Download citation
Download citation
link to html
Mol­ecules of 1,3-dimethyl-7-(4-methyl­phen­yl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione, C16H15N3O2, (I), are linked by paired C—H...O hydrogen bonds to form centrosymmetric R22(10) dimers, which are linked into chains by a single π–π stacking inter­action. A single C—H...O hydrogen bond links the mol­ecules of 7-(biphenyl-4-yl)-1,3-dimethyl­pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione, C21H17N3O2, (II), into C(10) chains, which are weakly linked into sheets by a π–π stacking inter­action. In 7-(4-fluoro­phen­yl)-3-methyl­pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione, C14H10FN3O2, (III), an N—H...O hydrogen bond links the mol­ecules into C(6) chains, which are linked into sheets by a π–π stacking inter­action. The mol­ecules of 7-(4-methoxy­phen­yl)-3-methyl­pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione, C15H13N3O3, (IV), are also linked into C(6) chains by an N—H...O hydrogen bond, but here the chains are linked into sheets by a combination of two independent C—H...π(arene) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109005514/fa3182sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005514/fa3182Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005514/fa3182IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005514/fa3182IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005514/fa3182IVsup5.hkl
Contains datablock IV

CCDC references: 730090; 730091; 730092; 730093

Comment top

Pyrido[2,3-d]pyrimidine heterocycles (also known as 5-deazapteridines) have received considerable attention over the past decade as a result of the wide range of biological activity that they exhibit (Devi et al., 2003; Tu et al., 2008), including for example bronchodilator, vasodilator, antiallergic, cardiotonic, antihypertensive or hepatoprotective activities, as well as for their role in the treatment of proliferative diseases (Devi et al., 2004). As part of a wide-ranging project on the synthesis and characterization of fused pyrimidine systems under solvent-free conditions, we report here the structures of four examples of 7-arylpyrido[2,3-d]pyrimidine derivatives prepared by cyclocondensation reactions between 6-aminopyrimidin-5-carboxaldehydes and acetophenones, utilizing solvent-free fusion reactions promoted by BF3–Et2O catalysis.

While the molecular structures of the pair of compounds 1,3-dimethyl-7-(4-methylphenyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione, (I), and 7-(1,1'-biphenyl-4-yl)-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione, (II) (Figs. 1 and 2), are broadly similar in constitution and very similar in conformation, they exhibit significant differences in their crystal structures, in particular in their space groups and in their pattern of supramolecular aggregation. Similarly, the pair of compounds 7-(4-fluorophenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione, (III), and 7-(4-methoxyphenyl)-3-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione, (IV) (Figs. 3 and 4), which are closely related to (I) and (II), have similar constitutions and conformations, but again they crystallize in different space groups and they exhibit different patterns of supramolecular aggregation. Overall, no two of the compounds reported here crystallize in the same space group or have similar unit-cell dimensions or exhibit the same pattern of direction-specific intermolecular interactions.

The molecular conformations are straightforwardly definable in terms of the interplanar angle between the pyridine ring and the pendent aryl ring (C71–C76), with an additional angle between the two rings of the biphenyl-4-yl substituent in (II) (Table1). These angles indicate that the molecular skeletons do not much deviate from overall planarity, a point emphasized by the very small deviation, 0.012 (5) Å, of the methoxy C atom from the plane of the adjacent aryl ring in (IV). The bond distances and angles show no unexpected values.

In our analysis of the intermolecular interactions, we have discounted all intermolecular contacts involving methyl C—H bonds, on the usual grounds that these bonds are of low acidity, while the rotation about the adjacent C—C bonds of methyl groups bonded to planar rings are hindered by extremely low barriers, typically a few joules per mole (Tannenbaum et al., 1956; Naylor & Wilson, 1957), and so are likely to be undergoing very fast rotation about the adjacent C—C bonds.

In (I), there is a single C—H···O hydrogen bond utilizing a pyridine C—H bond as the donor (Table 2), and this links pairs of molecules into centrosymmetric dimers characterized by an R22(10) (Bernstein et al., 1995) motif. In addition, the pyridine rings of the molecules at (x, y, z) and (-x, -y + 1, -z + 1) are strictly parallel, with an interplanar spacing of 3.439 (2) Å; the corresponding ring-centroid separation is 3.693 (2) Å, with a near-ideal ring-centroid offset of 1.345 (2) Å. The combined effect of these two interactions is to link the molecules into a π-stacked chain of hydrogen-bonded dimers, running parallel to the [010] direction, with R22(10) rings centred at (0, n, 1/2), where n represents an integer, alternating with ππ stacking interactions across (0, n + 1/2, 1/2), where n represents an integer (Fig. 5).

The crystal structure of (II) also contains just one intermolecular C—H···O hydrogen bond, but this now involves an aryl C—H bond as the donor (Table 2), and its effect is to link molecules related by the 21 screw axis along (1/2, y, 3/4) into a C(10) chain running parallel to the [010] direction. The pyridine and phenyl rings in the molecules at (x, y, z) and (-x, -y + 1, -z + 1), respectively, are not parallel, but the dihedral angle between them is only 12.8 (2)°; the ring-centroid separation is 3.718 (2) Å and the interplanar distance is ca 3.53 Å, corresponding to a ring-centroid offset of ca 1.17 Å. Thus, these centrosymmetrically related molecules are weakly linked by the ππ stacking interaction and the overall effect of this is to link the hydrogen-bonded chain into a sheet parallel to (102) (Fig. 6).

In each of (III) and (IV), a single N—H···O hydrogen-bond links the molecules into a C(6) chain. Although the same hydrogen-bond donor and acceptor are utilized in each structure, the construction and orientation of the chains is different. In (III), the chain consists of molecules related by a 21 screw axis parallel to the [010] direction, while the chain in (IV) consists of molecules related by translation along [100]. In addition, the subsequent linking of the chains is different in the two structures. The pyridine ring in the molecule of (III) at (x, y, z) makes angles of 1.1 (2)° with the phenyl ring in each of the molecules at (x + 1/2, -y + 1/2, -z + 1) and (x - 1/2, -y + 1/2, -z + 1), with ring-centroid separations of 3.759 (2) Å and 3.748 (2) Å respectively. The interplanar spacings are ca 3.315 and ca 3.39 Å, respectively, corresponding to ring centroid offsets of ca 1.77 and ca 1.60 Å, respectively. The cooperative action of these two independent stacking interactions along [100] links the hydrogen-bonded chains along [010] into a sheet parallel to (001) (Fig. 7). In the structure of (IV), by contrast, the chains generated by the C—H···O hydrogen bond are linked by two independent C—H···π(arene) hydrogen bonds, both involving the same ring as the acceptor. The C71–C76 ring in the molecule at (x, y, z) acts as a hydrogen-bond acceptor from C72 in the molecule at (x + 1/2, -y, z) and from C75 in the molecule at (x - 1/2, -y + 1, z), so forming a chain running parallel to the [110] direction; the two C—H···π hydrogen bonds lie on opposite faces of the ring, with C···Cg···C and H···Cg···H angles of 179 and 177°, respectively. The combination of the [100] and [110] chains then generates a sheet parallel to (001) (Fig. 8).

In view of the different patterns of supramolecular aggregation found here for (I)–(IV), it is of interest briefly to compare these structures with those of the closely related compounds (V) [Cambridge Structural Database (Allen, 2002) refcode QOQQIW (Sarkhel et al., 2001)] and (VI) (XEBCUD; Wang et al., 2006). The crystal structure of (V) was described (Sarkhel et al., 2001) as containing C—H···O and C—H···Br hydrogen bonds and ππ stacking interactions, although the structural effects of these interactions were not specified. However, it is now well established that Br and Cl bonded to C are both exceptionally poor acceptors of hydrogen bonds, even from O—H and N—H units, so that the C—H···Br contacts in (V) and the C—H···Cl contacts in (VI) are likely to be no more than normal van der Waals contacts (Brammer et al., 2001; Thallypally & Nangia, 2001). Accordingly, the structure of (V) consists of C(10) hydrogen-bonded chains, running parallel to the [001] direction and built from a single C—H···O hydrogen bond; antiparallel pairs of these chains, related by inversion, are linked by the ππ stacking interaction (Fig. 9). The original report on (VI) (Wang et al., 2006) stated that `the crystal structure is stabilized by N—H···O, C—H···O and C—H···Cl hydrogen bonds', but it gave no information as to the actions of these interactions. Re-examination of this structure shows that most of the so-called hydrogen bonds listed by the authors have H···A distances far too long to be of structural significance. In the event, only two hydrogen bonds linking the heterocyclic components are significant, and they link these molecules into chains of centrosymmetric rings running parallel to the [001] direction: the dimethylformamide molecules are pendent from the chain, but they play no other role in the hydrogen bonding. Within the chain, R22(8) rings containing paired N—H···O hydrogen bonds are centred at (0, 0, n), where n represents an integer, and these alternate with R22(16) rings containing paired C—H···O hydrogen bonds, which are centred at (0, 0, 1/2 + n), where n represents an integer (Fig. 10). These chains are further linked by a ππ stacking interaction to form a sheet parallel to (100).

Related literature top

For related literature, see: Allen (2002); Bernstein et al. (1995); Brammer et al. (2001); Devi et al. (2003, 2004); Naylor & Wilson (1957); Sarkhel et al. (2001); Tannenbaum et al. (1956); Thallypally & Nangia (2001); Tu et al. (2008); Wang et al. (2006).

Experimental top

Equimolar quantities of the appropriate 6-aminopyrimidine-5-carboxaldehyde, 6-amino-1,3-dimethyl-5-formylpyrimidine-2,4(1H,3H)-dione for (I) and (II) or 6-amino-2-methoxy-3-methyl-5-formylpyrimidine-4(3H)-one for (III) and (IV), and the appropriate 4-substituted acetophenone 4-RC6H4COCH3, where R is Me for (I), Ph for (II), F for (III) and MeO for (IV), were mixed in the absence of solvent. Three drops of BF3–Et2O were added to each mixture, which was then heated in an oil bath at 443 K for 30 s. The resulting dark-brown liquids were diluted with ethanol and cooled to ambient temperature. The solid products were collected by filtration, washed with ethanol and then recrystallized to give the pure pyrido[2,3-d]pyrimidine derivatives as crystals suitable for single-crystal X-ray diffraction. For (I), yellow solid, crystallized from ethanol/DMF, yield 50%, m.p. 458–460 K; HR–MS found: 281.1159; C16H15N3O2 requires: 281.1164. For (II), yellow solid, purified by column chromatography using chloroform as eluant, and recrystallized from ethanol/DMF, yield 60%, m.p. 506–509 K; HR–MS found: 343.1313; C21H17N3O2 requires: 343.1321. For (III), yellow solid, crystallized form DMF, yield 60%, m.p. 568–570 K; HRMS found: 271.0752; C14H10FN3O2 requires: 271.0757. For (IV), yellow solid, crystallized form DMF, yield 70%, m.p. > 573 K. HR–MS found: 283.0966; C15H13N3O3 requires: 283.0957.

Refinement top

With the exception of the methyl H atoms bonded to C31 in compound (III), all H atoms were clearly located in difference maps. H atoms bonded to C31 in compound (III) were placed in calculated positions, and all H atoms were then treated as riding atoms in geometrically idealized positions. The H atoms bonded to three-connected C atoms in aromatic or heteroaromatic rings were placed along the external bisectors of the ring angles, with C—H distances of 0.95Å and with Uiso(H) = 1.2Ueq(C). H atoms bonded to ring N atoms were placed along the external bisectors of the ring angles, with N—H distances of 0.88Å and with Uiso(H) = 1.2Ueq(N). The methyl groups were all permitted to rotate about the adjacent C—X bonds (X = C or O) but not to tilt, with all of the X—C—H and H—C—H angles held fixed in each such group, and with C—H distances of 0.98Å and with Uiso(H) = 1.5Ueq(C). In the absence of significant resonant scattering, the Friedel-equivalent reflections were merged for compounds (III) and (IV). Hence, the absolute configuration of the molecules in (III), and the correct orientation of the structure of (IV) with respect to the polar-axis direction are both undetermined.

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecular structure of (III), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The molecular structure of (IV), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (I), showing the formation of a chain of π-stacked hydrogen-bonded dimers along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (II), showing the formation of a sheet parallel to (102) built from π-stacked hydrogen-bonded chains along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of (III), showing the formation of a sheet parallel to (001) built from π-stacked hydrogen-bonded chains along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of (IV), showing the formation of a sheet parallel to (001) built from one C—H···O hydrogen bond and two C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 9] Fig. 9. A stereoview of part of the crystal structure of QOQQIW (Sarkhel et al., 2001), showing the formation of a π-stacked pair of C(10) hydrogen-bonded chains. The original atom coordinates have been employed and, for the sale of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 10] Fig. 10. A stereoview of part of the crystal structure of XEBCUD (Wang et al., 2006), showing the formation of a chain of hydrogen-bonded R22(8) and R22(16) rings. The original atom coordinates have been employed and, for the sale of clarity, H atoms not involved in the motifs shown have been omitted, as have the dimethylformamide molecules.
(I) 1,3-dimethyl-7-(4-methylphenyl)pyrido[2,3-d]pyrimidine- 2,4(1H,3H)-dione top
Crystal data top
C16H15N3O2Z = 2
Mr = 281.31F(000) = 296
Triclinic, P1Dx = 1.379 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9953 (5) ÅCell parameters from 2989 reflections
b = 7.9221 (7) Åθ = 3.0–27.6°
c = 12.5140 (13) ŵ = 0.09 mm1
α = 93.466 (4)°T = 120 K
β = 92.993 (6)°Lath, yellow
γ = 101.152 (6)°0.20 × 0.10 × 0.02 mm
V = 677.71 (11) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2989 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.0°
ϕ & ω scansh = 87
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.972, Tmax = 0.998l = 1616
11686 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1083P)2]
where P = (Fo2 + 2Fc2)/3
2989 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H15N3O2γ = 101.152 (6)°
Mr = 281.31V = 677.71 (11) Å3
Triclinic, P1Z = 2
a = 6.9953 (5) ÅMo Kα radiation
b = 7.9221 (7) ŵ = 0.09 mm1
c = 12.5140 (13) ÅT = 120 K
α = 93.466 (4)°0.20 × 0.10 × 0.02 mm
β = 92.993 (6)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2989 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1699 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.998Rint = 0.080
11686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
2989 reflectionsΔρmin = 0.35 e Å3
193 parameters
Special details top

Experimental. Mass spectrum: MS (70 eV) m/z (%) = 281 (M+, 100), 252 (51), 169 (50). HR—MS found 281.1159 ?

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3482 (3)0.6338 (3)0.60948 (16)0.0213 (5)
C20.3500 (3)0.5603 (3)0.7078 (2)0.0228 (6)
N30.2804 (3)0.3826 (3)0.70606 (16)0.0228 (5)
C40.2060 (3)0.2754 (3)0.6160 (2)0.0228 (6)
C4A0.2009 (3)0.3606 (3)0.5157 (2)0.0207 (6)
C50.1232 (3)0.2714 (3)0.4197 (2)0.0240 (6)
H50.07040.15120.41710.029*
C60.1235 (3)0.3597 (3)0.3271 (2)0.0240 (6)
H60.06810.30150.26080.029*
C70.2066 (3)0.5360 (3)0.33295 (19)0.0197 (5)
N80.2799 (3)0.6237 (3)0.42589 (16)0.0215 (5)
C8A0.2751 (3)0.5372 (3)0.51497 (19)0.0198 (6)
C110.4114 (4)0.8209 (3)0.6093 (2)0.0282 (6)
H11A0.51500.84750.55960.042*
H11B0.46100.86860.68170.042*
H11C0.30040.87200.58640.042*
O20.4081 (3)0.6462 (2)0.79085 (15)0.0318 (5)
C310.2855 (4)0.3030 (3)0.8091 (2)0.0286 (7)
H31A0.15470.28280.83620.043*
H31B0.37670.38030.86100.043*
H31C0.32860.19290.79880.043*
O40.1474 (2)0.1207 (2)0.62202 (15)0.0305 (5)
C710.2153 (3)0.6379 (3)0.2370 (2)0.0221 (6)
C720.2021 (3)0.5621 (3)0.1334 (2)0.0268 (6)
H720.18510.44030.12230.032*
C730.2133 (4)0.6624 (4)0.0456 (2)0.0302 (6)
H730.20520.60800.02470.036*
C740.2361 (3)0.8400 (3)0.0589 (2)0.0277 (6)
C750.2518 (3)0.9174 (3)0.1621 (2)0.0275 (6)
H750.26981.03940.17250.033*
C760.2415 (3)0.8183 (3)0.2511 (2)0.0238 (6)
H760.25220.87320.32140.029*
C770.2436 (4)0.9479 (4)0.0370 (2)0.0353 (7)
H77A0.31960.90210.09140.053*
H77B0.30551.06750.01450.053*
H77C0.11060.94410.06720.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0243 (10)0.0185 (11)0.0216 (12)0.0056 (8)0.0012 (8)0.0007 (9)
C20.0219 (12)0.0248 (14)0.0229 (15)0.0064 (10)0.0025 (10)0.0032 (11)
N30.0233 (10)0.0241 (12)0.0238 (12)0.0090 (9)0.0044 (8)0.0076 (9)
C40.0219 (12)0.0232 (14)0.0252 (15)0.0069 (10)0.0080 (10)0.0048 (11)
C4A0.0163 (11)0.0205 (13)0.0261 (15)0.0041 (9)0.0041 (9)0.0036 (11)
C50.0210 (12)0.0191 (13)0.0321 (15)0.0037 (10)0.0043 (10)0.0023 (11)
C60.0233 (12)0.0226 (14)0.0243 (15)0.0008 (10)0.0008 (10)0.0005 (11)
C70.0151 (11)0.0231 (14)0.0217 (14)0.0051 (9)0.0022 (9)0.0017 (11)
N80.0198 (10)0.0238 (12)0.0216 (12)0.0052 (9)0.0028 (8)0.0023 (9)
C8A0.0174 (11)0.0218 (14)0.0212 (14)0.0060 (10)0.0012 (9)0.0018 (11)
C110.0344 (14)0.0219 (14)0.0280 (16)0.0050 (11)0.0026 (11)0.0008 (11)
O20.0411 (11)0.0333 (11)0.0219 (11)0.0095 (8)0.0014 (8)0.0027 (9)
C310.0301 (14)0.0326 (16)0.0247 (16)0.0060 (12)0.0039 (11)0.0127 (12)
O40.0342 (10)0.0214 (11)0.0370 (12)0.0047 (8)0.0073 (8)0.0090 (8)
C710.0179 (12)0.0265 (14)0.0216 (14)0.0031 (10)0.0009 (9)0.0045 (11)
C720.0254 (13)0.0260 (15)0.0280 (16)0.0038 (10)0.0007 (10)0.0001 (12)
C730.0300 (14)0.0383 (17)0.0209 (15)0.0046 (12)0.0012 (10)0.0015 (12)
C740.0221 (13)0.0332 (16)0.0279 (16)0.0040 (11)0.0004 (10)0.0091 (12)
C750.0251 (13)0.0263 (15)0.0312 (16)0.0040 (11)0.0014 (10)0.0066 (12)
C760.0208 (12)0.0281 (15)0.0217 (14)0.0027 (10)0.0005 (9)0.0023 (11)
C770.0350 (15)0.0439 (18)0.0298 (17)0.0107 (13)0.0049 (12)0.0126 (14)
Geometric parameters (Å, º) top
N1—C8A1.386 (3)C11—H11B0.9800
N1—C21.393 (3)C11—H11C0.9800
N1—C111.463 (3)C31—H31A0.9800
C2—O21.214 (3)C31—H31B0.9800
C2—N31.396 (3)C31—H31C0.9800
N3—C41.383 (3)C71—C721.386 (4)
N3—C311.472 (3)C71—C761.404 (3)
C4—O41.223 (3)C72—C731.392 (3)
C4—C4A1.463 (3)C72—H720.9500
C4A—C51.386 (4)C73—C741.384 (4)
C4A—C8A1.395 (3)C73—H730.9500
C5—C61.389 (3)C74—C751.385 (4)
C5—H50.9500C74—C771.513 (3)
C6—C71.401 (3)C75—C761.398 (3)
C6—H60.9500C75—H750.9500
C7—N81.342 (3)C76—H760.9500
C7—C711.484 (3)C77—H77A0.9800
N8—C8A1.342 (3)C77—H77B0.9800
C11—H11A0.9800C77—H77C0.9800
C8A—N1—C2122.0 (2)H11A—C11—H11C109.5
C8A—N1—C11120.0 (2)H11B—C11—H11C109.5
C2—N1—C11117.9 (2)N3—C31—H31A109.5
O2—C2—N1121.8 (2)N3—C31—H31B109.5
O2—C2—N3121.6 (2)H31A—C31—H31B109.5
N1—C2—N3116.6 (2)N3—C31—H31C109.5
C4—N3—C2125.6 (2)H31A—C31—H31C109.5
C4—N3—C31117.3 (2)H31B—C31—H31C109.5
C2—N3—C31117.1 (2)C72—C71—C76118.4 (2)
O4—C4—N3121.2 (2)C72—C71—C7122.5 (2)
O4—C4—C4A123.4 (2)C76—C71—C7119.1 (2)
N3—C4—C4A115.4 (2)C71—C72—C73120.8 (2)
C5—C4A—C8A118.0 (2)C71—C72—H72119.6
C5—C4A—C4122.0 (2)C73—C72—H72119.6
C8A—C4A—C4120.0 (2)C74—C73—C72121.1 (2)
C4A—C5—C6119.2 (2)C74—C73—H73119.5
C4A—C5—H5120.4C72—C73—H73119.5
C6—C5—H5120.4C73—C74—C75118.7 (2)
C5—C6—C7119.0 (2)C73—C74—C77120.8 (2)
C5—C6—H6120.5C75—C74—C77120.5 (2)
C7—C6—H6120.5C74—C75—C76120.8 (2)
N8—C7—C6122.1 (2)C74—C75—H75119.6
N8—C7—C71115.9 (2)C76—C75—H75119.6
C6—C7—C71122.0 (2)C75—C76—C71120.3 (2)
C7—N8—C8A118.1 (2)C75—C76—H76119.9
N8—C8A—N1116.1 (2)C71—C76—H76119.9
N8—C8A—C4A123.5 (2)C74—C77—H77A109.5
N1—C8A—C4A120.4 (2)C74—C77—H77B109.5
N1—C11—H11A109.5H77A—C77—H77B109.5
N1—C11—H11B109.5C74—C77—H77C109.5
H11A—C11—H11B109.5H77A—C77—H77C109.5
N1—C11—H11C109.5H77B—C77—H77C109.5
C8A—N1—C2—O2177.5 (2)C7—N8—C8A—C4A1.1 (3)
C11—N1—C2—O22.5 (3)C2—N1—C8A—N8179.36 (19)
C8A—N1—C2—N32.1 (3)C11—N1—C8A—N84.4 (3)
C11—N1—C2—N3177.12 (19)C2—N1—C8A—C4A0.3 (3)
O2—C2—N3—C4177.9 (2)C11—N1—C8A—C4A175.2 (2)
N1—C2—N3—C41.7 (3)C5—C4A—C8A—N81.9 (3)
O2—C2—N3—C311.7 (3)C4—C4A—C8A—N8178.4 (2)
N1—C2—N3—C31178.73 (18)C5—C4A—C8A—N1177.7 (2)
C2—N3—C4—O4179.8 (2)C4—C4A—C8A—N12.0 (3)
C31—N3—C4—O40.2 (3)N8—C7—C71—C72160.1 (2)
C2—N3—C4—C4A0.5 (3)C6—C7—C71—C7221.1 (3)
C31—N3—C4—C4A179.10 (18)N8—C7—C71—C7618.7 (3)
O4—C4—C4A—C51.9 (4)C6—C7—C71—C76160.1 (2)
N3—C4—C4A—C5177.4 (2)C76—C71—C72—C730.4 (3)
O4—C4—C4A—C8A178.4 (2)C7—C71—C72—C73179.2 (2)
N3—C4—C4A—C8A2.3 (3)C71—C72—C73—C740.6 (4)
C8A—C4A—C5—C60.5 (3)C72—C73—C74—C751.3 (4)
C4—C4A—C5—C6179.8 (2)C72—C73—C74—C77178.6 (2)
C4A—C5—C6—C71.5 (3)C73—C74—C75—C761.1 (3)
C5—C6—C7—N82.4 (3)C77—C74—C75—C76178.8 (2)
C5—C6—C7—C71178.9 (2)C74—C75—C76—C710.1 (3)
C6—C7—N8—C8A1.1 (3)C72—C71—C76—C750.6 (3)
C71—C7—N8—C8A179.90 (18)C7—C71—C76—C75179.5 (2)
C7—N8—C8A—N1178.52 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.952.393.306 (3)161
Symmetry code: (i) x, y, z+1.
(II) 7-(biphenyl-4-yl)-1,3-dimethylpyrido[2,3-d]pyrimidine- 2,4(1H,3H)-dione top
Crystal data top
C21H17N3O2F(000) = 720
Mr = 343.38Dx = 1.450 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3613 reflections
a = 7.2314 (5) Åθ = 3.1–27.5°
b = 17.5834 (18) ŵ = 0.10 mm1
c = 12.4864 (15) ÅT = 120 K
β = 97.782 (8)°Block, yellow
V = 1573.1 (3) Å30.45 × 0.27 × 0.15 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3612 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ & ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2222
Tmin = 0.947, Tmax = 0.986l = 1616
40144 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.244H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.138P)2 + 0.2972P]
where P = (Fo2 + 2Fc2)/3
3612 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C21H17N3O2V = 1573.1 (3) Å3
Mr = 343.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2314 (5) ŵ = 0.10 mm1
b = 17.5834 (18) ÅT = 120 K
c = 12.4864 (15) Å0.45 × 0.27 × 0.15 mm
β = 97.782 (8)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3612 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1851 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.986Rint = 0.092
40144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.244H-atom parameters constrained
S = 1.03Δρmax = 0.48 e Å3
3612 reflectionsΔρmin = 0.34 e Å3
237 parameters
Special details top

Experimental. Mass spectrum: MS (70 eV) m/z (%) = 343 (M+, 100), 314 (32), 231 (30). HR—MS found 343.1313

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3564 (3)0.34566 (13)0.64534 (19)0.0311 (6)
C20.3717 (4)0.26808 (16)0.6605 (2)0.0333 (7)
N30.2991 (3)0.22236 (13)0.57325 (19)0.0327 (6)
C40.2240 (4)0.24889 (16)0.4732 (2)0.0338 (7)
C4A0.2229 (4)0.33099 (15)0.4611 (2)0.0297 (7)
C50.1674 (4)0.36487 (17)0.3632 (3)0.0381 (8)
H50.12930.33480.30090.046*
C60.1674 (4)0.44308 (16)0.3561 (2)0.0361 (7)
H60.13110.46740.28860.043*
C70.2206 (4)0.48579 (16)0.4482 (2)0.0314 (7)
N80.2802 (3)0.45337 (13)0.54326 (19)0.0327 (6)
C8A0.2842 (3)0.37789 (15)0.5478 (2)0.0290 (7)
C110.4261 (4)0.39266 (17)0.7378 (2)0.0408 (8)
H11A0.37140.37550.80130.061*
H11B0.39150.44580.72220.061*
H11C0.56230.38830.75210.061*
O20.4440 (3)0.24105 (11)0.74449 (17)0.0406 (6)
C310.3064 (4)0.14025 (16)0.5885 (3)0.0396 (8)
H31A0.18010.11920.57340.059*
H32B0.35870.12860.66330.059*
H33C0.38530.11770.53900.059*
O40.1638 (3)0.20493 (11)0.40182 (17)0.0417 (6)
C710.2139 (3)0.57038 (16)0.4453 (2)0.0296 (7)
C720.1204 (4)0.60843 (15)0.3571 (2)0.0346 (7)
H720.05600.58040.29850.041*
C730.1205 (4)0.68687 (16)0.3538 (2)0.0342 (7)
H730.05690.71210.29220.041*
C740.2115 (4)0.72988 (16)0.4384 (2)0.0316 (7)
C750.3013 (4)0.69129 (16)0.5274 (2)0.0342 (7)
H750.36280.71920.58690.041*
C760.3025 (4)0.61227 (16)0.5308 (2)0.0326 (7)
H760.36500.58690.59250.039*
C810.2134 (4)0.81360 (16)0.4331 (2)0.0313 (7)
C820.2154 (4)0.85040 (16)0.3347 (2)0.0349 (7)
H820.21560.82130.27070.042*
C830.2170 (4)0.92868 (17)0.3291 (3)0.0403 (8)
H830.21680.95310.26120.048*
C840.2188 (4)0.97151 (17)0.4210 (3)0.0428 (8)
H840.22071.02550.41690.051*
C850.2180 (4)0.93597 (17)0.5196 (3)0.0417 (8)
H850.21890.96540.58350.050*
C860.2159 (4)0.85778 (16)0.5248 (2)0.0352 (7)
H860.21610.83370.59290.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0337 (13)0.0273 (13)0.0326 (14)0.0034 (10)0.0059 (11)0.0022 (10)
C20.0306 (16)0.0302 (17)0.0399 (18)0.0024 (12)0.0086 (14)0.0009 (14)
N30.0336 (13)0.0261 (13)0.0389 (15)0.0013 (10)0.0062 (11)0.0007 (11)
C40.0307 (15)0.0320 (17)0.0399 (18)0.0028 (12)0.0099 (13)0.0007 (14)
C4A0.0259 (14)0.0281 (16)0.0354 (17)0.0000 (11)0.0049 (12)0.0005 (12)
C50.0356 (16)0.0392 (18)0.0388 (19)0.0012 (13)0.0022 (14)0.0026 (14)
C60.0418 (17)0.0320 (17)0.0336 (17)0.0015 (13)0.0013 (14)0.0001 (13)
C70.0282 (15)0.0306 (17)0.0360 (17)0.0014 (11)0.0060 (13)0.0010 (13)
N80.0288 (13)0.0319 (14)0.0372 (15)0.0013 (10)0.0042 (11)0.0026 (11)
C8A0.0266 (14)0.0261 (15)0.0348 (17)0.0015 (11)0.0059 (13)0.0008 (12)
C110.0494 (18)0.0319 (17)0.0392 (18)0.0016 (14)0.0005 (15)0.0070 (13)
O20.0463 (13)0.0354 (12)0.0390 (13)0.0064 (9)0.0019 (10)0.0044 (10)
C310.0409 (17)0.0275 (17)0.051 (2)0.0035 (13)0.0092 (15)0.0019 (14)
O40.0429 (12)0.0354 (12)0.0463 (14)0.0044 (9)0.0041 (10)0.0058 (10)
C710.0258 (14)0.0283 (16)0.0350 (17)0.0008 (11)0.0052 (12)0.0021 (12)
C720.0347 (16)0.0300 (16)0.0386 (18)0.0017 (12)0.0036 (13)0.0035 (13)
C730.0307 (15)0.0330 (16)0.0382 (18)0.0031 (12)0.0024 (13)0.0036 (13)
C740.0270 (14)0.0272 (16)0.0410 (18)0.0003 (11)0.0063 (13)0.0013 (13)
C750.0317 (16)0.0341 (18)0.0374 (18)0.0035 (12)0.0064 (13)0.0008 (13)
C760.0280 (15)0.0331 (17)0.0359 (17)0.0011 (12)0.0012 (13)0.0027 (13)
C810.0267 (15)0.0300 (16)0.0372 (18)0.0006 (11)0.0046 (13)0.0013 (13)
C820.0321 (16)0.0312 (16)0.0401 (18)0.0009 (12)0.0010 (13)0.0024 (13)
C830.0395 (17)0.0363 (18)0.0440 (19)0.0003 (13)0.0020 (14)0.0011 (14)
C840.0478 (19)0.0269 (16)0.053 (2)0.0016 (14)0.0032 (15)0.0021 (15)
C850.0478 (19)0.0349 (18)0.0422 (19)0.0013 (14)0.0056 (15)0.0076 (14)
C860.0340 (16)0.0334 (17)0.0378 (18)0.0037 (13)0.0038 (13)0.0039 (13)
Geometric parameters (Å, º) top
N1—C21.380 (4)C31—H33C0.9800
N1—C8A1.380 (3)C71—C761.381 (4)
N1—C111.453 (4)C71—C721.385 (4)
C2—O21.204 (3)C72—C731.380 (4)
C2—N31.398 (4)C72—H720.9500
N3—C41.375 (4)C73—C741.391 (4)
N3—C311.456 (4)C73—H730.9500
C4—O41.215 (3)C74—C751.386 (4)
C4—C4A1.451 (4)C74—C811.474 (4)
C4A—C51.370 (4)C75—C761.390 (4)
C4A—C8A1.386 (4)C75—H750.9500
C5—C61.378 (4)C76—H760.9500
C5—H50.9500C81—C861.382 (4)
C6—C71.384 (4)C81—C821.390 (4)
C6—H60.9500C82—C831.378 (4)
C7—N81.335 (3)C82—H820.9500
C7—C711.488 (4)C83—C841.371 (4)
N8—C8A1.328 (3)C83—H830.9500
C11—H11A0.9800C84—C851.382 (4)
C11—H11B0.9800C84—H840.9500
C11—H11C0.9800C85—C861.377 (4)
C31—H31A0.9800C85—H850.9500
C31—H32B0.9800C86—H860.9500
C2—N1—C8A122.8 (2)H31A—C31—H33C109.5
C2—N1—C11116.1 (2)H32B—C31—H33C109.5
C8A—N1—C11121.1 (2)C76—C71—C72118.9 (3)
O2—C2—N1121.8 (3)C76—C71—C7120.3 (3)
O2—C2—N3121.6 (3)C72—C71—C7120.8 (3)
N1—C2—N3116.5 (3)C73—C72—C71120.3 (3)
C4—N3—C2125.0 (2)C73—C72—H72119.8
C4—N3—C31117.3 (2)C71—C72—H72119.8
C2—N3—C31117.7 (2)C72—C73—C74121.5 (3)
O4—C4—N3120.6 (3)C72—C73—H73119.2
O4—C4—C4A124.0 (3)C74—C73—H73119.2
N3—C4—C4A115.4 (3)C75—C74—C73117.7 (3)
C5—C4A—C8A117.6 (3)C75—C74—C81121.2 (3)
C5—C4A—C4121.5 (3)C73—C74—C81121.0 (3)
C8A—C4A—C4120.9 (3)C74—C75—C76121.0 (3)
C4A—C5—C6119.3 (3)C74—C75—H75119.5
C4A—C5—H5120.4C76—C75—H75119.5
C6—C5—H5120.4C71—C76—C75120.6 (3)
C5—C6—C7119.4 (3)C71—C76—H76119.7
C5—C6—H6120.3C75—C76—H76119.7
C7—C6—H6120.3C86—C81—C82118.0 (3)
N8—C7—C6121.8 (3)C86—C81—C74121.6 (3)
N8—C7—C71117.0 (3)C82—C81—C74120.4 (3)
C6—C7—C71121.2 (3)C83—C82—C81120.7 (3)
C8A—N8—C7117.9 (3)C83—C82—H82119.6
N8—C8A—N1116.9 (2)C81—C82—H82119.6
N8—C8A—C4A123.9 (3)C84—C83—C82120.3 (3)
N1—C8A—C4A119.2 (2)C84—C83—H83119.8
N1—C11—H11A109.5C82—C83—H83119.8
N1—C11—H11B109.5C83—C84—C85119.8 (3)
H11A—C11—H11B109.5C83—C84—H84120.1
N1—C11—H11C109.5C85—C84—H84120.1
H11A—C11—H11C109.5C86—C85—C84119.7 (3)
H11B—C11—H11C109.5C86—C85—H85120.2
N3—C31—H31A109.5C84—C85—H85120.2
N3—C31—H32B109.5C85—C86—C81121.4 (3)
H31A—C31—H32B109.5C85—C86—H86119.3
N3—C31—H33C109.5C81—C86—H86119.3
C8A—N1—C2—O2176.0 (2)C4—C4A—C8A—N8177.3 (2)
C11—N1—C2—O22.3 (4)C5—C4A—C8A—N1174.4 (2)
C8A—N1—C2—N33.8 (4)C4—C4A—C8A—N13.5 (4)
C11—N1—C2—N3177.9 (2)N8—C7—C71—C7613.5 (4)
O2—C2—N3—C4176.2 (3)C6—C7—C71—C76166.5 (3)
N1—C2—N3—C43.6 (4)N8—C7—C71—C72167.1 (2)
O2—C2—N3—C312.6 (4)C6—C7—C71—C7212.9 (4)
N1—C2—N3—C31177.5 (2)C76—C71—C72—C731.7 (4)
C2—N3—C4—O4179.9 (2)C7—C71—C72—C73177.8 (2)
C31—N3—C4—O41.2 (4)C71—C72—C73—C740.7 (4)
C2—N3—C4—C4A0.0 (4)C72—C73—C74—C750.7 (4)
C31—N3—C4—C4A178.9 (2)C72—C73—C74—C81178.9 (2)
O4—C4—C4A—C55.9 (4)C73—C74—C75—C761.1 (4)
N3—C4—C4A—C5174.2 (2)C81—C74—C75—C76178.5 (2)
O4—C4—C4A—C8A176.3 (3)C72—C71—C76—C751.3 (4)
N3—C4—C4A—C8A3.6 (4)C7—C71—C76—C75178.2 (2)
C8A—C4A—C5—C62.6 (4)C74—C75—C76—C710.1 (4)
C4—C4A—C5—C6179.5 (2)C75—C74—C81—C8632.7 (4)
C4A—C5—C6—C71.0 (4)C73—C74—C81—C86147.7 (3)
C5—C6—C7—N83.0 (4)C75—C74—C81—C82146.4 (3)
C5—C6—C7—C71177.0 (2)C73—C74—C81—C8233.2 (4)
C6—C7—N8—C8A1.1 (4)C86—C81—C82—C830.9 (4)
C71—C7—N8—C8A178.9 (2)C74—C81—C82—C83179.9 (2)
C7—N8—C8A—N1176.3 (2)C81—C82—C83—C840.8 (4)
C7—N8—C8A—C4A2.8 (4)C82—C83—C84—C850.4 (4)
C2—N1—C8A—N8178.8 (2)C83—C84—C85—C860.2 (4)
C11—N1—C8A—N80.6 (4)C84—C85—C86—C810.4 (4)
C2—N1—C8A—C4A0.4 (4)C82—C81—C86—C850.7 (4)
C11—N1—C8A—C4A178.6 (3)C74—C81—C86—C85179.9 (3)
C5—C4A—C8A—N84.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C75—H75···O2i0.952.393.294 (3)158
C76—H76···N80.952.482.805 (4)100
Symmetry code: (i) x+1, y+1/2, z+3/2.
(III) 7-(4-fluorophenyl)-3-methylpyrido[2,3-d]pyrimidine- 2,4(1H,3H)-dione top
Crystal data top
C14H10FN3O2F(000) = 560
Mr = 271.25Dx = 1.559 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2636 reflections
a = 6.7658 (8) Åθ = 3.4–27.5°
b = 12.978 (2) ŵ = 0.12 mm1
c = 13.162 (2) ÅT = 120 K
V = 1155.7 (3) Å3Block, yellow
Z = 40.10 × 0.10 × 0.10 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1538 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode833 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.164
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.4°
ϕ & ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1416
Tmin = 0.968, Tmax = 0.988l = 1617
11820 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0734P)2]
where P = (Fo2 + 2Fc2)/3
1538 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H10FN3O2V = 1155.7 (3) Å3
Mr = 271.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7658 (8) ŵ = 0.12 mm1
b = 12.978 (2) ÅT = 120 K
c = 13.162 (2) Å0.10 × 0.10 × 0.10 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1538 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
833 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.988Rint = 0.164
11820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
1538 reflectionsΔρmin = 0.36 e Å3
182 parameters
Special details top

Experimental. Mass spectrum: MS (70 eV) m/z (%) = 271 (M+, 100), 242 (19), 214 (22), 187 (19), 158 (18), 69 (27). HRMS found 271.0752

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4355 (5)0.3063 (3)0.2496 (3)0.0293 (10)
H10.44730.37340.25740.035*
C20.4439 (7)0.2678 (4)0.1534 (4)0.0288 (12)
N30.4185 (6)0.1613 (3)0.1439 (3)0.0289 (9)
C40.3932 (6)0.0941 (4)0.2250 (3)0.0277 (11)
C4A0.3878 (6)0.1408 (3)0.3250 (3)0.0239 (10)
C50.3664 (6)0.0822 (4)0.4131 (4)0.0288 (11)
H50.35370.00940.40920.035*
C60.3638 (7)0.1316 (4)0.5063 (3)0.0304 (12)
H60.34670.09330.56720.036*
C70.3865 (6)0.2386 (4)0.5097 (3)0.0250 (11)
N80.4092 (5)0.2959 (3)0.4250 (3)0.0263 (9)
C8A0.4096 (6)0.2463 (3)0.3366 (3)0.0250 (11)
O20.4729 (5)0.3226 (3)0.0793 (3)0.0396 (10)
C310.4311 (8)0.1208 (4)0.0399 (3)0.0375 (13)
H31A0.43260.04530.04180.056*
H31B0.55260.14580.00770.056*
H31C0.31650.14430.00070.056*
O40.3753 (4)0.0001 (2)0.2097 (2)0.0345 (8)
C710.3861 (6)0.2981 (4)0.6059 (3)0.0264 (11)
C720.4119 (7)0.2510 (4)0.7002 (3)0.0342 (13)
H720.42830.17830.70340.041*
C730.4141 (6)0.3080 (4)0.7901 (4)0.0339 (12)
H730.43270.27550.85410.041*
C740.3887 (7)0.4122 (4)0.7827 (4)0.0338 (12)
C750.3643 (7)0.4628 (4)0.6932 (4)0.0333 (12)
H750.34870.53550.69130.040*
C760.3630 (7)0.4039 (4)0.6036 (4)0.0301 (12)
H760.34580.43750.54010.036*
F740.3872 (5)0.4691 (2)0.86986 (19)0.0498 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.034 (2)0.020 (2)0.034 (2)0.0022 (17)0.0023 (19)0.0002 (19)
C20.029 (3)0.028 (3)0.029 (3)0.002 (2)0.001 (2)0.000 (3)
N30.034 (2)0.025 (2)0.027 (2)0.0004 (19)0.0003 (19)0.0028 (18)
C40.024 (2)0.029 (3)0.031 (3)0.000 (2)0.004 (2)0.000 (2)
C4A0.020 (2)0.024 (3)0.028 (2)0.004 (2)0.001 (2)0.001 (2)
C50.028 (2)0.022 (3)0.037 (3)0.001 (2)0.002 (2)0.002 (2)
C60.031 (3)0.024 (3)0.036 (3)0.000 (2)0.003 (2)0.007 (2)
C70.017 (2)0.029 (3)0.029 (3)0.001 (2)0.002 (2)0.001 (2)
N80.026 (2)0.023 (2)0.030 (2)0.0027 (17)0.0020 (19)0.0034 (19)
C8A0.024 (2)0.019 (3)0.032 (3)0.0035 (19)0.000 (2)0.005 (2)
O20.056 (2)0.036 (2)0.0266 (18)0.0018 (18)0.0011 (17)0.0016 (18)
C310.048 (3)0.031 (3)0.033 (3)0.004 (2)0.003 (3)0.007 (3)
O40.0417 (18)0.0234 (18)0.0383 (19)0.0005 (17)0.0011 (16)0.0025 (17)
C710.020 (2)0.032 (3)0.027 (2)0.002 (2)0.003 (2)0.000 (2)
C720.033 (3)0.031 (3)0.038 (3)0.002 (2)0.001 (2)0.000 (3)
C730.028 (3)0.043 (3)0.031 (3)0.005 (3)0.001 (2)0.003 (3)
C740.035 (3)0.042 (3)0.024 (3)0.008 (3)0.005 (2)0.012 (3)
C750.032 (2)0.025 (3)0.043 (3)0.004 (2)0.007 (2)0.011 (2)
C760.027 (2)0.026 (3)0.038 (3)0.002 (2)0.010 (2)0.001 (2)
F740.0562 (18)0.056 (2)0.0373 (17)0.0062 (17)0.0028 (15)0.0146 (16)
Geometric parameters (Å, º) top
N1—C21.362 (6)C7—C711.483 (7)
N1—C8A1.395 (5)N8—C8A1.329 (5)
N1—H10.8800C31—H31A0.9800
C2—O21.222 (5)C31—H31B0.9800
C2—N31.399 (6)C31—H31C0.9800
N3—C41.389 (6)C71—C761.383 (6)
N3—C311.468 (5)C71—C721.394 (6)
C4—O41.242 (5)C72—C731.395 (7)
C4—C4A1.449 (6)C72—H720.9500
C4A—C8A1.386 (6)C73—C741.367 (7)
C4A—C51.395 (6)C73—H730.9500
C5—C61.384 (7)C74—C751.359 (6)
C5—H50.9500C74—F741.364 (5)
C6—C71.398 (6)C75—C761.405 (7)
C6—H60.9500C75—H750.9500
C7—N81.349 (5)C76—H760.9500
C2—N1—C8A124.3 (4)N8—C8A—N1116.7 (4)
C2—N1—H1117.9C4A—C8A—N1118.3 (4)
C8A—N1—H1117.9N3—C31—H31A109.5
O2—C2—N1122.3 (4)N3—C31—H31B109.5
O2—C2—N3121.5 (4)H31A—C31—H31B109.5
N1—C2—N3116.2 (4)N3—C31—H31C109.5
C4—N3—C2124.5 (4)H31A—C31—H31C109.5
C4—N3—C31120.0 (4)H31B—C31—H31C109.5
C2—N3—C31115.5 (4)C76—C71—C72118.0 (5)
O4—C4—N3120.2 (4)C76—C71—C7119.9 (4)
O4—C4—C4A123.7 (4)C72—C71—C7122.1 (4)
N3—C4—C4A116.0 (4)C71—C72—C73121.6 (5)
C8A—C4A—C5117.3 (4)C71—C72—H72119.2
C8A—C4A—C4120.7 (4)C73—C72—H72119.2
C5—C4A—C4122.0 (4)C74—C73—C72117.6 (5)
C6—C5—C4A119.1 (4)C74—C73—H73121.2
C6—C5—H5120.5C72—C73—H73121.2
C4A—C5—H5120.5C75—C74—F74117.8 (4)
C5—C6—C7119.1 (5)C75—C74—C73123.7 (4)
C5—C6—H6120.4F74—C74—C73118.5 (5)
C7—C6—H6120.4C74—C75—C76117.7 (4)
N8—C7—C6122.2 (4)C74—C75—H75121.1
N8—C7—C71114.8 (4)C76—C75—H75121.1
C6—C7—C71122.9 (4)C71—C76—C75121.4 (5)
C8A—N8—C7117.2 (4)C71—C76—H76119.3
N8—C8A—C4A125.0 (4)C75—C76—H76119.3
C8A—N1—C2—O2177.7 (4)C7—N8—C8A—N1179.3 (4)
C8A—N1—C2—N31.9 (6)C5—C4A—C8A—N80.9 (7)
O2—C2—N3—C4177.2 (4)C4—C4A—C8A—N8179.1 (4)
N1—C2—N3—C42.4 (6)C5—C4A—C8A—N1178.6 (4)
O2—C2—N3—C310.5 (7)C4—C4A—C8A—N10.4 (6)
N1—C2—N3—C31179.1 (4)C2—N1—C8A—N8178.5 (4)
C2—N3—C4—O4178.7 (4)C2—N1—C8A—C4A1.0 (6)
C31—N3—C4—O42.1 (6)N8—C7—C71—C7614.6 (6)
C2—N3—C4—C4A1.8 (6)C6—C7—C71—C76165.0 (4)
C31—N3—C4—C4A178.4 (4)N8—C7—C71—C72164.3 (4)
O4—C4—C4A—C8A179.7 (4)C6—C7—C71—C7216.1 (7)
N3—C4—C4A—C8A0.8 (6)C76—C71—C72—C730.1 (7)
O4—C4—C4A—C51.6 (7)C7—C71—C72—C73179.1 (4)
N3—C4—C4A—C5178.9 (4)C71—C72—C73—C740.5 (7)
C8A—C4A—C5—C61.3 (6)C72—C73—C74—C751.0 (7)
C4—C4A—C5—C6179.5 (4)C72—C73—C74—F74179.0 (4)
C4A—C5—C6—C71.2 (7)F74—C74—C75—C76179.1 (4)
C5—C6—C7—N80.6 (7)C73—C74—C75—C760.8 (7)
C5—C6—C7—C71179.8 (4)C72—C71—C76—C750.3 (7)
C6—C7—N8—C8A0.1 (6)C7—C71—C76—C75179.2 (4)
C71—C7—N8—C8A179.7 (4)C74—C75—C76—C710.2 (6)
C7—N8—C8A—C4A0.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.882.082.874 (4)149
C76—H76···N80.952.422.755 (7)100
Symmetry code: (i) x+1, y+1/2, z+1/2.
(IV) top
Crystal data top
C15H13N3O3F(000) = 592
Mr = 283.28Dx = 1.506 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c-2acCell parameters from 1439 reflections
a = 6.6312 (11) Åθ = 3.0–27.5°
b = 6.8121 (15) ŵ = 0.11 mm1
c = 27.653 (7) ÅT = 120 K
V = 1249.2 (5) Å3Block, yellow
Z = 40.28 × 0.24 × 0.22 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1439 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ & ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 88
Tmin = 0.961, Tmax = 0.977l = 3524
8019 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0462P)2 + 1.8263P]
where P = (Fo2 + 2Fc2)/3
1439 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
C15H13N3O3V = 1249.2 (5) Å3
Mr = 283.28Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 6.6312 (11) ŵ = 0.11 mm1
b = 6.8121 (15) ÅT = 120 K
c = 27.653 (7) Å0.28 × 0.24 × 0.22 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1439 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1181 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.977Rint = 0.051
8019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.147H-atom parameters constrained
S = 1.14Δρmax = 0.36 e Å3
1439 reflectionsΔρmin = 0.39 e Å3
192 parameters
Special details top

Experimental. Mass spectrum: MS (70 eV) m/z (%) = 283 (M+, 100), 254 (10), 226 (20), 155 (8). HR—MS found 283.0966

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4060 (6)0.2722 (6)0.12467 (14)0.0249 (9)
H10.53640.28940.12870.030*
C20.3255 (8)0.2656 (8)0.07964 (17)0.0273 (11)
N30.1173 (6)0.2446 (6)0.07641 (14)0.0250 (9)
C40.0076 (7)0.2280 (7)0.11555 (17)0.0231 (10)
C4A0.0882 (7)0.2336 (7)0.16283 (18)0.0226 (9)
C50.0217 (7)0.2147 (7)0.20436 (17)0.0225 (10)
H50.16420.20130.20320.027*
C60.0785 (8)0.2155 (7)0.24795 (16)0.0222 (10)
H60.00610.20110.27740.027*
C70.2882 (7)0.2380 (7)0.24835 (15)0.0176 (9)
N80.3962 (6)0.2585 (6)0.20775 (14)0.0216 (8)
C8A0.2960 (7)0.2552 (7)0.16624 (17)0.0211 (9)
O20.4287 (6)0.2763 (6)0.04349 (11)0.0355 (10)
C310.0296 (8)0.2343 (8)0.02801 (16)0.0288 (11)
H31A0.04330.10040.01540.043*
H31B0.10030.32590.00660.043*
H31C0.11350.26950.02960.043*
O40.1875 (5)0.2024 (7)0.11046 (13)0.0358 (10)
C710.3976 (8)0.2384 (7)0.29459 (15)0.0204 (11)
C720.3115 (7)0.1589 (7)0.33615 (15)0.0211 (10)
H720.18200.09990.33420.025*
C730.4093 (7)0.1639 (6)0.37970 (15)0.0198 (10)
H730.34750.10800.40750.024*
C740.5977 (7)0.2497 (7)0.38355 (15)0.0193 (10)
C750.6861 (7)0.3325 (7)0.34289 (15)0.0216 (10)
H750.81440.39400.34520.026*
C760.5862 (7)0.3248 (7)0.29893 (15)0.0194 (10)
H760.64820.38000.27110.023*
O70.6810 (5)0.2436 (5)0.42776 (12)0.0241 (8)
C770.8726 (8)0.3323 (8)0.43432 (19)0.0304 (11)
H77A0.97090.26990.41280.046*
H77C0.91570.31580.46800.046*
H77B0.86360.47260.42670.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0127 (17)0.040 (2)0.0217 (19)0.0025 (17)0.0008 (15)0.0036 (17)
C20.025 (2)0.041 (3)0.016 (2)0.001 (2)0.000 (2)0.004 (2)
N30.019 (2)0.035 (2)0.0209 (19)0.0017 (17)0.0045 (16)0.0007 (16)
C40.021 (2)0.027 (2)0.022 (2)0.0028 (19)0.0014 (19)0.003 (2)
C4A0.018 (2)0.025 (2)0.025 (2)0.0007 (19)0.000 (2)0.001 (2)
C50.015 (2)0.025 (2)0.028 (2)0.0005 (18)0.0025 (19)0.007 (2)
C60.020 (2)0.023 (2)0.023 (2)0.001 (2)0.0042 (18)0.0005 (18)
C70.019 (2)0.019 (2)0.0155 (19)0.0004 (18)0.0006 (16)0.0004 (16)
N80.0171 (17)0.028 (2)0.0196 (18)0.0001 (16)0.0001 (16)0.0020 (16)
C8A0.018 (2)0.026 (2)0.019 (2)0.0005 (18)0.0021 (19)0.0001 (17)
O20.0204 (17)0.069 (3)0.0172 (17)0.0022 (18)0.0024 (14)0.0054 (18)
C310.025 (2)0.045 (3)0.017 (2)0.000 (2)0.0033 (19)0.002 (2)
O40.0154 (16)0.067 (3)0.0252 (17)0.0009 (16)0.0007 (13)0.0022 (18)
C710.018 (2)0.023 (3)0.021 (2)0.0020 (19)0.0001 (17)0.0015 (18)
C720.019 (2)0.021 (2)0.023 (2)0.0018 (18)0.0024 (18)0.0000 (17)
C730.023 (2)0.020 (2)0.016 (2)0.0000 (19)0.0063 (17)0.0010 (16)
C740.019 (2)0.019 (2)0.019 (2)0.0024 (18)0.0016 (18)0.0021 (18)
C750.018 (2)0.026 (3)0.021 (2)0.0008 (19)0.0009 (18)0.0007 (18)
C760.020 (2)0.020 (2)0.018 (2)0.0031 (19)0.0027 (17)0.0002 (17)
O70.0208 (17)0.033 (2)0.0180 (14)0.0026 (14)0.0007 (13)0.0001 (14)
C770.026 (2)0.037 (3)0.028 (2)0.008 (2)0.0030 (19)0.002 (2)
Geometric parameters (Å, º) top
N1—C21.356 (6)C31—H31A0.9800
N1—C8A1.366 (6)C31—H31B0.9800
N1—H10.8800C31—H31C0.9800
C2—O21.213 (6)C71—C761.387 (7)
C2—N31.391 (6)C71—C721.393 (6)
N3—C41.368 (6)C72—C731.368 (6)
N3—C311.461 (6)C72—H720.9500
C4—O41.214 (6)C73—C741.383 (6)
C4—C4A1.454 (6)C73—H730.9500
C4A—C51.366 (6)C74—O71.342 (5)
C4A—C8A1.389 (6)C74—C751.388 (6)
C5—C61.376 (6)C75—C761.386 (6)
C5—H50.9500C75—H750.9500
C6—C71.399 (7)C76—H760.9500
C6—H60.9500O7—C771.419 (6)
C7—N81.339 (6)C77—H77A0.9800
C7—C711.470 (6)C77—H77C0.9800
N8—C8A1.326 (6)C77—H77B0.9800
C2—N1—C8A124.1 (4)H31A—C31—H31B109.5
C2—N1—H1120.4N3—C31—H31C109.5
C8A—N1—H1115.5H31A—C31—H31C109.5
O2—C2—N1122.2 (4)H31B—C31—H31C109.5
O2—C2—N3120.8 (4)C76—C71—C72117.6 (4)
N1—C2—N3116.9 (4)C76—C71—C7121.4 (4)
C4—N3—C2124.0 (4)C72—C71—C7121.0 (4)
C4—N3—C31118.7 (4)C73—C72—C71121.5 (4)
C2—N3—C31117.3 (4)C73—C72—H72119.3
O4—C4—N3121.0 (4)C71—C72—H72119.3
O4—C4—C4A122.5 (4)C72—C73—C74120.4 (4)
N3—C4—C4A116.4 (4)C72—C73—H73119.8
C5—C4A—C8A118.8 (5)C74—C73—H73119.8
C5—C4A—C4121.4 (4)O7—C74—C73115.4 (4)
C8A—C4A—C4119.8 (4)O7—C74—C75125.2 (4)
C4A—C5—C6118.6 (4)C73—C74—C75119.4 (4)
C4A—C5—H5120.7C76—C75—C74119.5 (4)
C6—C5—H5120.7C76—C75—H75120.2
C5—C6—C7119.1 (4)C74—C75—H75120.2
C5—C6—H6120.4C75—C76—C71121.6 (4)
C7—C6—H6120.4C75—C76—H76119.2
N8—C7—C6122.4 (4)C71—C76—H76119.2
N8—C7—C71117.7 (4)C74—O7—C77118.1 (4)
C6—C7—C71119.8 (4)O7—C77—H77A109.5
C8A—N8—C7117.1 (4)O7—C77—H77C109.5
N8—C8A—N1117.3 (4)H77A—C77—H77C109.5
N8—C8A—C4A123.9 (4)O7—C77—H77B109.5
N1—C8A—C4A118.8 (4)H77A—C77—H77B109.5
N3—C31—H31A109.5H77C—C77—H77B109.5
N3—C31—H31B109.5
C8A—N1—C2—O2178.1 (5)C2—N1—C8A—N8178.0 (4)
C8A—N1—C2—N31.5 (7)C2—N1—C8A—C4A1.3 (7)
O2—C2—N3—C4178.7 (5)C5—C4A—C8A—N80.1 (8)
N1—C2—N3—C40.9 (7)C4—C4A—C8A—N8178.9 (5)
O2—C2—N3—C310.6 (8)C5—C4A—C8A—N1179.4 (5)
N1—C2—N3—C31179.1 (5)C4—C4A—C8A—N10.4 (7)
C2—N3—C4—O4177.1 (5)N8—C7—C71—C7622.9 (6)
C31—N3—C4—O41.0 (7)C6—C7—C71—C76157.4 (5)
C2—N3—C4—C4A0.1 (7)N8—C7—C71—C72159.8 (4)
C31—N3—C4—C4A178.3 (4)C6—C7—C71—C7219.9 (7)
O4—C4—C4A—C51.6 (8)C76—C71—C72—C730.5 (7)
N3—C4—C4A—C5178.8 (5)C7—C71—C72—C73178.0 (4)
O4—C4—C4A—C8A177.3 (5)C71—C72—C73—C740.3 (7)
N3—C4—C4A—C8A0.1 (6)C72—C73—C74—O7179.0 (4)
C8A—C4A—C5—C60.8 (7)C72—C73—C74—C750.6 (6)
C4—C4A—C5—C6178.2 (4)O7—C74—C75—C76178.4 (4)
C4A—C5—C6—C70.8 (7)C73—C74—C75—C761.2 (7)
C5—C6—C7—N80.1 (8)C74—C75—C76—C710.9 (7)
C5—C6—C7—C71179.8 (4)C72—C71—C76—C750.1 (7)
C6—C7—N8—C8A0.6 (7)C7—C71—C76—C75177.3 (4)
C71—C7—N8—C8A179.1 (4)C73—C74—O7—C77178.8 (4)
C7—N8—C8A—N1178.7 (4)C75—C74—O7—C771.6 (7)
C7—N8—C8A—C4A0.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.881.992.765 (5)146
C72—H72···Cgii0.952.653.448 (5)142
C75—H75···Cgiii0.952.753.548 (5)142
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y, z; (iii) x+1/2, y+1, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC16H15N3O2C21H17N3O2C14H10FN3O2C15H13N3O3
Mr281.31343.38271.25283.28
Crystal system, space groupTriclinic, P1Monoclinic, P21/cOrthorhombic, P212121Orthorhombic, Pca21
Temperature (K)120120120120
a, b, c (Å)6.9953 (5), 7.9221 (7), 12.5140 (13)7.2314 (5), 17.5834 (18), 12.4864 (15)6.7658 (8), 12.978 (2), 13.162 (2)6.6312 (11), 6.8121 (15), 27.653 (7)
α, β, γ (°)93.466 (4), 92.993 (6), 101.152 (6)90, 97.782 (8), 9090, 90, 9090, 90, 90
V3)677.71 (11)1573.1 (3)1155.7 (3)1249.2 (5)
Z2444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.090.100.120.11
Crystal size (mm)0.20 × 0.10 × 0.020.45 × 0.27 × 0.150.10 × 0.10 × 0.100.28 × 0.24 × 0.22
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.972, 0.9980.947, 0.9860.968, 0.9880.961, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
11686, 2989, 1699 40144, 3612, 1851 11820, 1538, 833 8019, 1439, 1181
Rint0.0800.0920.1640.051
(sin θ/λ)max1)0.6520.6500.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.200, 1.03 0.073, 0.244, 1.03 0.064, 0.155, 1.00 0.057, 0.147, 1.14
No. of reflections2989361215381439
No. of parameters193237182192
No. of restraints0001
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.350.48, 0.340.29, 0.360.36, 0.39

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Selected interplanar angles (°) for (I)–(IV) top
Angle(I)(II)(III)(IV)
Pyridine/C71–C7619.7 (2)12.8 (2)15.3 (2)21.7 (2)
C71–C76/C81–C8633.0 (2)
Pyridine/C81–C8620.3 (2)
Hydrogen bonds and short intramolecular contacts (Å, °) for (I)–(IV) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C5—H5···O4i0.952.393.306 (3)161
(II)C75—H75···O2ii0.952.393.294 (3)158
C76—H76···N80.952.482.805 (4)100
(III)N1—H1···O4iii0.882.082.874 (4)149
C76—H76···N80.952.422.753 (5)100
(IV)N1—H1···O4iv0.881.992.765 (5)146
C72—H72···Cgv0.952.653.448 (5)142
C75—H75···Cgvi0.952.753.548 (5)142
Cg represents the centroid of the C71–C76 ring. Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, y+1/2, -z+3/2; (iii) -x+1, y+1/2, -z+1/2; (iv) x+1, y, z; (v) x-0.5, -y, z; (vi) x+1/2, -y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds