{Ru(η6-p-cymene)}2(μ-oxalato)L2]n+ complexes containing monodentate ligands L bearing hydrogen-bonding groups, with the aim of creating extended supramolecular arrays.

[Figure 1]
Figure 1
A view of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the minor disorder component have been omitted for clarity. The η6-binding mode of the p-cymene ligands is represented by heavy dashed lines between the Ru atoms and the centroids of the aromatic ring. [Symmetry code: (i) -x+1, -y, -z+1.]
[Figure 2]
Figure 2
A view of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those of hydroxyl groups, have been omitted for clarity. The η6-binding mode of the p-cymene ligand is represented by a heavy dashed line between the Ru atom and the centroid of the aromatic ring.
[Figure 3]
Figure 3
A packing plot, showing the close-packing of two hydrogen-bonded tapes of (II)[link], viewed along the crystallographic c axis (a axis horizontal). Hydrogen bonds are shown as thin dashed lines. The η6-binding mode of the p-cymene ligands is represented by heavy dashed lines between the Ru atoms and the centroids of the aromatic ring. [Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+1.]

Experimental

[RuCl2(η6-p-cymene)]2 was prepared from RuCl3·xH2O according to the literature method of Bennett et al. (1982[Bennett, M. A., Huang, T.-N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74-78.]). {Ru(η6-p-cymene)}2(μ-oxalato)Cl2 was prepared using a method adapted from the literature (Yan et al., 1997[Yan, H., Süss-Fink, G., Neels, A. & Stoeckli-Evans, H. (1997). J. Chem. Soc. Dalton Trans. pp. 4345-4350.]). To a stirred solution of [RuCl2(η6-p-cymene)]2 (300 mg, 0.490 mmol) in dichloro­methane (20 ml) at room temperature was added sodium oxalate (66 mg, 0.49 mmol) in H2O (5 ml). The resulting biphasic mixture was stirred vigorously for 4 h, producing a red-to-yellow colour change. The organic layer was separated and the aqueous layer was extracted with dichloro­methane (3 × 10 ml). The organic extracts were combined, dried (Na2SO4), filtered and evaporated to dryness to produce an orange solid (280 mg, 91%). Spectroscopic data for {Ru(η6-p-cymene)}2(μ-oxal­ato)Cl2 were identical to those determined previously (Yan et al., 1997[Yan, H., Süss-Fink, G., Neels, A. & Stoeckli-Evans, H. (1997). J. Chem. Soc. Dalton Trans. pp. 4345-4350.]).

For the preparation of compound (I)[link], AgBF4 (19 mg, 0.098 mmol, 2 equivalents) was added to a stirred solution of {Ru(η6-p-cymene)}2(μ-oxalato)Cl2 (30 mg, 0.048 mmol) in acetone (10 ml) at room temperature under N2. After stirring for 18 h, the AgCl precipitate was removed by filtration through a pad of Celite and PPh3 (25 mg, 0.095 mmol, 2 equivalents) was added to the resulting yellow solution. Following further stirring for 6 h at room temperature, the yellow–orange solution was evaporated to dryness, yielding an orange solid (51 mg, 91%). The sample was observed to decompose at temperatures in excess of 503 K. X-ray quality crystals of (I)[link] were grown by the slow diffusion of Et2O vapour into an MeOH–dichloro­methane (approximately 1:1) solution of (I)[link]. IR (KBr, νmax, cm−1): 3077 and 3062 (Ar C—H), 2967, 2926 and 2863 (sp3 C—H), 1621 (CO2), 1482, 1471 and 1438 (sp3 C—H), 1082 and 1060 (BF4), 910, 862, 754, 698 (Ar C—H), 531, 509 and 488. Other spectroscopic data were found to be identical to those of the previously reported trifluoro­methane­sulfonate salt (Yan et al., 1997[Yan, H., Süss-Fink, G., Neels, A. & Stoeckli-Evans, H. (1997). J. Chem. Soc. Dalton Trans. pp. 4345-4350.]).

For the preparation of compound (II)[link], AgBF4 (46 mg, 0.24 mmol, 2 equivalents) was added to a stirred solution of {Ru(η6-p-cymene)}2(μ-oxalato)Cl2 (75 mg, 0.12 mmol) in acetone (10 ml) at room temperature under N2. After stirring for 6 h, the AgCl precipitate was removed by filtration through a pad of Celite and pyridine-3,5-dicarboxylic acid (40 mg, 0.24 mmol, 2 equivalents) was added to the resulting yellow solution. After stirring for a further 18 h at room temperature, the yellow–orange solution was evaporated to dryness. One X-ray quality crystal of (II)[link] was grown by the slow evaporation of a methanolic solution of the crude reaction mixture.

Compound (I)[link]

Crystal data
  • [Ru2(C2O4)(C10H14)2(C18H15P)2](BF4)2

  • Mr = 1256.74

  • Monoclinic, P 21 /c

  • a = 9.4503 (6) Å

  • b = 16.8493 (10) Å

  • c = 16.8539 (10) Å

  • β = 95.815 (2)°

  • V = 2669.9 (3) Å3

  • Z = 2

  • Dx = 1.563 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6070 reflections

  • θ = 2.4–28.0°

  • μ = 0.70 mm−1

  • T = 150 (2) K

  • Needle, red

  • 0.59 × 0.09 × 0.05 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • ω rotation scans with narrow frames

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.683, Tmax = 0.966

  • 22839 measured reflections

  • 6006 independent reflections

  • 4296 reflections with I > 2σ(I)

  • Rint = 0.050

  • θmax = 27.5°

  • h = −12 → 12

  • k = −21 → 20

  • l = −21 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.082

  • S = 1.03

  • 6006 reflections

  • 374 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0204P)2 + 4.902P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Ru1—C1 2.184 (3)
Ru1—C2 2.238 (4)
Ru1—C3 2.256 (3)
Ru1—C4 2.204 (3)
Ru1—C5 2.187 (3)
Ru1—C6 2.185 (3)
Ru1—P1 2.3713 (10)
Ru1—O1 2.137 (2)
Ru1—O2 2.131 (2)
O1—C29 1.252 (4)
O2—C29i 1.258 (4)
C29—C29i 1.530 (6)
P1—Ru1—O1 91.69 (7) 
P1—Ru1—O2 87.34 (7)
O1—Ru1—O2 77.16 (8)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯F2ii 0.95 2.56 3.354 (7) 141
C20—H20⋯F4iii 0.95 2.87 3.481 (10) 124
C21—H21⋯F1iii 0.95 2.45 3.358 (5) 159
C24—H24⋯F2 0.95 2.52 3.305 (8) 140
C27—H27⋯F1iv 0.95 2.65 3.479 (5) 146
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, [-y+{\script{1\over 2}}], [z+{\script{1\over 2}}].

Compound (II)[link]

Crystal data
  • [Ru(C2O4)(C10H14)(C7H5NO4)]

  • Mr = 490.42

  • Triclinic, [P \overline 1]

  • a = 7.8754 (5) Å

  • b = 9.0005 (6) Å

  • c = 13.6905 (9) Å

  • α = 98.647 (2)°

  • β = 106.062 (2)°

  • γ = 90.165 (2)°

  • V = 920.92 (10) Å3

  • Z = 2

  • Dx = 1.769 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4500 reflections

  • θ = 2.3–28.2°

  • μ = 0.90 mm−1

  • T = 150 (2) K

  • Block, yellow

  • 0.24 × 0.22 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • ω rotation scans with narrow frames

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.813, Tmax = 0.931

  • 7288 measured reflections

  • 3583 independent reflections

  • 3166 reflections with I > 2σ(I)

  • Rint = 0.019

  • θmax = 26.0°

  • h = −9 → 9

  • k = −11 → 11

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.061

  • S = 1.07

  • 3583 reflections

  • 267 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0239P)2 + 0.8593P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.35 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

Ru1—C1 2.199 (3)
Ru1—C2 2.175 (3)
Ru1—C3 2.185 (3)
Ru1—C4 2.218 (3)
Ru1—C5 2.165 (3)
Ru1—C6 2.164 (3)
Ru1—O1 2.0798 (18)
Ru1—O4 2.0827 (17)
Ru1—N1 2.131 (2)
C11—O1 1.278 (3)
C11—O2 1.229 (3)
C11—C12 1.552 (3)
C12—O3 1.234 (3)
C12—O4 1.273 (3)
C18—O5 1.317 (3)
C18—O6 1.205 (3)
C19—O7 1.319 (3)
C19—O8 1.207 (3)
O1—Ru1—O4 78.70 (7) 
O1—Ru1—N1 83.27 (7)
O4—Ru1—N1 83.63 (7)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O3i 0.84 1.76 2.563 (3) 160
O7—H7⋯O2ii 0.84 1.77 2.613 (2) 179
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+1.

Table 5
Statistics (Å, °) from a CSD search for (oxalato)ruthenium complexes

Fragment Ru—O C—O C—C(ox) O—Ru—O Ru—C
(i) 2.097–2.182 1.24–1.27 1.532–1.551 77.0–79.8  
  [2.13 (2)] [1.255 (8)] [1.539 (8)] [78.6 (11)]  
(ii) 2.100–2.142 1.240–1.271 1.518–1.555 77.8–78.2 2.137–2.191
  [2.126 (11)] [1.255 (7)] [1.535 (15)] [77.92 (13)] [2.168 (16)]
(iii) 2.079–2.084 1.221–1.300 1.549 78.6 2.190–2.223
  [2.081 (14)] [1.25 (4)]     [2.206 (11)]
(iv) 2.011–2.108 1.162–1.389 1.500–1.572 78.4–83.6  
  [2.05 (3)] [1.25 (4)] [1.544 (17)] [80.8 (12)]  
Notes: search carried out using CSD (Version 5.27, plus one update, January 2006; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Value ranges are shown, with mean averages in square brackets directly below. In the search for the Ru(κ2-ox) fragment, the terminal O atoms of the oxalate ligands were restrained to be bonded to only one atom each. Fragments: (i) Ru(κ4-ox)Ru, four structures; (ii) (Ar)Ru(κ4-ox)Ru(Ar), four structures; (iii) (Ar)Ru(κ2-ox), one structure; (iv) Ru(κ2-ox), 13 structures. Structures containing η6-arene ligands were omitted from the searches for Ru(κ4-ox)Ru and Ru(κ2-ox) fragments. Abbreviations: ox = oxalate and Ar = η6-arene.

All H atoms in title compounds (I)[link] and (II)[link] were placed in geometrically calculated positions and refined using a riding model, with C—H distances in the range 0.95–1.00 Å and O—H distances of 0.84 Å. Uiso(H) values were set at 1.2Ueq(C) for aryl and methine H atoms, 1.5Ueq(C) for methyl H atoms and 1.5Ueq(O) for carboxyl H atoms. The tetrafluoroborate anion in (I)[link] was found to be disordered and was modelled as disordered over two sets of positions bearing one coincident B—F bond [major refined occupancy = 65.0 (17)%]. Restraints were applied to the anisotropic displacement parameters of the B and F atoms.

The data sets were truncated at 2θ = 55° for (I)[link] and at 2θ = 52° for (II)[link], as only statistically insignificant data were present above these limits.

For both compounds, data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Using a synthetic method first introduced by Winkhaus & Singer (1967) and later adapted by others (Iwata & Ogata, 1973; Bennett & Smith, 1974; Bennett et al., 1982), the reaction of cyclo-1,3-hexadienes with RuCl3.xH2O via a reductive dehydrogenation reaction in EtOH–H2O mixed solvent affords air-stable [Ru(η6-arene)Cl2]2 chloro-bridged dimer complexes. These dimeric starting materials can be reacted with a wide variety of ligands, resulting in mononuclear half-sandwich `piano-stool' complexes (Bennett & Smith, 1974; Maitlis, 1981). Such ruthenium(η6-arene) complexes have been shown to have both stoichiometric (Pigge & Coniglio, 2001) and catalytic (Ogo et al., 2002; Hafner et al., 1997; Akiyama & Kobayashi, 2002) applications in organic chemistry. More recently, ruthenium(η6-arene) complexes have been shown to exhibit antibacterial, antiviral and anticancer properties (Allardyce et al., 2003; Morris et al., 2001; Wang et al., 2002).

Yan and co-workers have investigated the synthesis of dimeric ruthenium(η6-arene) complexes. The oxalate C2O42− ligand replaces the bridging Cl ligands upon reaction with [Ru(η6-p-cymene)Cl2]2, producing the dimeric compound {Ru(η6-p-cymene)}2(µ-oxalato)Cl2 (Yan et al., 1997). The Cl anions of this compound can be displaced by PPh3, producing the cation [{Ru(η6-p-cymene)}2(µ-oxalato)(PPh3)2]2+, and may also be removed upon reaction with Ag+ salts before addition of a monodentate ligand. This latter reaction was used to synthesize the `molecular box', [{Ru(η6-p-cymene)}4(µ-oxalato)2(µ-4,4'-bipy)2]4+. Our investigations have continued from this work, with the aim of introducing ligands bearing hydrogen-bonding functionality to the [{Ru(η6-arene)}2(µ-oxalate)]2+ fragment. Initial reactions introduced PPh3 to the system through the prior removal of the Cl anions using Ag+ salts, allowing the crystallization of the [{Ru(η6-p-cymene)}2(µ-oxalato)(PPh3)2]2+ cation as its BF4 salt, (I). [Yan et al. (1997) synthesized the cation as its trifluoromethanesulfonate salt, but did not crystallographically characterize the compound.] The reaction of {Ru(η6-p-cymene)}2(µ-oxalato)Cl2 with Ag+, followed by addition of the monodentate ligand pyridine-3,5-dicarboxylic acid, resulted in an ambiguous mixture of compounds (spectroscopic data were inconclusive). However, one crystal was grown from the recrystallization of the mixture, from which the structure of Ru(η6-p-cymene)(oxalato-κ2O,O')(pyridine-3,5-dicarboxylic acid), (II), was determined, rather than the intended dimeric compound [{Ru(η6-p-cymene)}2(µ-oxalato)(pyridine-3,5-dicarboxylic acid)2][BF4]2.

Compound (I), [{Ru(η6-p-cymene)}2(µ-oxalato)(PPh3)2](BF4)2, [Ru2(C2O4)(C10H14)2(C18H15P)2](BF4)2, has the cation positioned on an inversion centre (Fig. 1). The compound represents only the fifth oxalate-bridged ruthenium(η6-arene) complex to be structurally characterized to date. The original four complexes were characterized by Yan et al. (1997), with Cl (two conformational isomers), methanol and 4,4'-bipy ligands filling the remaining coordination sites of the RuII ions.

The geometry of the cation in (I) is summarized in Table 1. Table 5 shows the results of a search of the Cambridge Structural Database (CSD; Version 5.27 plus one update, January 2006; Allen, 2002) for ruthenium(oxalato) complexes in the presence and absence of η6-arene ligands. The bond lengths within the oxalate ligand are in good agreement with the results of the CSD survey, with little difference observed in the C—C and C—O bond lengths whether an η6 ligand is present or not. Ru—-O bond lengths appear to be slightly shorter in the presence of an η6-arene ligand, and the O—Ru—O angle slightly narrower, whereas in the case of (I), the Ru—O bond lengths are longer than the averages in Table 5 and the O—Ru—O angle narrower still. This is presumably due to the steric and electronic effects of the PPh3 ligand. The average Ru—P bond length from 60 Ru(η6-arene)(PPh3) structures in the CSD is 2.35 (3) Å [range 2.262–2.404 Å], showing good agreement with that observed in (I).

The Ru—-C bond lengths in (I) [2.184 (3)–2.256 (3) Å] are average to long compared with the search statistics (Table 5). Complexes containing η6-arene and phosphine ligands have been shown to demonstrate the trans bond-weakening influence, in which the Ru—C bonds positioned trans to the phosphine group are elongated with respect to the others (Bennett et al., 1972; Elsegood & Tocher, 1995). The trans influence is observed in compound (I), where atoms C2 and C3, having the longest Ru—C bond lengths within the η6-coordination of the arene ligand, lie trans to the phosphine ligand. The distance between the RuII ion and the least-squares plane of the p-cymene aromatic ring is 1.6971 (13) Å. The cations and anions are linked together into a three-dimensional structure through a series of weak C—H···F hydrogen bonds (Table 2).

Compound (II), Ru(η6-p-cymene)(oxalato-κ2O,O')(pyridine-3,5-dicarboxylic acid), [Ru(C2O4)(C10H14)(C7H5NO4)], crystallizes with the asymmetric unit comprising one formula unit (Fig. 2). The compound represents only the second Ru(η6-arene)(oxalato-κ2O,O')L complex [L is a monodentate ligand] to be structurally characterized to date, the other being an η6-p-cymene–PPh3 complex (Yan et al., 1997). The C—O and C—C bond lengths of the oxalate ligand show good agreement with those observed in Ru(oxalato-κ2O,O') complexes in both the presence and absence of an η6-arene ligand. The data shown in Table 5 indicate that the presence of an η6-arene narrows the O—Ru—O angle, as observed in oxalate dimeric complexes, whereas in the case of monomeric complexes, the presence of an η6-arene ligand increases the Ru—O bond lengths. The geometry of compound (II) therefore shows closer agreement with that of a monomeric complex than the dimeric species. However, it is unclear why the monomeric species has formed. The average Ru—N(pyridyl) bond length from 119 Ru(η6-arene)(PPh3) structures in the CSD is 2.12 (3) Å [range 2.054–2.189 Å], showing good agreement with that observed in (II). The Ru—C bond lengths are in the range 2.164 (3)–2.218 (3) Å, with the longest bond lying trans to the pyridyl N atom. The distance between the RuII ion and the least-squares plane of the p-cymene aromatic ring is 1.6650 (11) Å.

The presence of the two carboxylic acid groups on opposite sides of the pyridine ring in (II) allows the formation of hydrogen-bonded tapes, propagating in the [101] direction (Table 4 and Fig. 3). Each CO2H group forms an O—H···O hydrogen bond to a terminal O atom of an oxalate ligand in a neighbouring complex. Close packing of the chains is aided by the alternation of the bulky p-cymene ligands above and below the hydrogen-bonded tapes.

We are continuing our work towards the synthesis and structural characterization of dimeric [{Ru(η6-p-cymene)}2(µ-oxalato)L2]n+ complexes containing monodentate ligands L bearing hydrogen-bonding groups, with the aim of creating extended supramolecular arrays.

Experimental top

[Ru(η6-p-cymene)Cl2]2 was prepared from RuCl3.xH2O using the literature method of Bennett et al. (1982). {Ru(η6-p-cymene)}2(µ-oxalato)Cl2 was prepared using a method adapted from the literature (Yan et al., 1997). To a stirred solution of [Ru(η6-p-cymene)Cl2]2 (300 mg, 0.490 mmol) in dichloromethane (20 ml) at room temperature was added sodium oxalate (66 mg, 0.49 mmol) in H2O (5 ml). The resulting biphasic mixture was stirred vigorously for 4 h, producing a red to yellow colour change. The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 × 10 ml). The organic extracts were combined, dried (Na2SO4), filtered and evaporated to dryness to produce an orange solid (280 mg, 91%). Spectroscopic data for {Ru(η6-p-cymene)}2(µ-oxalato)Cl2 were identical to those determined previously (Yan et al., 1997).

Compound (I) was prepared as follows. To a stirred solution of {Ru(η6-p-cymene)}2(µ-oxalato)Cl2 (30 mg, 0.048 mmol) in acetone (10 ml) at room temperature under N2 was added AgBF4 (19 mg, 0.098 mmol, 2 equivalents). After stirring for 18 h, the AgCl precipitate was removed by filtration through a pad of Cellite and PPh3 (25 mg, 0.095 mmol, 2 equivalents) was added to the resulting yellow solution. Following further stirring for 6 h at room temperature, the yellow–orange solution was evaporated to dryness, yielding an orange solid (51 mg, 91%). The sample was observed to decompose at temperatures in excess of 503 K. X-ray quality crystals of (I) were grown by the slow diffusion of Et2O vapour into an MeOH–dichloromethane (Ratio?) solution of (I). Spectroscopic analysis: IR (KBr, νmax, cm−1): 3077 and 3062 (Ar C—H), 2967, 2926 and 2863 (sp3 C—H), 1621 (CO2), 1482, 1471 and 1438 (sp3 C—H), 1082 and 1060 (BF4), 910, 862, 754, 698 (Ar C—H), 531, 509 and 488. Other spectroscopic data were found to be identical to the previously reported trifluoromethanesulfonate salt (Yan et al., 1997).

Compound (II) was prepared as follows. To a stirred solution of {Ru(η6-p-cymene)}2(µ-oxalato)Cl2 (75 mg, 0.12 mmol) in acetone (10 ml) at room temperature under N2 was added AgBF4 (46 mg, 0.24 mmol, 2 equivalents). After stirring for 6 h, the AgCl precipitate was removed by filtration through a pad of Cellite and pyridine-3,5-dicarboxylic acid (40 mg, 0.24 mmol, 2 equivalents) was added to the resulting yellow solution. After stirring for a further 18 h at room temperature, the yellow–orange solution was evaporated to dryness. One X-ray quality crystal of (II) was grown by the slow evaporation of a methanolic solution of the crude reaction mixture.

Refinement top

All H atoms in (I) and (II) were placed in geometrically calculated positions and refined using a riding model, with C—H distances in the range 0.95–1.00 Å and O—H distances of 0.84 Å. Uiso(H) values were set at 1.2Ueq(C) for aryl and methine H atoms, 1.5Ueq(C) for methyl H atoms and 1.5Ueq(O) for carboxyl H atoms. The BF4 anion in (I) was found to be disordered and was modelled as disordered over two sets of positions bearing one coincident B—F bond [major refined occupancy 65.0 (17)%]. Restraints were applied to the anisotropic displacement parameters of the B and F atoms.

The data sets were truncated at 2θ = 55° for (I) and 2θ = 52° for (II), as only statistically insignificant data were present above these limits.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001; data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the minor disorder component have been omitted for clarity. The η6 binding mode of the p-cymene ligands is represented by heavy dashed lines between the Ru atoms and the centroids of the aromatic ring.
[Figure 2] Fig. 2. A view of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those of hydroxyl groups, have been omitted for clarity. Hydrogen bonds are shown as thin dashed lines [Not shown - do you wish to add them?]. The η6 binding mode of the p-cymene ligand is represented by a heavy dashed line between the Ru atom and the centroid of the aromatic ring.
[Figure 3] Fig. 3. A packing plot, showing the close-packing of two hydrogen-bonded tapes of (II), viewed along the crystallographic c axis (a axis horizontal). Hydrogen bonds are shown as thin dashed lines. The η6 binding mode of the p-cymene ligands is represented by heavy dashed lines between the Ru atoms and the centroids of the aromatic ring.
(I) µ-oxalato-κ2O1,O2:κ2O1',O2'-bis[(η6-p- cymene)(triphenylphosphine-κP)ruthenium(II)] bis(tetrafluoroborate) top
Crystal data top
[Ru2(C2O4)(C10H14)2(C18H15P)2](BF4)2F(000) = 1276
Mr = 1256.74Dx = 1.563 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6070 reflections
a = 9.4503 (6) Åθ = 2.4–28.0°
b = 16.8493 (10) ŵ = 0.70 mm1
c = 16.8539 (10) ÅT = 150 K
β = 95.815 (2)°Needle, red
V = 2669.9 (3) Å30.59 × 0.09 × 0.05 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6006 independent reflections
Radiation source: sealed tube4296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω rotation scans with narrow framesθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.683, Tmax = 0.966k = 2120
22839 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0204P)2 + 4.902P]
where P = (Fo2 + 2Fc2)/3
6006 reflections(Δ/σ)max = 0.001
374 parametersΔρmax = 0.65 e Å3
124 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ru2(C2O4)(C10H14)2(C18H15P)2](BF4)2V = 2669.9 (3) Å3
Mr = 1256.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.4503 (6) ŵ = 0.70 mm1
b = 16.8493 (10) ÅT = 150 K
c = 16.8539 (10) Å0.59 × 0.09 × 0.05 mm
β = 95.815 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6006 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4296 reflections with I > 2σ(I)
Tmin = 0.683, Tmax = 0.966Rint = 0.050
22839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036124 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.03Δρmax = 0.65 e Å3
6006 reflectionsΔρmin = 0.49 e Å3
374 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.33559 (3)0.124801 (17)0.432671 (16)0.01831 (8)
C10.3579 (4)0.1778 (2)0.3163 (2)0.0234 (8)
C20.3072 (4)0.0990 (2)0.3018 (2)0.0248 (8)
H20.35690.06460.26960.030*
C30.1866 (4)0.0716 (2)0.3338 (2)0.0262 (8)
H30.15420.01900.32270.031*
C40.1107 (3)0.1217 (2)0.3831 (2)0.0229 (7)
C50.1549 (4)0.2012 (2)0.3933 (2)0.0240 (8)
H50.10180.23640.42280.029*
C60.2778 (4)0.2295 (2)0.3601 (2)0.0237 (8)
H60.30600.28330.36740.028*
C70.4919 (4)0.2042 (2)0.2842 (2)0.0323 (9)
H7A0.47430.21160.22640.048*
H7B0.56580.16390.29580.048*
H7C0.52360.25450.30930.048*
C80.0218 (4)0.0912 (2)0.4160 (2)0.0279 (8)
H80.01230.03230.42180.033*
C90.0459 (4)0.1251 (3)0.4975 (2)0.0357 (9)
H9A0.03720.11400.53550.054*
H9B0.13040.10050.51630.054*
H9C0.06010.18260.49310.054*
C100.1468 (4)0.1078 (3)0.3531 (2)0.0381 (10)
H10A0.15700.16520.34520.057*
H10B0.23440.08630.37120.057*
H10C0.12900.08250.30270.057*
P10.40163 (10)0.20593 (6)0.54533 (5)0.0220 (2)
C110.5281 (4)0.2834 (2)0.5250 (2)0.0269 (8)
C120.5316 (4)0.3573 (2)0.5639 (2)0.0354 (10)
H120.46580.36790.60160.042*
C130.6294 (4)0.4147 (3)0.5481 (3)0.0407 (10)
H130.63070.46430.57500.049*
C140.7253 (4)0.3998 (2)0.4933 (3)0.0383 (10)
H140.79030.43990.48110.046*
C150.7269 (4)0.3267 (2)0.4561 (2)0.0358 (10)
H150.79540.31590.42000.043*
C160.6277 (4)0.2685 (2)0.4717 (2)0.0293 (9)
H160.62840.21850.44560.035*
C170.4916 (4)0.1524 (2)0.6302 (2)0.0271 (8)
C180.4171 (5)0.0979 (2)0.6727 (2)0.0334 (9)
H180.32280.08330.65330.040*
C190.4800 (6)0.0650 (3)0.7429 (2)0.0455 (12)
H190.42690.03090.77360.055*
C200.6213 (6)0.0823 (3)0.7682 (3)0.0523 (14)
H200.66460.06000.81640.063*
C210.6986 (5)0.1312 (3)0.7240 (3)0.0469 (12)
H210.79650.14040.74020.056*
C220.6347 (4)0.1672 (2)0.6557 (2)0.0348 (9)
H220.68820.20210.62610.042*
C230.2546 (4)0.2606 (2)0.5828 (2)0.0248 (8)
C240.2032 (4)0.3279 (2)0.5399 (2)0.0302 (8)
H240.24770.34460.49460.036*
C250.0885 (4)0.3703 (3)0.5627 (2)0.0386 (10)
H250.05540.41600.53350.046*
C260.0218 (4)0.3461 (3)0.6281 (3)0.0404 (11)
H260.05640.37530.64420.048*
C270.0697 (4)0.2794 (3)0.6698 (2)0.0346 (9)
H270.02270.26190.71390.042*
C280.1861 (4)0.2372 (2)0.6478 (2)0.0297 (9)
H280.21900.19190.67770.036*
O10.3214 (2)0.02224 (13)0.50606 (14)0.0205 (5)
O20.5482 (2)0.08096 (13)0.44486 (14)0.0220 (5)
C290.4346 (3)0.0165 (2)0.5177 (2)0.0191 (7)
B10.0686 (4)0.4199 (3)0.3249 (2)0.0468 (11)
F10.0164 (3)0.34405 (15)0.32956 (17)0.0584 (8)
F20.1955 (6)0.4273 (4)0.3704 (5)0.0671 (18)0.650 (17)
F30.0827 (10)0.4342 (5)0.2451 (2)0.0788 (19)0.650 (17)
F40.0363 (7)0.4698 (3)0.3467 (7)0.092 (2)0.650 (17)
F2X0.2147 (5)0.4151 (6)0.3432 (10)0.058 (3)0.350 (17)
F3X0.0356 (15)0.4526 (7)0.2516 (5)0.078 (3)0.350 (17)
F4X0.0151 (18)0.4639 (5)0.3842 (8)0.092 (3)0.350 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01734 (13)0.01696 (13)0.02020 (14)0.00074 (12)0.00018 (9)0.00211 (12)
C10.0234 (18)0.0263 (19)0.0199 (18)0.0003 (15)0.0012 (14)0.0068 (15)
C20.0238 (19)0.0283 (19)0.0217 (18)0.0046 (15)0.0010 (14)0.0003 (15)
C30.028 (2)0.0208 (18)0.028 (2)0.0009 (15)0.0073 (15)0.0013 (15)
C40.0176 (16)0.0222 (17)0.0274 (18)0.0018 (15)0.0045 (13)0.0049 (16)
C50.0243 (18)0.0231 (18)0.0238 (19)0.0058 (15)0.0025 (14)0.0014 (15)
C60.0260 (19)0.0199 (18)0.0238 (19)0.0009 (15)0.0042 (15)0.0052 (15)
C70.033 (2)0.038 (2)0.026 (2)0.0018 (18)0.0054 (16)0.0068 (17)
C80.0233 (19)0.028 (2)0.032 (2)0.0017 (16)0.0019 (16)0.0012 (17)
C90.034 (2)0.039 (2)0.034 (2)0.007 (2)0.0071 (17)0.001 (2)
C100.0209 (19)0.059 (3)0.033 (2)0.0050 (19)0.0009 (16)0.000 (2)
P10.0216 (5)0.0220 (5)0.0220 (5)0.0004 (4)0.0000 (4)0.0004 (4)
C110.0252 (19)0.0262 (19)0.028 (2)0.0072 (15)0.0027 (15)0.0009 (16)
C120.039 (2)0.030 (2)0.037 (2)0.0051 (17)0.0037 (18)0.0058 (17)
C130.043 (3)0.030 (2)0.048 (3)0.0114 (19)0.004 (2)0.008 (2)
C140.033 (2)0.032 (2)0.048 (3)0.0113 (18)0.0063 (19)0.0054 (19)
C150.027 (2)0.044 (3)0.036 (2)0.0051 (18)0.0002 (17)0.0074 (19)
C160.028 (2)0.030 (2)0.030 (2)0.0025 (16)0.0018 (16)0.0011 (17)
C170.032 (2)0.0276 (19)0.0211 (19)0.0082 (16)0.0005 (15)0.0031 (15)
C180.046 (2)0.028 (2)0.027 (2)0.0059 (18)0.0036 (18)0.0015 (16)
C190.082 (4)0.032 (2)0.023 (2)0.016 (2)0.007 (2)0.0000 (18)
C200.087 (4)0.039 (3)0.026 (2)0.028 (3)0.019 (2)0.007 (2)
C210.053 (3)0.041 (3)0.041 (2)0.023 (2)0.020 (2)0.013 (2)
C220.034 (2)0.035 (2)0.033 (2)0.0089 (18)0.0062 (17)0.0085 (18)
C230.0235 (18)0.0236 (19)0.027 (2)0.0010 (15)0.0023 (15)0.0072 (15)
C240.032 (2)0.028 (2)0.030 (2)0.0009 (17)0.0002 (16)0.0029 (17)
C250.041 (2)0.031 (2)0.041 (2)0.009 (2)0.0034 (19)0.007 (2)
C260.035 (2)0.045 (3)0.041 (3)0.0112 (19)0.0006 (19)0.015 (2)
C270.027 (2)0.048 (3)0.029 (2)0.0005 (18)0.0020 (16)0.0070 (19)
C280.0254 (19)0.032 (2)0.031 (2)0.0003 (16)0.0010 (16)0.0034 (17)
O10.0153 (11)0.0210 (12)0.0249 (13)0.0015 (10)0.0005 (10)0.0055 (10)
O20.0196 (12)0.0203 (13)0.0262 (13)0.0032 (10)0.0018 (10)0.0059 (10)
C290.0172 (16)0.0195 (17)0.0204 (17)0.0018 (14)0.0007 (13)0.0019 (14)
B10.047 (2)0.037 (2)0.056 (2)0.009 (2)0.005 (2)0.011 (2)
F10.0522 (16)0.0348 (13)0.083 (2)0.0016 (12)0.0174 (15)0.0144 (13)
F20.069 (3)0.069 (3)0.059 (4)0.028 (3)0.016 (2)0.003 (3)
F30.063 (4)0.108 (4)0.066 (3)0.010 (3)0.005 (2)0.040 (3)
F40.088 (4)0.064 (3)0.124 (5)0.030 (3)0.009 (4)0.028 (3)
F2X0.050 (3)0.049 (5)0.074 (6)0.003 (3)0.003 (4)0.009 (5)
F3X0.054 (6)0.090 (5)0.086 (4)0.016 (5)0.004 (4)0.059 (4)
F4X0.113 (6)0.065 (4)0.103 (5)0.036 (5)0.029 (5)0.011 (5)
Geometric parameters (Å, º) top
Ru1—C12.184 (3)C13—H130.9500
Ru1—C22.238 (4)C13—C141.381 (6)
Ru1—C32.256 (3)C14—H140.9500
Ru1—C42.204 (3)C14—C151.382 (6)
Ru1—C52.187 (3)C15—H150.9500
Ru1—C62.185 (3)C15—C161.400 (5)
Ru1—P12.3713 (10)C16—H160.9500
Ru1—O12.137 (2)C17—C181.399 (5)
Ru1—O22.131 (2)C17—C221.399 (5)
C1—C21.425 (5)C18—H180.9500
C1—C61.409 (5)C18—C191.385 (5)
C1—C71.495 (5)C19—H190.9500
C2—H20.9500C19—C201.391 (7)
C2—C31.388 (5)C20—H200.9500
C3—H30.9500C20—C211.371 (7)
C3—C41.427 (5)C21—H210.9500
C4—C51.408 (5)C21—C221.384 (6)
C4—C81.510 (5)C22—H220.9500
C5—H50.9500C23—C241.405 (5)
C5—C61.422 (5)C23—C281.385 (5)
C6—H60.9500C24—H240.9500
C7—H7A0.9800C24—C251.384 (5)
C7—H7B0.9800C25—H250.9500
C7—H7C0.9800C25—C261.386 (6)
C8—H81.0000C26—H260.9500
C8—C91.526 (5)C26—C271.377 (6)
C8—C101.532 (5)C27—H270.9500
C9—H9A0.9800C27—C281.391 (5)
C9—H9B0.9800C28—H280.9500
C9—H9C0.9800O1—C291.252 (4)
C10—H10A0.9800O2—C29i1.258 (4)
C10—H10B0.9800C29—C29i1.530 (6)
C10—H10C0.9800B1—F11.375 (6)
P1—C111.825 (4)B1—F21.363 (4)
P1—C171.826 (4)B1—F31.385 (4)
P1—C231.832 (4)B1—F41.378 (4)
C11—C121.406 (5)B1—F2X1.386 (4)
C11—C161.388 (5)B1—F3X1.360 (4)
C12—H120.9500B1—F4X1.381 (4)
C12—C131.382 (5)
C1—Ru1—C237.57 (13)H9A—C9—H9B109.5
C1—Ru1—C366.97 (13)H9A—C9—H9C109.5
C1—Ru1—C481.15 (13)H9B—C9—H9C109.5
C1—Ru1—C568.28 (13)C8—C10—H10A109.5
C1—Ru1—C637.63 (13)C8—C10—H10B109.5
C1—Ru1—P1116.19 (10)C8—C10—H10C109.5
C1—Ru1—O1150.20 (12)H10A—C10—H10B109.5
C1—Ru1—O293.02 (11)H10A—C10—H10C109.5
C2—Ru1—C335.99 (13)H10B—C10—H10C109.5
C2—Ru1—C466.85 (13)Ru1—P1—C11112.73 (12)
C2—Ru1—C578.63 (13)Ru1—P1—C17113.99 (12)
C2—Ru1—C666.82 (13)Ru1—P1—C23114.76 (12)
C2—Ru1—P1153.75 (10)C11—P1—C17103.77 (17)
C2—Ru1—O1113.91 (11)C11—P1—C23103.81 (17)
C2—Ru1—O292.60 (11)C17—P1—C23106.71 (17)
C3—Ru1—C437.31 (13)P1—C11—C12122.1 (3)
C3—Ru1—C566.39 (13)P1—C11—C16119.4 (3)
C3—Ru1—C678.75 (13)C12—C11—C16118.4 (3)
C3—Ru1—P1156.15 (10)C11—C12—H12119.5
C3—Ru1—O192.03 (11)C11—C12—C13121.0 (4)
C3—Ru1—O2116.45 (11)H12—C12—C13119.5
C4—Ru1—C537.41 (13)C12—C13—H13120.1
C4—Ru1—C668.30 (13)C12—C13—C14119.9 (4)
C4—Ru1—P1118.87 (10)H13—C13—C14120.1
C4—Ru1—O194.91 (11)C13—C14—H14119.9
C4—Ru1—O2153.09 (12)C13—C14—C15120.2 (4)
C5—Ru1—C637.97 (13)H14—C14—C15119.9
C5—Ru1—P192.19 (10)C14—C15—H15120.0
C5—Ru1—O1123.96 (11)C14—C15—C16120.0 (4)
C5—Ru1—O2158.87 (11)H15—C15—C16120.0
C6—Ru1—P190.78 (10)C11—C16—C15120.4 (4)
C6—Ru1—O1161.88 (11)C11—C16—H16119.8
C6—Ru1—O2120.90 (11)C15—C16—H16119.8
P1—Ru1—O191.69 (7)P1—C17—C18120.5 (3)
P1—Ru1—O287.34 (7)P1—C17—C22120.8 (3)
O1—Ru1—O277.16 (8)C18—C17—C22118.7 (4)
Ru1—C1—C273.3 (2)C17—C18—H18119.8
Ru1—C1—C671.20 (19)C17—C18—C19120.4 (4)
Ru1—C1—C7127.5 (2)H18—C18—C19119.8
C2—C1—C6118.5 (3)C18—C19—H19120.2
C2—C1—C7119.8 (3)C18—C19—C20119.6 (5)
C6—C1—C7121.7 (3)H19—C19—C20120.2
Ru1—C2—C169.2 (2)C19—C20—H20119.8
Ru1—C2—H2131.6C19—C20—C21120.5 (4)
Ru1—C2—C372.7 (2)H20—C20—C21119.8
C1—C2—H2119.4C20—C21—H21119.9
C1—C2—C3121.2 (3)C20—C21—C22120.2 (4)
H2—C2—C3119.4H21—C21—C22119.9
Ru1—C3—C271.3 (2)C17—C22—C21120.3 (4)
Ru1—C3—H3132.9C17—C22—H22119.8
Ru1—C3—C469.37 (19)C21—C22—H22119.8
C2—C3—H3119.7P1—C23—C24117.6 (3)
C2—C3—C4120.7 (3)P1—C23—C28124.1 (3)
H3—C3—C4119.7C24—C23—C28118.1 (3)
Ru1—C4—C373.32 (19)C23—C24—H24119.6
Ru1—C4—C570.64 (19)C23—C24—C25120.9 (4)
Ru1—C4—C8132.2 (2)H24—C24—C25119.6
C3—C4—C5118.2 (3)C24—C25—H25120.0
C3—C4—C8119.8 (3)C24—C25—C26120.1 (4)
C5—C4—C8121.7 (3)H25—C25—C26120.0
Ru1—C5—C471.96 (19)C25—C26—H26120.2
Ru1—C5—H5130.3C25—C26—C27119.6 (4)
Ru1—C5—C670.93 (19)H26—C26—C27120.2
C4—C5—H5119.5C26—C27—H27119.7
C4—C5—C6121.0 (3)C26—C27—C28120.6 (4)
H5—C5—C6119.5H27—C27—C28119.7
Ru1—C6—C171.17 (19)C23—C28—C27120.8 (4)
Ru1—C6—C571.10 (19)C23—C28—H28119.6
Ru1—C6—H6130.4C27—C28—H28119.6
C1—C6—C5120.1 (3)Ru1—O1—C29114.2 (2)
C1—C6—H6119.9Ru1—O2—C29i114.8 (2)
C5—C6—H6119.9O1—C29—O2i126.4 (3)
C1—C7—H7A109.5O1—C29—C29i117.4 (4)
C1—C7—H7B109.5O2i—C29—C29i116.2 (4)
C1—C7—H7C109.5F1—B1—F2110.7 (4)
H7A—C7—H7B109.5F1—B1—F3106.8 (4)
H7A—C7—H7C109.5F1—B1—F4106.2 (4)
H7B—C7—H7C109.5F1—B1—F2X106.7 (5)
C4—C8—H8107.7F1—B1—F3X112.3 (5)
C4—C8—C9114.1 (3)F1—B1—F4X107.3 (5)
C4—C8—C10107.0 (3)F2—B1—F3111.4 (4)
H8—C8—C9107.7F2—B1—F4114.2 (4)
H8—C8—C10107.7F3—B1—F4107.2 (4)
C9—C8—C10112.3 (3)F2X—B1—F3X110.9 (5)
C8—C9—H9A109.5F2X—B1—F4X107.4 (5)
C8—C9—H9B109.5F3X—B1—F4X111.9 (5)
C8—C9—H9C109.5
C2—Ru1—C1—C6129.0 (3)C7—C1—C6—C5176.7 (3)
C2—Ru1—C1—C7115.0 (4)Ru1—C5—C6—C153.6 (3)
C3—Ru1—C1—C227.2 (2)C4—C5—C6—Ru153.8 (3)
C3—Ru1—C1—C6101.8 (2)C4—C5—C6—C10.2 (5)
C3—Ru1—C1—C7142.2 (4)C1—Ru1—C6—C5132.6 (3)
C4—Ru1—C1—C263.2 (2)C2—Ru1—C6—C131.04 (19)
C4—Ru1—C1—C665.7 (2)C2—Ru1—C6—C5101.6 (2)
C4—Ru1—C1—C7178.3 (3)C3—Ru1—C6—C166.7 (2)
C5—Ru1—C1—C299.8 (2)C3—Ru1—C6—C565.9 (2)
C5—Ru1—C1—C629.2 (2)C4—Ru1—C6—C1104.2 (2)
C5—Ru1—C1—C7145.2 (4)C4—Ru1—C6—C528.4 (2)
C6—Ru1—C1—C2129.0 (3)C5—Ru1—C6—C1132.6 (3)
C6—Ru1—C1—C7116.0 (4)P1—Ru1—C6—C1134.86 (19)
P1—Ru1—C1—C2178.85 (17)P1—Ru1—C6—C592.55 (19)
P1—Ru1—C1—C652.2 (2)O1—Ru1—C6—C1127.3 (3)
P1—Ru1—C1—C763.8 (3)O1—Ru1—C6—C55.3 (5)
O1—Ru1—C1—C221.2 (3)O2—Ru1—C6—C147.5 (2)
O1—Ru1—C1—C6150.1 (2)O2—Ru1—C6—C5179.91 (18)
O1—Ru1—C1—C793.9 (4)Ru1—C4—C8—C953.9 (5)
O2—Ru1—C1—C290.3 (2)Ru1—C4—C8—C10178.8 (3)
O2—Ru1—C1—C6140.7 (2)C3—C4—C8—C9148.1 (3)
O2—Ru1—C1—C724.7 (3)C3—C4—C8—C1087.0 (4)
Ru1—C1—C2—C353.0 (3)C5—C4—C8—C938.1 (5)
C6—C1—C2—Ru156.9 (3)C5—C4—C8—C1086.8 (4)
C6—C1—C2—C33.9 (5)C1—Ru1—P1—C1124.05 (17)
C7—C1—C2—Ru1124.1 (3)C1—Ru1—P1—C17142.00 (17)
C7—C1—C2—C3177.1 (3)C1—Ru1—P1—C2394.51 (17)
C1—Ru1—C2—C3134.3 (3)C2—Ru1—P1—C1122.5 (3)
C3—Ru1—C2—C1134.3 (3)C2—Ru1—P1—C17140.4 (2)
C4—Ru1—C2—C1106.4 (2)C2—Ru1—P1—C2396.1 (2)
C4—Ru1—C2—C327.9 (2)C3—Ru1—P1—C11116.0 (3)
C5—Ru1—C2—C169.0 (2)C3—Ru1—P1—C17126.0 (3)
C5—Ru1—C2—C365.3 (2)C3—Ru1—P1—C232.5 (3)
C6—Ru1—C2—C131.09 (19)C4—Ru1—P1—C11118.38 (17)
C6—Ru1—C2—C3103.2 (2)C4—Ru1—P1—C17123.66 (17)
P1—Ru1—C2—C12.3 (3)C4—Ru1—P1—C230.18 (17)
P1—Ru1—C2—C3136.6 (2)C5—Ru1—P1—C1190.85 (16)
O1—Ru1—C2—C1168.68 (18)C5—Ru1—P1—C17151.20 (17)
O1—Ru1—C2—C357.0 (2)C5—Ru1—P1—C2327.71 (16)
O2—Ru1—C2—C191.6 (2)C6—Ru1—P1—C1152.89 (16)
O2—Ru1—C2—C3134.1 (2)C6—Ru1—P1—C17170.84 (17)
Ru1—C2—C3—C450.7 (3)C6—Ru1—P1—C2365.67 (16)
C1—C2—C3—Ru151.4 (3)O1—Ru1—P1—C11145.07 (14)
C1—C2—C3—C40.7 (5)O1—Ru1—P1—C1727.11 (15)
C1—Ru1—C3—C228.3 (2)O1—Ru1—P1—C2396.37 (15)
C1—Ru1—C3—C4106.4 (2)O2—Ru1—P1—C1168.01 (15)
C2—Ru1—C3—C4134.7 (3)O2—Ru1—P1—C1749.95 (15)
C4—Ru1—C3—C2134.7 (3)O2—Ru1—P1—C23173.43 (15)
C5—Ru1—C3—C2103.6 (2)Ru1—P1—C11—C12149.1 (3)
C5—Ru1—C3—C431.0 (2)Ru1—P1—C11—C1633.2 (3)
C6—Ru1—C3—C265.8 (2)C17—P1—C11—C1287.1 (3)
C6—Ru1—C3—C468.8 (2)C17—P1—C11—C1690.6 (3)
P1—Ru1—C3—C2131.3 (2)C23—P1—C11—C1224.3 (4)
P1—Ru1—C3—C43.4 (4)C23—P1—C11—C16158.0 (3)
O1—Ru1—C3—C2129.9 (2)P1—C11—C12—C13179.3 (3)
O1—Ru1—C3—C495.4 (2)C16—C11—C12—C131.6 (6)
O2—Ru1—C3—C253.2 (2)C11—C12—C13—C140.2 (6)
O2—Ru1—C3—C4172.10 (18)C12—C13—C14—C152.2 (6)
Ru1—C3—C4—C556.4 (3)C13—C14—C15—C162.5 (6)
Ru1—C3—C4—C8129.6 (3)P1—C11—C16—C15179.1 (3)
C2—C3—C4—Ru151.5 (3)C12—C11—C16—C151.3 (5)
C2—C3—C4—C54.8 (5)C14—C15—C16—C110.7 (6)
C2—C3—C4—C8178.9 (3)Ru1—P1—C17—C1869.2 (3)
C1—Ru1—C4—C363.3 (2)Ru1—P1—C17—C22113.1 (3)
C1—Ru1—C4—C565.6 (2)C11—P1—C17—C18167.9 (3)
C1—Ru1—C4—C8178.7 (4)C11—P1—C17—C229.8 (3)
C2—Ru1—C4—C327.0 (2)C23—P1—C17—C1858.6 (3)
C2—Ru1—C4—C5101.9 (2)C23—P1—C17—C22119.1 (3)
C2—Ru1—C4—C8142.4 (4)P1—C17—C18—C19171.7 (3)
C3—Ru1—C4—C5128.9 (3)C22—C17—C18—C196.0 (5)
C3—Ru1—C4—C8115.4 (4)C17—C18—C19—C204.4 (6)
C5—Ru1—C4—C3128.9 (3)C18—C19—C20—C210.3 (6)
C5—Ru1—C4—C8115.7 (4)C19—C20—C21—C223.3 (6)
C6—Ru1—C4—C3100.1 (2)C20—C21—C22—C171.6 (6)
C6—Ru1—C4—C528.8 (2)P1—C17—C22—C21174.7 (3)
C6—Ru1—C4—C8144.5 (4)C18—C17—C22—C213.0 (6)
P1—Ru1—C4—C3178.43 (17)Ru1—P1—C23—C2476.3 (3)
P1—Ru1—C4—C549.5 (2)Ru1—P1—C23—C2899.8 (3)
P1—Ru1—C4—C866.2 (4)C11—P1—C23—C2447.1 (3)
O1—Ru1—C4—C386.9 (2)C11—P1—C23—C28136.7 (3)
O1—Ru1—C4—C5144.2 (2)C17—P1—C23—C24156.4 (3)
O1—Ru1—C4—C828.5 (4)C17—P1—C23—C2827.5 (4)
O2—Ru1—C4—C315.8 (4)P1—C23—C24—C25177.3 (3)
O2—Ru1—C4—C5144.7 (2)C28—C23—C24—C250.9 (5)
O2—Ru1—C4—C899.6 (4)C23—C24—C25—C260.6 (6)
Ru1—C4—C5—C653.4 (3)C24—C25—C26—C270.5 (6)
C3—C4—C5—Ru157.7 (3)C25—C26—C27—C281.5 (6)
C3—C4—C5—C64.4 (5)P1—C23—C28—C27176.1 (3)
C8—C4—C5—Ru1128.3 (3)C24—C23—C28—C270.0 (5)
C8—C4—C5—C6178.3 (3)C26—C27—C28—C231.2 (6)
C1—Ru1—C5—C4104.4 (2)C1—Ru1—O1—C2969.3 (3)
C1—Ru1—C5—C628.9 (2)C2—Ru1—O1—C2983.2 (2)
C2—Ru1—C5—C466.6 (2)C3—Ru1—O1—C29112.8 (2)
C2—Ru1—C5—C666.7 (2)C4—Ru1—O1—C29150.1 (2)
C3—Ru1—C5—C431.0 (2)C5—Ru1—O1—C29175.4 (2)
C3—Ru1—C5—C6102.4 (2)C6—Ru1—O1—C29171.5 (3)
C4—Ru1—C5—C6133.3 (3)P1—Ru1—O1—C2990.8 (2)
C6—Ru1—C5—C4133.3 (3)O2—Ru1—O1—C293.9 (2)
P1—Ru1—C5—C4138.21 (19)C1—Ru1—O2—C29i147.3 (2)
P1—Ru1—C5—C688.5 (2)C2—Ru1—O2—C29i109.6 (2)
O1—Ru1—C5—C444.7 (2)C3—Ru1—O2—C29i81.5 (3)
O1—Ru1—C5—C6178.01 (18)C4—Ru1—O2—C29i70.9 (3)
O2—Ru1—C5—C4133.5 (3)C5—Ru1—O2—C29i174.2 (3)
O2—Ru1—C5—C60.2 (4)C6—Ru1—O2—C29i174.0 (2)
Ru1—C1—C6—C553.6 (3)P1—Ru1—O2—C29i96.6 (2)
C2—C1—C6—Ru157.9 (3)O1—Ru1—O2—C29i4.3 (2)
C2—C1—C6—C54.3 (5)Ru1—O1—C29—O2i176.2 (3)
C7—C1—C6—Ru1123.1 (3)Ru1—O1—C29—C29i3.1 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···F2ii0.952.563.354 (7)141
C20—H20···F4iii0.952.873.481 (10)124
C21—H21···F1iii0.952.453.358 (5)159
C24—H24···F20.952.523.305 (8)140
C27—H27···F1iv0.952.653.479 (5)146
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.
(II) (η6-p-cymene)(oxalato-κ2O,O')(pyridine-3,5-dicarboxylic acid-κN)ruthenium(II) top
Crystal data top
[Ru(C2O4)(C10H14)(C7H5NO4)]Z = 2
Mr = 490.42F(000) = 496
Triclinic, P1Dx = 1.769 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8754 (5) ÅCell parameters from 4500 reflections
b = 9.0005 (6) Åθ = 2.3–28.2°
c = 13.6905 (9) ŵ = 0.90 mm1
α = 98.647 (2)°T = 150 K
β = 106.062 (2)°Block, yellow
γ = 90.165 (2)°0.24 × 0.22 × 0.08 mm
V = 920.92 (10) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3583 independent reflections
Radiation source: sealed tube3166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω rotation scans with narrow framesθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.813, Tmax = 0.931k = 1111
7288 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0239P)2 + 0.8593P]
where P = (Fo2 + 2Fc2)/3
3583 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ru(C2O4)(C10H14)(C7H5NO4)]γ = 90.165 (2)°
Mr = 490.42V = 920.92 (10) Å3
Triclinic, P1Z = 2
a = 7.8754 (5) ÅMo Kα radiation
b = 9.0005 (6) ŵ = 0.90 mm1
c = 13.6905 (9) ÅT = 150 K
α = 98.647 (2)°0.24 × 0.22 × 0.08 mm
β = 106.062 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3583 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3166 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.931Rint = 0.019
7288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.07Δρmax = 0.53 e Å3
3583 reflectionsΔρmin = 0.35 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.29652 (3)0.41996 (2)0.277818 (16)0.01838 (7)
C10.5543 (4)0.5420 (3)0.3145 (2)0.0242 (6)
C20.4587 (4)0.6070 (3)0.3809 (2)0.0265 (6)
H20.51190.61930.45310.032*
C30.2837 (4)0.6552 (3)0.3432 (2)0.0274 (6)
H30.22220.69780.39060.033*
C40.2015 (4)0.6409 (3)0.2380 (2)0.0259 (6)
C50.2971 (4)0.5719 (3)0.1695 (2)0.0277 (6)
H5A0.24280.55870.09730.033*
C60.4694 (4)0.5233 (3)0.2063 (2)0.0261 (6)
H60.52970.47780.15910.031*
C70.7349 (4)0.4860 (3)0.3566 (2)0.0322 (7)
H7A0.76040.49160.43140.048*
H7B0.82320.54840.34110.048*
H7C0.73910.38140.32510.048*
C80.0159 (4)0.6972 (3)0.2026 (2)0.0324 (7)
H80.04710.68000.25430.039*
C90.0937 (4)0.6190 (4)0.0988 (3)0.0484 (9)
H9A0.03940.63980.04560.073*
H9B0.21350.65620.08420.073*
H9C0.09920.51030.09910.073*
C100.0306 (4)0.8676 (3)0.2040 (3)0.0416 (8)
H10A0.09720.91670.27290.062*
H10B0.08810.90690.18590.062*
H10C0.09220.88820.15390.062*
C110.0625 (3)0.2622 (3)0.3593 (2)0.0203 (5)
O10.2117 (2)0.3358 (2)0.39064 (13)0.0212 (4)
O20.0100 (2)0.2039 (2)0.41382 (14)0.0257 (4)
C120.0278 (3)0.2487 (3)0.24200 (19)0.0199 (5)
O30.1779 (2)0.1889 (2)0.20626 (13)0.0243 (4)
O40.0621 (2)0.3030 (2)0.19029 (13)0.0213 (4)
N10.4069 (3)0.2050 (2)0.26029 (16)0.0192 (5)
C130.3741 (3)0.1182 (3)0.16743 (19)0.0192 (5)
H130.29900.15330.10920.023*
C140.4469 (3)0.0214 (3)0.15422 (19)0.0194 (5)
C150.5597 (3)0.0711 (3)0.23877 (19)0.0190 (5)
H150.61390.16470.23120.023*
C160.5922 (3)0.0173 (3)0.33444 (19)0.0186 (5)
C170.5117 (3)0.1532 (3)0.3420 (2)0.0211 (5)
H170.53150.21250.40810.025*
C180.3995 (3)0.1201 (3)0.05076 (19)0.0201 (5)
O50.2810 (3)0.0594 (2)0.01839 (14)0.0297 (5)
H50.24960.12040.07360.045*
O60.4640 (3)0.2395 (2)0.03542 (14)0.0300 (5)
C190.7106 (3)0.0262 (3)0.4311 (2)0.0210 (6)
O70.8020 (3)0.1446 (2)0.41301 (14)0.0256 (4)
H70.87000.16220.46880.038*
O80.7187 (3)0.0420 (2)0.51527 (14)0.0310 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01972 (11)0.01526 (11)0.01747 (11)0.00189 (8)0.00127 (8)0.00161 (8)
C10.0224 (14)0.0150 (13)0.0327 (16)0.0011 (11)0.0045 (12)0.0027 (11)
C20.0302 (15)0.0157 (13)0.0283 (15)0.0024 (11)0.0020 (12)0.0014 (11)
C30.0275 (15)0.0167 (13)0.0363 (17)0.0023 (11)0.0086 (13)0.0004 (12)
C40.0252 (14)0.0150 (13)0.0372 (16)0.0012 (11)0.0060 (12)0.0085 (11)
C50.0326 (16)0.0225 (14)0.0264 (15)0.0048 (12)0.0027 (12)0.0101 (12)
C60.0287 (15)0.0221 (14)0.0293 (15)0.0009 (12)0.0108 (12)0.0042 (12)
C70.0262 (15)0.0267 (15)0.0399 (18)0.0044 (12)0.0052 (13)0.0014 (13)
C80.0296 (16)0.0264 (15)0.0423 (18)0.0057 (12)0.0069 (14)0.0151 (13)
C90.0348 (18)0.0394 (19)0.058 (2)0.0081 (15)0.0083 (17)0.0077 (17)
C100.0362 (18)0.0280 (17)0.061 (2)0.0107 (14)0.0107 (16)0.0133 (16)
C110.0219 (13)0.0161 (12)0.0190 (13)0.0063 (10)0.0002 (11)0.0010 (10)
O10.0205 (9)0.0228 (9)0.0168 (9)0.0003 (8)0.0006 (7)0.0012 (7)
O20.0243 (10)0.0320 (11)0.0203 (10)0.0020 (8)0.0022 (8)0.0100 (8)
C120.0224 (14)0.0150 (12)0.0186 (13)0.0026 (10)0.0019 (11)0.0016 (10)
O30.0234 (10)0.0279 (10)0.0180 (9)0.0018 (8)0.0019 (8)0.0001 (8)
O40.0216 (9)0.0211 (9)0.0179 (9)0.0007 (8)0.0000 (8)0.0031 (7)
N10.0202 (11)0.0174 (11)0.0180 (11)0.0013 (9)0.0019 (9)0.0031 (9)
C130.0198 (13)0.0176 (13)0.0180 (13)0.0002 (10)0.0017 (10)0.0025 (10)
C140.0215 (13)0.0201 (13)0.0171 (13)0.0009 (10)0.0059 (11)0.0035 (10)
C150.0192 (13)0.0183 (13)0.0190 (13)0.0004 (10)0.0046 (10)0.0023 (10)
C160.0190 (13)0.0180 (13)0.0176 (13)0.0002 (10)0.0029 (10)0.0035 (10)
C170.0241 (14)0.0204 (13)0.0164 (13)0.0000 (11)0.0030 (11)0.0005 (10)
C180.0219 (13)0.0192 (13)0.0179 (13)0.0004 (11)0.0040 (11)0.0015 (10)
O50.0355 (11)0.0263 (10)0.0178 (10)0.0070 (9)0.0048 (9)0.0032 (8)
O60.0395 (12)0.0235 (10)0.0228 (10)0.0093 (9)0.0039 (9)0.0005 (8)
C190.0221 (13)0.0201 (13)0.0201 (14)0.0003 (11)0.0037 (11)0.0051 (11)
O70.0318 (11)0.0228 (10)0.0173 (9)0.0088 (8)0.0016 (8)0.0039 (8)
O80.0394 (12)0.0312 (11)0.0169 (10)0.0110 (9)0.0010 (9)0.0001 (8)
Geometric parameters (Å, º) top
Ru1—C12.199 (3)C9—H9B0.9800
Ru1—C22.175 (3)C9—H9C0.9800
Ru1—C32.185 (3)C10—H10A0.9800
Ru1—C42.218 (3)C10—H10B0.9800
Ru1—C52.165 (3)C10—H10C0.9800
Ru1—C62.164 (3)C11—O11.278 (3)
Ru1—O12.0798 (18)C11—O21.229 (3)
Ru1—O42.0827 (17)C11—C121.552 (3)
Ru1—N12.131 (2)C12—O31.234 (3)
C1—C21.399 (4)C12—O41.273 (3)
C1—C61.430 (4)N1—C131.346 (3)
C1—C71.499 (4)N1—C171.341 (3)
C2—H20.9500C13—H130.9500
C2—C31.425 (4)C13—C141.390 (3)
C3—H30.9500C14—C151.385 (4)
C3—C41.392 (4)C14—C181.504 (3)
C4—C51.433 (4)C15—H150.9500
C4—C81.521 (4)C15—C161.383 (3)
C5—H5A0.9500C16—C171.383 (3)
C5—C61.407 (4)C16—C191.499 (3)
C6—H60.9500C17—H170.9500
C7—H7A0.9800C18—O51.317 (3)
C7—H7B0.9800C18—O61.205 (3)
C7—H7C0.9800O5—H50.8400
C8—H81.0000C19—O71.319 (3)
C8—C91.509 (5)C19—O81.207 (3)
C8—C101.535 (4)O7—H70.8400
C9—H9A0.9800
C1—Ru1—C237.30 (10)H5A—C5—C6119.2
C1—Ru1—C368.50 (10)Ru1—C6—C172.22 (16)
C1—Ru1—C481.36 (10)Ru1—C6—C571.06 (16)
C1—Ru1—C568.64 (10)Ru1—C6—H6129.3
C1—Ru1—C638.25 (10)C1—C6—C5120.3 (3)
C1—Ru1—O1121.34 (9)C1—C6—H6119.8
C1—Ru1—O4159.36 (9)C5—C6—H6119.8
C1—Ru1—N193.34 (9)C1—C7—H7A109.5
C2—Ru1—C338.16 (10)C1—C7—H7B109.5
C2—Ru1—C467.85 (10)C1—C7—H7C109.5
C2—Ru1—C580.01 (11)H7A—C7—H7B109.5
C2—Ru1—C667.82 (11)H7A—C7—H7C109.5
C2—Ru1—O195.80 (9)H7B—C7—H7C109.5
C2—Ru1—O4155.96 (9)C4—C8—H8107.5
C2—Ru1—N1119.25 (9)C4—C8—C9114.7 (3)
C3—Ru1—C436.83 (10)C4—C8—C10108.4 (2)
C3—Ru1—C567.45 (11)H8—C8—C9107.5
C3—Ru1—C680.63 (11)H8—C8—C10107.5
C3—Ru1—O194.19 (9)C9—C8—C10110.8 (3)
C3—Ru1—O4118.30 (9)C8—C9—H9A109.5
C3—Ru1—N1157.10 (9)C8—C9—H9B109.5
C4—Ru1—C538.13 (11)C8—C9—H9C109.5
C4—Ru1—C668.87 (10)H9A—C9—H9B109.5
C4—Ru1—O1117.79 (9)H9A—C9—H9C109.5
C4—Ru1—O493.80 (9)H9B—C9—H9C109.5
C4—Ru1—N1157.96 (9)C8—C10—H10A109.5
C5—Ru1—C637.92 (10)C8—C10—H10B109.5
C5—Ru1—O1155.32 (9)C8—C10—H10C109.5
C5—Ru1—O495.20 (9)H10A—C10—H10B109.5
C5—Ru1—N1120.12 (10)H10A—C10—H10C109.5
C6—Ru1—O1159.38 (9)H10B—C10—H10C109.5
C6—Ru1—O4121.38 (9)O1—C11—O2125.5 (2)
C6—Ru1—N193.75 (9)O1—C11—C12114.7 (2)
O1—Ru1—O478.70 (7)O2—C11—C12119.8 (2)
O1—Ru1—N183.27 (7)Ru1—O1—C11115.59 (16)
O4—Ru1—N183.63 (7)C11—C12—O3119.1 (2)
Ru1—C1—C270.42 (15)C11—C12—O4115.6 (2)
Ru1—C1—C669.53 (15)O3—C12—O4125.3 (2)
Ru1—C1—C7128.26 (19)Ru1—O4—C12114.98 (15)
C2—C1—C6117.7 (2)Ru1—N1—C13121.15 (16)
C2—C1—C7120.4 (3)Ru1—N1—C17120.51 (17)
C6—C1—C7121.8 (3)C13—N1—C17118.3 (2)
Ru1—C2—C172.28 (15)N1—C13—H13119.0
Ru1—C2—H2130.0N1—C13—C14122.0 (2)
Ru1—C2—C371.29 (15)H13—C13—C14119.0
C1—C2—H2119.1C13—C14—C15119.0 (2)
C1—C2—C3121.8 (3)C13—C14—C18120.9 (2)
H2—C2—C3119.1C15—C14—C18120.1 (2)
Ru1—C3—C270.55 (15)C14—C15—H15120.5
Ru1—C3—H3129.6C14—C15—C16119.1 (2)
Ru1—C3—C472.88 (16)H15—C15—C16120.5
C2—C3—H3119.5C15—C16—C17118.6 (2)
C2—C3—C4121.1 (3)C15—C16—C19123.5 (2)
H3—C3—C4119.5C17—C16—C19117.8 (2)
Ru1—C4—C370.29 (15)N1—C17—C16122.9 (2)
Ru1—C4—C568.90 (15)N1—C17—H17118.6
Ru1—C4—C8131.61 (19)C16—C17—H17118.6
C3—C4—C5117.5 (3)C14—C18—O5111.6 (2)
C3—C4—C8118.6 (3)C14—C18—O6122.9 (2)
C5—C4—C8123.9 (3)O5—C18—O6125.6 (2)
Ru1—C5—C472.97 (15)C18—O5—H5109.5
Ru1—C5—H5A129.3C16—C19—O7112.7 (2)
Ru1—C5—C671.02 (15)C16—C19—O8122.4 (2)
C4—C5—H5A119.2O7—C19—O8125.0 (2)
C4—C5—C6121.6 (3)C19—O7—H7109.5
C2—Ru1—C1—C6131.2 (2)C4—Ru1—C5—C6133.2 (2)
C2—Ru1—C1—C7113.9 (3)C6—Ru1—C5—C4133.2 (2)
C3—Ru1—C1—C228.66 (16)O1—Ru1—C5—C415.4 (3)
C3—Ru1—C1—C6102.53 (17)O1—Ru1—C5—C6148.66 (19)
C3—Ru1—C1—C7142.5 (3)O4—Ru1—C5—C489.54 (16)
C4—Ru1—C1—C264.54 (17)O4—Ru1—C5—C6137.22 (16)
C4—Ru1—C1—C666.66 (16)N1—Ru1—C5—C4175.18 (14)
C4—Ru1—C1—C7178.4 (3)N1—Ru1—C5—C651.57 (19)
C5—Ru1—C1—C2101.89 (18)Ru1—C5—C6—C154.9 (2)
C5—Ru1—C1—C629.30 (16)C4—C5—C6—Ru154.9 (2)
C5—Ru1—C1—C7144.3 (3)C4—C5—C6—C10.0 (4)
C6—Ru1—C1—C2131.2 (2)Ru1—C1—C6—C554.4 (2)
C6—Ru1—C1—C7115.0 (3)C2—C1—C6—Ru153.2 (2)
O1—Ru1—C1—C252.83 (18)C2—C1—C6—C51.2 (4)
O1—Ru1—C1—C6175.98 (14)C7—C1—C6—Ru1123.1 (2)
O1—Ru1—C1—C761.0 (3)C7—C1—C6—C5177.5 (3)
O4—Ru1—C1—C2142.2 (2)C1—Ru1—C6—C5132.1 (2)
O4—Ru1—C1—C611.0 (3)C2—Ru1—C6—C129.50 (15)
O4—Ru1—C1—C7103.9 (3)C2—Ru1—C6—C5102.63 (18)
N1—Ru1—C1—C2136.98 (16)C3—Ru1—C6—C167.00 (16)
N1—Ru1—C1—C691.82 (16)C3—Ru1—C6—C565.13 (17)
N1—Ru1—C1—C723.1 (3)C4—Ru1—C6—C1103.30 (17)
Ru1—C1—C2—C353.6 (2)C4—Ru1—C6—C528.83 (17)
C6—C1—C2—Ru152.7 (2)C5—Ru1—C6—C1132.1 (2)
C6—C1—C2—C30.8 (4)O1—Ru1—C6—C19.8 (3)
C7—C1—C2—Ru1123.6 (2)O1—Ru1—C6—C5141.9 (2)
C7—C1—C2—C3177.2 (2)O4—Ru1—C6—C1175.47 (13)
C1—Ru1—C2—C3133.8 (2)O4—Ru1—C6—C552.40 (19)
C3—Ru1—C2—C1133.8 (2)N1—Ru1—C6—C190.64 (15)
C4—Ru1—C2—C1105.47 (18)N1—Ru1—C6—C5137.23 (17)
C4—Ru1—C2—C328.28 (17)Ru1—C4—C8—C965.0 (4)
C5—Ru1—C2—C167.72 (17)Ru1—C4—C8—C10170.6 (2)
C5—Ru1—C2—C366.03 (18)C3—C4—C8—C9153.2 (3)
C6—Ru1—C2—C130.21 (16)C3—C4—C8—C1082.3 (3)
C6—Ru1—C2—C3103.55 (18)C5—C4—C8—C926.0 (4)
O1—Ru1—C2—C1136.84 (16)C5—C4—C8—C1098.5 (3)
O1—Ru1—C2—C389.41 (17)O2—C11—O1—Ru1180.0 (2)
O4—Ru1—C2—C1147.99 (19)C12—C11—O1—Ru10.2 (3)
O4—Ru1—C2—C314.2 (3)C1—Ru1—O1—C11177.54 (17)
N1—Ru1—C2—C151.32 (19)C2—Ru1—O1—C11153.42 (18)
N1—Ru1—C2—C3174.93 (15)C3—Ru1—O1—C11115.15 (18)
Ru1—C2—C3—C454.8 (2)C4—Ru1—O1—C1185.44 (19)
C1—C2—C3—Ru154.0 (2)C5—Ru1—O1—C1174.8 (3)
C1—C2—C3—C40.7 (4)C6—Ru1—O1—C11170.5 (2)
C1—Ru1—C3—C228.07 (16)O4—Ru1—O1—C112.90 (16)
C1—Ru1—C3—C4104.87 (18)N1—Ru1—O1—C1187.72 (17)
C2—Ru1—C3—C4132.9 (3)O1—C11—C12—O3174.9 (2)
C4—Ru1—C3—C2132.9 (3)O1—C11—C12—O44.7 (3)
C5—Ru1—C3—C2102.98 (18)O2—C11—C12—O35.3 (4)
C5—Ru1—C3—C429.96 (16)O2—C11—C12—O4175.1 (2)
C6—Ru1—C3—C265.84 (17)C11—C12—O4—Ru17.1 (3)
C6—Ru1—C3—C467.10 (17)O3—C12—O4—Ru1172.5 (2)
O1—Ru1—C3—C294.05 (17)C1—Ru1—O4—C12172.5 (2)
O1—Ru1—C3—C4133.01 (16)C2—Ru1—O4—C1273.1 (3)
O4—Ru1—C3—C2173.46 (15)C3—Ru1—O4—C1283.07 (19)
O4—Ru1—C3—C453.60 (19)C4—Ru1—O4—C12111.98 (18)
N1—Ru1—C3—C211.4 (3)C5—Ru1—O4—C12150.21 (18)
N1—Ru1—C3—C4144.4 (2)C6—Ru1—O4—C12179.48 (17)
Ru1—C3—C4—C551.8 (2)O1—Ru1—O4—C125.62 (16)
Ru1—C3—C4—C8127.5 (2)N1—Ru1—O4—C1289.99 (17)
C2—C3—C4—Ru153.7 (2)C1—Ru1—N1—C13111.0 (2)
C2—C3—C4—C51.9 (4)C1—Ru1—N1—C1768.8 (2)
C2—C3—C4—C8178.9 (2)C2—Ru1—N1—C13139.29 (19)
C1—Ru1—C4—C365.44 (17)C2—Ru1—N1—C1740.5 (2)
C1—Ru1—C4—C566.23 (17)C3—Ru1—N1—C13147.4 (2)
C1—Ru1—C4—C8176.6 (3)C3—Ru1—N1—C1732.4 (4)
C2—Ru1—C4—C329.23 (17)C4—Ru1—N1—C1335.9 (3)
C2—Ru1—C4—C5102.44 (18)C4—Ru1—N1—C17143.9 (2)
C2—Ru1—C4—C8140.4 (3)C5—Ru1—N1—C1343.8 (2)
C3—Ru1—C4—C5131.7 (2)C5—Ru1—N1—C17135.9 (2)
C3—Ru1—C4—C8111.2 (3)C6—Ru1—N1—C1372.7 (2)
C5—Ru1—C4—C3131.7 (2)C6—Ru1—N1—C17107.1 (2)
C5—Ru1—C4—C8117.2 (3)O1—Ru1—N1—C13127.8 (2)
C6—Ru1—C4—C3102.99 (18)O1—Ru1—N1—C1752.43 (19)
C6—Ru1—C4—C528.68 (16)O4—Ru1—N1—C1348.50 (19)
C6—Ru1—C4—C8145.9 (3)O4—Ru1—N1—C17131.7 (2)
O1—Ru1—C4—C355.53 (18)Ru1—N1—C13—C14179.07 (18)
O1—Ru1—C4—C5172.80 (14)C17—N1—C13—C140.7 (4)
O1—Ru1—C4—C855.6 (3)N1—C13—C14—C151.5 (4)
O4—Ru1—C4—C3134.75 (16)N1—C13—C14—C18176.3 (2)
O4—Ru1—C4—C593.58 (16)C13—C14—C15—C162.0 (4)
O4—Ru1—C4—C823.6 (3)C18—C14—C15—C16175.8 (2)
N1—Ru1—C4—C3142.8 (2)C14—C15—C16—C170.5 (4)
N1—Ru1—C4—C511.2 (3)C14—C15—C16—C19179.4 (2)
N1—Ru1—C4—C8106.0 (3)Ru1—N1—C17—C16177.41 (19)
Ru1—C4—C5—C654.0 (2)C13—N1—C17—C162.4 (4)
C3—C4—C5—Ru152.5 (2)C15—C16—C17—N11.8 (4)
C3—C4—C5—C61.5 (4)C19—C16—C17—N1178.3 (2)
C8—C4—C5—Ru1126.7 (3)C13—C14—C18—O52.6 (3)
C8—C4—C5—C6179.3 (3)C13—C14—C18—O6177.5 (2)
C1—Ru1—C5—C4103.71 (18)C15—C14—C18—O5175.2 (2)
C1—Ru1—C5—C629.54 (16)C15—C14—C18—O64.7 (4)
C2—Ru1—C5—C466.69 (17)C15—C16—C19—O710.3 (4)
C2—Ru1—C5—C666.56 (17)C15—C16—C19—O8169.8 (3)
C3—Ru1—C5—C429.00 (16)C17—C16—C19—O7169.8 (2)
C3—Ru1—C5—C6104.25 (18)C17—C16—C19—O810.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O3i0.841.762.563 (3)160
O7—H7···O2ii0.841.772.613 (2)179
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ru2(C2O4)(C10H14)2(C18H15P)2](BF4)2[Ru(C2O4)(C10H14)(C7H5NO4)]
Mr1256.74490.42
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)150150
a, b, c (Å)9.4503 (6), 16.8493 (10), 16.8539 (10)7.8754 (5), 9.0005 (6), 13.6905 (9)
α, β, γ (°)90, 95.815 (2), 9098.647 (2), 106.062 (2), 90.165 (2)
V3)2669.9 (3)920.92 (10)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.700.90
Crystal size (mm)0.59 × 0.09 × 0.050.24 × 0.22 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Bruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.683, 0.9660.813, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
22839, 6006, 4296 7288, 3583, 3166
Rint0.0500.019
(sin θ/λ)max1)0.6500.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.082, 1.03 0.026, 0.061, 1.07
No. of reflections60063583
No. of parameters374267
No. of restraints1240
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.490.53, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001, SAINT, SHELXTL (Sheldrick, 2000), DIAMOND (Brandenburg, 2001), SHELXTL and local programs.

Selected geometric parameters (Å, º) for (I) top
Ru1—C12.184 (3)Ru1—P12.3713 (10)
Ru1—C22.238 (4)Ru1—O12.137 (2)
Ru1—C32.256 (3)Ru1—O22.131 (2)
Ru1—C42.204 (3)O1—C291.252 (4)
Ru1—C52.187 (3)O2—C29i1.258 (4)
Ru1—C62.185 (3)C29—C29i1.530 (6)
P1—Ru1—O191.69 (7)O1—Ru1—O277.16 (8)
P1—Ru1—O287.34 (7)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C13—H13···F2ii0.952.563.354 (7)140.8
C20—H20···F4iii0.952.873.481 (10)123.6
C21—H21···F1iii0.952.453.358 (5)159.0
C24—H24···F20.952.523.305 (8)139.9
C27—H27···F1iv0.952.653.479 (5)146.2
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Ru1—C12.199 (3)C11—O11.278 (3)
Ru1—C22.175 (3)C11—O21.229 (3)
Ru1—C32.185 (3)C11—C121.552 (3)
Ru1—C42.218 (3)C12—O31.234 (3)
Ru1—C52.165 (3)C12—O41.273 (3)
Ru1—C62.164 (3)C18—O51.317 (3)
Ru1—O12.0798 (18)C18—O61.205 (3)
Ru1—O42.0827 (17)C19—O71.319 (3)
Ru1—N12.131 (2)C19—O81.207 (3)
O1—Ru1—O478.70 (7)O4—Ru1—N183.63 (7)
O1—Ru1—N183.27 (7)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O3i0.841.762.563 (3)160.0
O7—H7···O2ii0.841.772.613 (2)178.5
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.
Statistics from CSD search for ruthenium(oxalate) complexes top
FragmentRu—OC—OC—C(ox)O—Ru—ORu—C
Ru(µ4-ox)Ru2.097–2.1821.24–1.271.532–1.55177.0–79.8
[2.13 (2)][1.255 (8)][1.539 (8)][78.6 (11)]
(Ar)Ru(µ4–ox)Ru(Ar)2.100–2.1421.240–1.2711.518–1.55577.8–78.22.137–2.191
[2.126 (11)][1.255 (7)][1.535 (15)][77.92 (13)][2.168 (16)]
(Ar)Ru(κ2-ox)2.079–2.0841.221–1.3001.54978.62.190–2.223
[2.081 (14)][1.25 (4)][2.206 (11)]
Ru(κ2-ox)2.011–2.1081.162–1.3891.500–1.57278.4–83.6
[2.05 (3)][1.25 (4)][1.544 (17)][80.8 (12)]
Search carried out using CSD Version 5.27 (plus one update, January 2006; Allen, 2002). Value ranges are shown, with mean averages in square brackets directly below. In the search for the Ru(κ2-ox) fragment, the terminal O atoms of the oxalate ligands were restrained to be bonded to only one atom each. Number of structures used in the statistical survey of each fragment: Ru(µ4–ox)Ru four, (Ar)Ru(µ4–ox)Ru(Ar) four, (Ar)Ru(κ2-ox) one and Ru(κ2-ox) 13. Structures containing η6-arene ligands were omitted from the searches for Ru(µ4–ox)Ru and Ru(κ2-ox) fragments. Abbreviations: ox = oxalate, Ar = η6-arene.
 

Acknowledgements

The authors acknowledge the EPSRC for the provision of a studentship (SHD), and Johnson Matthey for the generous loan of RuCl3·xH2O.

References

First citationAkiyama, R. & Kobayashi, S. (2002). Angew. Chem. Int. Ed. 41, 2602–2604.  CrossRef CAS Google Scholar
First citationAllardyce, C. S., Dyson, P. J., Ellis, D. J., Salter, P. A. & Scopelliti, R. (2003). J. Organomet. Chem. 668, 35–42.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBennett, M. A., Huang, T.-N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74–78.  CAS Google Scholar
First citationBennett, M. A., Robertson, G. B. & Smith, A. K. (1972). J. Organomet. Chem. 43, C41–C43.  CSD CrossRef CAS Web of Science Google Scholar
First citationBennett, M. A. & Smith, A. K. (1974). J. Chem. Soc. Dalton Trans. pp. 233–241.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElsegood, M. R. J. & Tocher, D. A. (1995). Polyhedron, 14, 3147–3156.  CSD CrossRef CAS Web of Science Google Scholar
First citationHafner, A., van der Mühlebach, A. & Schaaf, P. A. (1997). Angew. Chem. Int. Ed. Engl. 36, 2121–2124.  CSD CrossRef CAS Web of Science Google Scholar
First citationIwata, R. & Ogata, I. (1973). Tetrahedron, 29, 2753–2758.  CrossRef CAS Web of Science Google Scholar
First citationMaitlis, P. M. (1981). Chem. Soc. Rev. 10, 1–48.  CrossRef CAS Web of Science Google Scholar
First citationMorris, R. E., Aird, R. E., del Socorro Murdoch, P., Chen, H. M., Cummings, J., Hughes, N. D., Parsons, S., Parkin, A., Boyd, G., Jodrell, D. I. & Sadler, P. J. (2001). J. Med. Chem. 44, 3616–3621.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOgo, S., Abura, R. & Watanabe, Y. (2002). Organometallics, 21, 2964–2969.  Web of Science CSD CrossRef CAS Google Scholar
First citationPigge, F. C. & Coniglio, J. J. (2001). Curr. Org. Chem. 5, 757–784.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationWang, F. Y., Chen, H. M., Parkinson, J. A., del Socorro Murdoch, P. & Sadler, P. J. (2002). Inorg. Chem. 41, 4509–4523.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWinkhaus, G. & Singer, H. (1967). J. Organomet. Chem. 7, 487–491.  CrossRef CAS Web of Science Google Scholar
First citationYan, H., Süss-Fink, G., Neels, A. & Stoeckli-Evans, H. (1997). J. Chem. Soc. Dalton Trans. pp. 4345–4350.  CSD CrossRef Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds