Download citation
Download citation
link to html
The title compound, [Cu(C9H5N2O3)2(C2H6OS)2], consists of octa­hedrally coordinated CuII ions, with the 3-oxo-3,4-dihydroquinoxaline-2-carboxyl­ate ligands acting in a bidentate manner [Cu—O = 1.9116 (14) Å and Cu—N = 2.1191 (16) Å] and a dimethyl sulfoxide (DMSO) mol­ecule coordinated axially via the O atom [Cu—O = 2.336 (5) and 2.418 (7) Å for the major and minor disorder components, respectively]. The whole DMSO mol­ecule exhibits positional disorder [0.62 (1):0.38 (1)]. The octa­hedron around the CuII atom, which lies on an inversion centre, is elongated in the axial direction, exhibiting a Jahn–Teller effect. The ligand exhibits tautomerization by H-atom transfer from the hydroxyl group at position 3 to the N atom at position 4 of the quinoxaline ring of the ligand. The complex mol­ecules are linked through an inter­molecular N—H...O hydrogen bond [N...O = 2.838 (2) Å] formed between the quinoxaline NH group and a carboxyl­ate O atom, and by a weak inter­molecular C—H...O hydrogen bond [3.392 (11) Å] formed between a carboxyl­ate O atom and a methyl C atom of the DMSO ligand. There is a weak intra­molecular C—H...O hydrogen bond [3.065 (3) Å] formed between a benzene CH group and a carboxyl­ate O atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107010979/fa3073sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107010979/fa3073Isup2.hkl
Contains datablock I

CCDC reference: 649062

Comment top

Kynurenic acid (4-hydroxy-2-quinolinecarboxylic acid), a well known tryptophane metabolite, has neuroactivity to inhibit excitatory amino acid (EAA) receptor-mediated neurodegeneration (Jauch et al., 1993; Stone, 1993). 3-Hydroxy-2-quinoxalinecarboxylic acid (HQC), a substance which is structurally related to kynurenic acid, shows similar effects on EAA receptors. However, the above-mentioned properties of HQC exhibit some ambiguities and side effects. Therefore, it is of interest to a obtain deeper insight into the structure–function relationship, not only of the acid alone, but of its metal complexes, particularly those with metals of pharmacological importance, such as copper (Krogsgaard-Larsen et al., 2002). To the best of our knowledge, the only metal complex of HQC known so far is a nickel(II) complex of formula Ni(HQC)Cl2 (Turvey & Allan, 1996), characterized by spectroscopic, magnetic and conductivity measurements and by thermal methods. In this study, the structure of the title copper complex with HQC, (I), has been determined.

Compound (I) contains a CuII ion on a crystallographic inversion centre. The CuII ion is octahedrally coordinated by two 3-hydroxy-4-quinoxalinium-2-carboxylato-N,O ligands in the equatorial plane [Cu1—O1 1.9116 (14) Å and Cu1—N1 2.1191 (16) Å] and by two disordered dimethyl sulfoxide (DMSO) molecules in the apical positions [Cu1—O4A = 2.336 (5) Å and Cu1—O4B = 2.418 (7) Å] (Table 1, Fig. 1). The bond angles around atom Cu1 lie within the range 80–100°, with the largest angle being O1i—Cu1—N1 = 99.26 (6)° [symmetry code: (i) -x, -y, -z]. The Cu1—O1 bond is shorter than other chemically similar Cu—O bond distances (1.94–1.98 Å; References?), e.g. in the mixed-valence CuI/CuII complex with pyrazine-2-carboxylic acid [1.941 (3) Å; Liu et al., 2003]. On the other hand, Cu1—N1 is longer than analogous Cu—N bonds (1.98–2.00 Å) found in the copper(II) complex with picolinic acid (Segl'a et al., 1998) and in the two copper(II) complexes with pyrazine-2-carboxylic acid (Klein et al., 1982; Ptasiewicz-Bąk et al., 1995). It is even slightly longer than the analogous bond of 2.061 (3) Å in the coordination polymer of copper(II) with pyrazine-2,3-dicarboxylic acid (Konar et al., 2004), which is the longest found to date in the literature for copper(II) complexes containing carboxylic acid with pyrazine and/or a pyridine ring. [Two paragraphs have been merged to avoid repetition. Please check that the meaning is not affected]

The chelate ring defined by atoms Cu1/O1/C9/C1/N1 is approximately planar, with a maximum deviation out of plane of 0.11 Å for Cu1. This plane makes a significantly large angle of 20.84 (7)° with the planar quinoxaline ring (atoms N1/C1/C2/N2/C3–C8). The geometry of the quinoxaline ring corresponds to tautomeric protonation at N2 [O3C2 = 1.220 (3) Å and C2—N2 = 1.360 (3) Å] (Allen, 2002).

The O1—C9 bond distance of the carboxylate group [1.280 (2) Å] is longer than O2—C9 [1.217 (2) Å], due to the coordination of atom O1 to CuII. This deviation of carboxylate group geometry is well known, with the longer C—O bond being in the range 1.28–1.30 Å and the shorter one in the range 1.22–1.24 Å (Segl'a et al., 1998; Klein et al., 1982; Ptasiewicz-Bąk et al., 1995; Konar et al., 2004).

The Cu1—O4A and Cu1—O4B bond distances (from DMSO) (Table 1) in (I) fall within the range 2.34–2.46 Å (Cu1—O4A is slightly shorter) found for octahedral copper(II) complexes containing DMSO in axial positions (Benali-Cherif et al., 1995; Bieller et al., 2005; Djedouani et al.,2006; Chan et al.,1996). The longest Cu—O(DMSO) bond distance in the previously reported complexes is 2.463 Å in bis[3-acetyl-6-methyl-2H-pyran-2,4(3H)-dionato]bis(dimethylsulfoxide)copper(II) (Djedouani et al., 2006), reflecting Jahn–Teller distortion. The Cu1—O4A bond (from the major DMSO component) in (I) differs slightly from the corresponding bond in hexakis(dimethylsulfoxide)copper(II) bis(hydrogensulfate) [2.34 (1) Å; Bieller et al., 2005] and from that observed in bis(2,4-diamino-6-(4-pyridyl)-1,3,5-triazine)bis(dimethylsulfoxide)copper(II) perchlorate [2.353 (9) Å; Chan et al., 1996]. In the latter compound, the S atom shows positional disorder in both DMSO ligands.

The complexes are linked by an intermolecular N—H···O hydrogen bond [2.838 (2) Å], formed between the quinoxaline N—H group and a carboxylate O atom, and by a weak intermolecular C—H···O hydrogen bond [3.392 (11) Å], which is formed between carboxylate O and methyl C atoms of a DMSO molecule. There is a weak intramolecular C—H···O hydrogen bond [3.065 (3) Å] formed between a phenyl C—H and the ligated carboxylate O donor atom (Table 2, Fig. 2).

Related literature top

For related literature, see: Allen (2002); Benali-Cherif, Pierrot, Baudrion & Aune (1995); Bieller et al. (2005); Chan et al. (1996); Djedouani et al. (2006); Jauch et al. (1993); Klein et al. (1982); Konar et al. (2004); Krogsgaard-Larsen, Liljefors & Madsen (2002); Liu et al. (2003); Ptasiewicz-Bąk, Leciejewicz & Zachara (1995); Segl'a, Jamnický, Koman, Šima & Glowiak (1998); Sheldrick (1997); Stone (1993); Turvey & Allan (1996).

Experimental top

A suspension of copper(II) hydroxide (0.03 g, 0.31 mmol) and 3-hydroxy-2-quinoxalinecarboxylic acid (0.12 g, 0.63 mmol) in dimethyl sulfoxide (20 ml) (molar ratio 1:2) was refluxed for 4 h to give a dark-red solution. Slow evaporation of this solution at room temperature yielded brown crystals of the title compound suitable for X-ray analysis.

Refinement top

The DMSO molecule exhibits positional disorder, which was easily resolved as 0.62(s.u.?):0.38(s.u.?) beginning with the electron density found in difference Fourier maps and refined using SHELXL97 instructions FVAR and PART (Sheldrick, 1997). The S—Cmethyl bond distances were restrained using the SHELXL97 DFIX instruction to the average values of 1.782 (2) and 1.786 (2) Å for the S—C11 and S—C10 bonds, respectively (Table 1). Atoms C10A and C10B were refined anisotropically in order to model as faithfully as possible the electron density in the disordered region, but these displacement parameters should not be taken as faithful representations of atomic displacement for these atoms. The H atom belonging to the quinoxaline N atom was found in a difference Fourier map at the final stages of refinement as a small electron density (approximately 0.5 e Å-3) and refined freely (Table 2). H atoms bonded to C atoms were introduced in calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for phenyl H, and with C—H = 0.96 Å and 1.5Ueq(C) for methyl H. Due to the absorption coefficient and crystal dimensions, the absorption effect was minimized using the multi-scan technique.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON98 (Spek, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Only the major component of the disordered DMSO molecule is shown. Unlabelled atoms are related to labelled atoms by the symmetry operator (-x, -y, -z). [Please check added text]
[Figure 2] Fig. 2. A packing view of (I). Hydrogen bonds are represented by dashed lines.
trans-Bis(dimethyl sulfoxide-κO)bis(3-oxoquinoxaline-2-carboxylato- κ2N1,O2)copper(II) top
Crystal data top
[Cu(C9H5N2O3)2(C2H6OS)2]F(000) = 614
Mr = 598.13Dx = 1.637 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4736 reflections
a = 9.4426 (1) Åθ = 15.5–20.5°
b = 8.3584 (1) ŵ = 1.13 mm1
c = 15.7881 (3) ÅT = 296 K
β = 103.213 (2)°Prism, brown
V = 1213.09 (3) Å30.43 × 0.43 × 0.10 mm
Z = 2
Data collection top
Oxford Xcalibur2
diffractometer with a Sapphire-3 CCD area-detector
2625 independent reflections
Radiation source: fine-focus sealed tube2280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.0°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1212
Tmin = 0.810, Tmax = 1.000k = 1010
15817 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.6834P]
where P = (Fo2 + 2Fc2)/3
2624 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.39 e Å3
4 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C9H5N2O3)2(C2H6OS)2]V = 1213.09 (3) Å3
Mr = 598.13Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.4426 (1) ŵ = 1.13 mm1
b = 8.3584 (1) ÅT = 296 K
c = 15.7881 (3) Å0.43 × 0.43 × 0.10 mm
β = 103.213 (2)°
Data collection top
Oxford Xcalibur2
diffractometer with a Sapphire-3 CCD area-detector
2625 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2280 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 1.000Rint = 0.021
15817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0354 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.39 e Å3
2624 reflectionsΔρmin = 0.31 e Å3
214 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.00000.00000.03484 (13)
O10.04486 (17)0.15477 (19)0.09136 (10)0.0439 (4)
O20.01249 (17)0.23633 (19)0.21228 (10)0.0429 (4)
O30.1942 (2)0.0171 (2)0.27400 (10)0.0545 (5)
N10.18881 (18)0.02291 (19)0.05023 (10)0.0318 (4)
C10.1558 (2)0.0312 (2)0.12928 (12)0.0282 (4)
C20.2315 (2)0.0207 (2)0.19746 (13)0.0349 (4)
N20.3424 (2)0.1245 (2)0.16708 (12)0.0388 (4)
H1N20.378 (3)0.165 (3)0.1999 (17)0.051 (8)*
C30.3900 (2)0.1696 (2)0.08175 (13)0.0344 (4)
C40.5127 (3)0.2654 (3)0.05343 (17)0.0499 (6)
H40.56530.30150.09280.060*
C50.5552 (3)0.3061 (3)0.03248 (19)0.0543 (6)
H50.63700.37010.05120.065*
C60.4783 (3)0.2533 (3)0.09236 (17)0.0520 (6)
H60.50910.28170.15060.062*
C70.3571 (3)0.1594 (3)0.06597 (15)0.0450 (5)
H70.30570.12400.10610.054*
C80.3112 (2)0.1172 (2)0.02193 (13)0.0330 (4)
C90.0312 (2)0.1496 (2)0.14881 (13)0.0321 (4)
S10.10998 (11)0.35069 (12)0.10119 (7)0.0498 (4)0.623 (3)
O4A0.1019 (5)0.1718 (5)0.1144 (3)0.0562 (10)0.623 (3)
C10A0.0687 (5)0.4275 (10)0.0948 (7)0.094 (4)0.623 (3)
H10A0.13630.37460.04860.141*0.623 (3)
H10B0.06980.54030.08340.141*0.623 (3)
H10C0.09600.40870.14890.141*0.623 (3)
C11A0.1822 (12)0.4314 (15)0.2067 (4)0.090 (3)0.623 (3)
H11A0.11940.40420.24450.134*0.623 (3)
H11B0.18870.54570.20280.134*0.623 (3)
H11C0.27730.38780.22960.134*0.623 (3)
S20.0882 (3)0.3056 (2)0.16041 (16)0.0790 (9)0.377 (3)
O4B0.1240 (9)0.2208 (9)0.0847 (6)0.068 (2)0.377 (3)
C10B0.0549 (15)0.416 (2)0.0918 (8)0.102 (7)0.377 (3)
H10D0.13710.42110.11800.153*0.377 (3)
H10E0.08280.36480.03620.153*0.377 (3)
H10F0.02180.52300.08430.153*0.377 (3)
C11B0.2192 (19)0.463 (2)0.1806 (10)0.076 (4)0.377 (3)
H11D0.31410.41830.20300.114*0.377 (3)
H11E0.19600.53580.22230.114*0.377 (3)
H11F0.21800.51850.12730.114*0.377 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0412 (2)0.0386 (2)0.03110 (19)0.01296 (15)0.02150 (15)0.00751 (14)
O10.0452 (9)0.0506 (9)0.0437 (8)0.0179 (7)0.0263 (7)0.0168 (7)
O20.0476 (9)0.0450 (8)0.0411 (8)0.0077 (7)0.0208 (7)0.0158 (7)
O30.0697 (12)0.0697 (12)0.0294 (8)0.0179 (9)0.0222 (8)0.0040 (7)
N10.0362 (8)0.0338 (9)0.0274 (8)0.0029 (7)0.0116 (7)0.0019 (6)
C10.0300 (9)0.0300 (9)0.0274 (9)0.0021 (7)0.0123 (7)0.0013 (7)
C20.0391 (10)0.0393 (11)0.0301 (10)0.0002 (8)0.0157 (8)0.0050 (8)
N20.0416 (10)0.0439 (10)0.0361 (9)0.0053 (8)0.0198 (8)0.0070 (8)
C30.0335 (10)0.0332 (10)0.0382 (11)0.0004 (8)0.0115 (8)0.0043 (8)
C40.0427 (12)0.0495 (13)0.0610 (15)0.0113 (10)0.0191 (11)0.0023 (12)
C50.0390 (12)0.0493 (14)0.0710 (17)0.0114 (10)0.0051 (12)0.0070 (12)
C60.0446 (13)0.0589 (15)0.0474 (13)0.0058 (11)0.0001 (10)0.0098 (12)
C70.0442 (12)0.0549 (14)0.0358 (11)0.0058 (10)0.0087 (9)0.0028 (10)
C80.0314 (9)0.0347 (10)0.0336 (10)0.0009 (8)0.0088 (8)0.0018 (8)
C90.0329 (10)0.0339 (10)0.0316 (10)0.0006 (8)0.0119 (8)0.0025 (8)
S10.0504 (6)0.0465 (6)0.0541 (7)0.0003 (4)0.0152 (5)0.0048 (5)
O4A0.074 (3)0.037 (2)0.058 (2)0.0012 (17)0.0156 (18)0.0014 (15)
C10A0.025 (2)0.050 (4)0.207 (11)0.005 (2)0.028 (4)0.033 (5)
C11A0.086 (7)0.087 (6)0.074 (5)0.026 (4)0.027 (4)0.036 (5)
S20.140 (2)0.0448 (11)0.0718 (15)0.0067 (11)0.0638 (15)0.0058 (9)
O4B0.076 (4)0.048 (4)0.095 (6)0.011 (3)0.048 (4)0.034 (4)
C10B0.151 (15)0.092 (12)0.055 (6)0.025 (10)0.006 (8)0.010 (7)
C11B0.074 (8)0.065 (8)0.081 (7)0.018 (5)0.005 (6)0.025 (7)
Geometric parameters (Å, º) top
Cu1—O11.9116 (14)C6—H60.9300
Cu1—N12.1191 (16)C7—C81.401 (3)
Cu1—O4A2.336 (5)C7—H70.9300
Cu1—O4B2.418 (7)S1—O4A1.514 (4)
O1—C91.280 (2)S1—C11A1.782 (2)
O2—C91.217 (2)S1—C10A1.786 (2)
O3—C21.220 (3)C10A—H10A0.9600
N1—C11.297 (2)C10A—H10B0.9600
N1—C81.386 (3)C10A—H10C0.9600
C1—C21.486 (3)C11A—H11A0.9600
C1—C91.514 (3)C11A—H11B0.9600
C2—N21.360 (3)C11A—H11C0.9600
N2—C31.372 (3)S2—O4B1.494 (7)
N2—H1N20.76 (3)S2—C11B1.782 (2)
C3—C41.396 (3)S2—C10B1.786 (2)
C3—C81.400 (3)C10B—H10D0.9600
C4—C51.366 (4)C10B—H10E0.9600
C4—H40.9300C10B—H10F0.9600
C5—C61.390 (4)C11B—H11D0.9600
C5—H50.9300C11B—H11E0.9600
C6—C71.371 (3)C11B—H11F0.9600
O1—Cu1—N180.74 (6)C7—C6—C5120.3 (2)
O1i—Cu1—N199.26 (6)C7—C6—H6119.8
O1—Cu1—O4A81.46 (11)C5—C6—H6119.8
O1i—Cu1—O4A98.54 (11)C6—C7—C8119.5 (2)
N1—Cu1—O4A83.58 (12)C6—C7—H7120.2
N1i—Cu1—O4A96.42 (12)C8—C7—H7120.2
O1—Cu1—O4Bi84.1 (2)N1—C8—C3119.55 (18)
N1—Cu1—O4Bi86.18 (17)N1—C8—C7120.59 (18)
O4A—Cu1—O4Bi163.43 (17)C3—C8—C7119.86 (19)
O1—Cu1—O4B95.9 (2)O2—C9—O1124.31 (19)
N1—Cu1—O4B93.82 (17)O2—C9—C1121.15 (17)
C9—O1—Cu1116.63 (13)O1—C9—C1114.44 (16)
C1—N1—C8120.52 (17)O4A—S1—C11A105.4 (5)
C1—N1—Cu1106.93 (12)O4A—S1—C10A106.6 (4)
C8—N1—Cu1129.92 (13)C11A—S1—C10A94.1 (6)
N1—C1—C2123.08 (17)S1—O4A—Cu1121.7 (2)
N1—C1—C9115.37 (16)O4B—S2—C11B102.6 (6)
C2—C1—C9121.54 (17)O4B—S2—C10B92.2 (6)
O3—C2—N2122.62 (19)C11B—S2—C10B97.1 (10)
O3—C2—C1124.31 (19)S2—O4B—Cu1129.4 (4)
N2—C2—C1112.94 (18)S2—C10B—H10D109.5
C2—N2—C3125.05 (18)S2—C10B—H10E109.5
C2—N2—H1N2118 (2)H10D—C10B—H10E109.5
C3—N2—H1N2117 (2)S2—C10B—H10F109.5
N2—C3—C4122.3 (2)H10D—C10B—H10F109.5
N2—C3—C8118.14 (18)H10E—C10B—H10F109.5
C4—C3—C8119.6 (2)S2—C11B—H11D109.5
C5—C4—C3119.7 (2)S2—C11B—H11E109.5
C5—C4—H4120.2H11D—C11B—H11E109.5
C3—C4—H4120.2S2—C11B—H11F109.5
C4—C5—C6121.0 (2)H11D—C11B—H11F109.5
C4—C5—H5119.5H11E—C11B—H11F109.5
C6—C5—H5119.5
N1—Cu1—O1—C914.91 (15)C5—C6—C7—C80.1 (4)
N1i—Cu1—O1—C9165.09 (15)C1—N1—C8—C37.5 (3)
O4A—Cu1—O1—C969.92 (19)Cu1—N1—C8—C3151.60 (15)
O4Ai—Cu1—O1—C9110.08 (19)C1—N1—C8—C7172.10 (19)
O4Bi—Cu1—O1—C9102.0 (2)Cu1—N1—C8—C728.8 (3)
O4B—Cu1—O1—C978.0 (2)N2—C3—C8—N10.2 (3)
O1—Cu1—N1—C121.50 (13)C4—C3—C8—N1179.6 (2)
O1i—Cu1—N1—C1158.50 (13)N2—C3—C8—C7179.4 (2)
O4A—Cu1—N1—C160.86 (15)C4—C3—C8—C70.9 (3)
O4Ai—Cu1—N1—C1119.14 (15)C6—C7—C8—N1179.8 (2)
O4Bi—Cu1—N1—C1106.1 (2)C6—C7—C8—C30.6 (3)
O4B—Cu1—N1—C173.9 (2)Cu1—O1—C9—O2177.43 (17)
O1—Cu1—N1—C8177.26 (18)Cu1—O1—C9—C16.1 (2)
O1i—Cu1—N1—C82.74 (18)N1—C1—C9—O2162.31 (19)
O4A—Cu1—N1—C8100.38 (19)C2—C1—C9—O219.1 (3)
O4Ai—Cu1—N1—C879.62 (19)N1—C1—C9—O114.3 (3)
O4Bi—Cu1—N1—C892.7 (3)C2—C1—C9—O1164.37 (18)
O4B—Cu1—N1—C887.3 (3)C11A—S1—O4A—Cu1175.7 (4)
C8—N1—C1—C28.9 (3)C10A—S1—O4A—Cu176.5 (5)
Cu1—N1—C1—C2154.46 (15)O1—Cu1—O4A—S1177.9 (3)
C8—N1—C1—C9172.49 (17)O1i—Cu1—O4A—S12.1 (3)
Cu1—N1—C1—C924.15 (19)N1—Cu1—O4A—S196.4 (3)
N1—C1—C2—O3173.1 (2)N1i—Cu1—O4A—S183.6 (3)
C9—C1—C2—O35.5 (3)O4Bi—Cu1—O4A—S1148.6 (8)
N1—C1—C2—N22.9 (3)O4B—Cu1—O4A—S131.4 (8)
C9—C1—C2—N2178.61 (17)C11B—S2—O4B—Cu1175.3 (9)
O3—C2—N2—C3179.2 (2)C10B—S2—O4B—Cu177.4 (9)
C1—C2—N2—C34.8 (3)O1—Cu1—O4B—S267.3 (7)
C2—N2—C3—C4174.1 (2)O1i—Cu1—O4B—S2112.7 (7)
C2—N2—C3—C86.1 (3)N1—Cu1—O4B—S213.8 (7)
N2—C3—C4—C5179.8 (2)N1i—Cu1—O4B—S2166.2 (7)
C8—C3—C4—C50.5 (3)O4A—Cu1—O4B—S238.1 (6)
C3—C4—C5—C60.1 (4)O4Ai—Cu1—O4B—S2141.9 (6)
C4—C5—C6—C70.3 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2ii0.76 (3)2.08 (3)2.838 (2)176 (3)
C7—H7···O1i0.932.433.065 (3)125
C11A—H11C···O2iii0.962.433.392 (11)177
Symmetry codes: (i) x, y, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C9H5N2O3)2(C2H6OS)2]
Mr598.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.4426 (1), 8.3584 (1), 15.7881 (3)
β (°) 103.213 (2)
V3)1213.09 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.43 × 0.43 × 0.10
Data collection
DiffractometerOxford Xcalibur2
diffractometer with a Sapphire-3 CCD area-detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.810, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15817, 2625, 2280
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.11
No. of reflections2624
No. of parameters214
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON98 (Spek, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O11.9116 (14)N2—C31.372 (3)
Cu1—N12.1191 (16)S1—O4A1.514 (4)
Cu1—O4A2.336 (5)S1—C11A1.782 (2)
Cu1—O4B2.418 (7)S1—C10A1.786 (2)
O1—C91.280 (2)S2—O4B1.494 (7)
O2—C91.217 (2)S2—C11B1.782 (2)
O3—C21.220 (3)S2—C10B1.786 (2)
C2—N21.360 (3)
O1—Cu1—N180.74 (6)N1i—Cu1—O4A96.42 (12)
O1i—Cu1—N199.26 (6)O1—Cu1—O4Bi84.1 (2)
O1—Cu1—O4A81.46 (11)N1—Cu1—O4Bi86.18 (17)
O1i—Cu1—O4A98.54 (11)O1—Cu1—O4B95.9 (2)
N1—Cu1—O4A83.58 (12)N1—Cu1—O4B93.82 (17)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2ii0.76 (3)2.08 (3)2.838 (2)176 (3)
C7—H7···O1i0.932.4343.065 (3)125
C11A—H11C···O2iii0.962.4333.392 (11)177
Symmetry codes: (i) x, y, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds