Download citation
Download citation
link to html
The syntheses of 4-[4-(4,4,5,5-tetra­methyl-2-imidazoline-3-oxide-1-oxyl-2-yl)phen­oxy]phthalo­nitrile (3, C21H19N4O3) and 4-[4-(4,4,5,5-tetra­methyl-2-imidazoline-1-oxyl-2-yl)phen­oxy]phthalo­nitrile (4) were carried out by microwave-assisted nucleophilic aromatic substitution of 4-nitro­phthalo­nitrile (2) by the pre-formed 2-(4-hy­droxy­phen­yl)-4,4,5,5-tetra­methyl-2-imidazoline-3-oxide-1-oxyl (1). Com­pounds 3 and 4 were characterized unambiguously by a rich array of analyses, such as melting point, FT–IR, MALDI–TOF MS, elemental analysis, UV–Vis, CV, EPR, magnetic measurements and single-crystal X-ray diffraction. Structural studies demonstrate that the C—H...X and C—X...π (X = O and N) inter­actions in the radical nitronyl nitroxide groups play an important role in the assembly of the crystal structures. Moreover, cyclic voltammetry analyses show that the phthalo­nitrile substituent retains the redox properties of the Ullman radicals.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621001832/ep3013sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621001832/ep3013Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621001832/ep3013sup3.pdf
Additional figures and information

CCDC reference: 1913919

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009, 2015) and Mercury (Macrae et al., 2020).

4-[4-(4,4,5,5-Tetramethyl-2-imidazoline-3-oxide-1-oxyl-2-yl)phenoxy]benzene-1,2-dicarbonitrile top
Crystal data top
C21H19N4O3F(000) = 788
Mr = 375.40Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.575 (3) ÅCell parameters from 1457 reflections
b = 17.149 (5) Åθ = 2.3–21.9°
c = 10.615 (3) ŵ = 0.09 mm1
β = 108.434 (14)°T = 173 K
V = 1826.3 (9) Å3Plate, blue
Z = 40.24 × 0.15 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3237 independent reflections
Multilayer QUAZAR mirrors monochromator1988 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.084
φ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1212
Tmin = 0.983, Tmax = 0.992k = 2020
12874 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0704P)2 + 1.145P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3237 reflectionsΔρmax = 0.30 e Å3
257 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The data were obtained with Bruker APEX II QUAZAR three-circle diffractometer. Indexing was performed using APEX2 (Bruker, 2014). Data integration and reduction were carried out with SAINT (Bruker, 2013). Absorption correction was performed by multi-scan method implemented in SADABS (Bruker, 2014). The structure was solved using SHELXT (Sheldrick, 2015) and then refined by full-matrix least-squares refinements on F2 using the SHELXL (Sheldrick, 2015) in OLEX2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically using all reflections with I > 2σ(I).

Crystal structure validations and geometrical calculations were performed using Platon software and Mercury was used for visualization of the cif file (Spek, 2009; Spek 2015; Macrae et al., 2006). Additional crystallographic data with CCDC reference number 1913919 have been deposited within the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/deposit

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8584 (2)0.07900 (15)0.5861 (2)0.0351 (7)
O20.2906 (2)0.04040 (15)0.6936 (2)0.0383 (7)
O30.5691 (2)0.21512 (15)0.9834 (2)0.0383 (7)
N51.2488 (4)0.0964 (2)0.3142 (3)0.0484 (9)
N60.9779 (3)0.2050 (2)0.0376 (3)0.0414 (9)
N70.3399 (3)0.08735 (17)0.7906 (3)0.0268 (7)
N80.4735 (3)0.16700 (17)0.9304 (3)0.0277 (7)
C1011.1465 (4)0.1049 (2)0.3271 (3)0.0331 (9)
C1020.9488 (3)0.1865 (2)0.1284 (3)0.0319 (9)
C1031.0181 (3)0.1195 (2)0.3424 (3)0.0247 (8)
C1040.9210 (3)0.1618 (2)0.2464 (3)0.0273 (8)
C1050.8008 (3)0.1790 (2)0.2667 (3)0.0294 (9)
H1050.7354430.2084960.2022930.035*
C1060.7755 (3)0.1538 (2)0.3796 (3)0.0312 (9)
H1060.6938050.1664360.3942190.037*
C1070.8706 (3)0.1098 (2)0.4712 (3)0.0272 (8)
C1080.9933 (3)0.0932 (2)0.4550 (3)0.0278 (8)
H1081.0588140.0643590.5203260.033*
C1090.7512 (3)0.0952 (2)0.6318 (3)0.0285 (8)
C1100.6201 (3)0.0815 (2)0.5589 (3)0.0306 (9)
H1100.5965640.0650010.4690150.037*
C1110.5228 (3)0.0925 (2)0.6203 (3)0.0288 (8)
H1110.4318140.0839320.5711680.035*
C1120.5568 (3)0.1159 (2)0.7518 (3)0.0243 (8)
C1130.6913 (3)0.1287 (2)0.8226 (3)0.0324 (9)
H1130.7160740.1445910.9128740.039*
C1140.7877 (3)0.1184 (2)0.7625 (3)0.0310 (9)
H1140.8788470.1272160.8108010.037*
C1150.4587 (3)0.1242 (2)0.8200 (3)0.0242 (8)
C1160.3731 (3)0.1465 (2)0.9981 (3)0.0273 (8)
C1170.2598 (3)0.1142 (2)0.8778 (3)0.0285 (8)
C1180.4389 (4)0.0853 (2)1.1017 (3)0.0407 (10)
H11A0.5205800.1069141.1641840.061*
H11B0.4610490.0394591.0577530.061*
H11C0.3775700.0702271.1499170.061*
C1190.3367 (4)0.2178 (2)1.0622 (4)0.0373 (9)
H11D0.3118340.2602210.9971270.056*
H11E0.4132540.2339531.1374290.056*
H11F0.2613080.2056671.0938200.056*
C1200.1838 (4)0.0463 (2)0.9080 (4)0.0402 (10)
H12A0.2453430.0031520.9440940.060*
H12B0.1156730.0293290.8262940.060*
H12C0.1407850.0622120.9732860.060*
C1210.1667 (3)0.1770 (2)0.8016 (3)0.0365 (9)
H12D0.1068260.1551510.7188810.055*
H12E0.2188310.2195200.7807910.055*
H12F0.1140030.1972220.8555420.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (14)0.0525 (18)0.0307 (14)0.0069 (11)0.0158 (11)0.0075 (12)
O20.0316 (14)0.0453 (18)0.0381 (15)0.0086 (12)0.0112 (12)0.0186 (13)
O30.0308 (14)0.0474 (18)0.0365 (14)0.0128 (12)0.0103 (11)0.0152 (13)
N50.043 (2)0.058 (3)0.053 (2)0.0108 (17)0.0270 (18)0.0105 (18)
N60.0362 (19)0.058 (2)0.0287 (18)0.0032 (16)0.0080 (14)0.0016 (16)
N70.0245 (16)0.0310 (18)0.0253 (16)0.0012 (13)0.0084 (12)0.0044 (13)
N80.0225 (15)0.0348 (19)0.0269 (16)0.0019 (13)0.0092 (12)0.0014 (14)
C1010.038 (2)0.035 (2)0.029 (2)0.0018 (17)0.0139 (17)0.0036 (17)
C1020.029 (2)0.039 (2)0.025 (2)0.0032 (16)0.0055 (16)0.0012 (17)
C1030.0274 (19)0.027 (2)0.0225 (18)0.0019 (15)0.0112 (14)0.0040 (15)
C1040.027 (2)0.034 (2)0.0204 (18)0.0034 (15)0.0065 (14)0.0061 (16)
C1050.027 (2)0.032 (2)0.0254 (19)0.0019 (15)0.0042 (15)0.0013 (16)
C1060.0210 (19)0.041 (2)0.030 (2)0.0022 (16)0.0069 (15)0.0059 (17)
C1070.028 (2)0.033 (2)0.0226 (18)0.0017 (16)0.0108 (15)0.0024 (16)
C1080.0236 (19)0.032 (2)0.0271 (19)0.0006 (15)0.0068 (15)0.0017 (16)
C1090.027 (2)0.035 (2)0.0282 (19)0.0039 (15)0.0158 (15)0.0034 (16)
C1100.030 (2)0.039 (2)0.0243 (18)0.0021 (16)0.0115 (15)0.0006 (16)
C1110.0225 (19)0.038 (2)0.0244 (19)0.0005 (15)0.0046 (15)0.0001 (16)
C1120.0240 (19)0.026 (2)0.0228 (18)0.0032 (14)0.0074 (14)0.0019 (15)
C1130.027 (2)0.045 (2)0.0236 (19)0.0022 (16)0.0054 (15)0.0018 (17)
C1140.0236 (19)0.041 (2)0.029 (2)0.0000 (16)0.0092 (15)0.0017 (17)
C1150.0227 (19)0.028 (2)0.0208 (18)0.0002 (15)0.0053 (14)0.0000 (15)
C1160.0229 (19)0.036 (2)0.0243 (18)0.0004 (15)0.0099 (14)0.0019 (16)
C1170.026 (2)0.034 (2)0.0281 (19)0.0021 (15)0.0127 (15)0.0002 (16)
C1180.040 (2)0.057 (3)0.027 (2)0.0090 (19)0.0138 (17)0.0057 (19)
C1190.035 (2)0.043 (3)0.038 (2)0.0020 (18)0.0181 (17)0.0100 (19)
C1200.038 (2)0.043 (3)0.045 (2)0.0122 (18)0.0224 (19)0.0040 (19)
C1210.027 (2)0.046 (3)0.037 (2)0.0072 (17)0.0100 (16)0.0035 (18)
Geometric parameters (Å, º) top
O1—C1071.372 (4)C111—H1110.9500
O1—C1091.394 (4)C111—C1121.386 (4)
O2—N71.281 (3)C112—C1131.400 (5)
O3—N81.289 (3)C112—C1151.447 (4)
N5—C1011.142 (4)C113—H1130.9500
N6—C1021.146 (4)C113—C1141.375 (5)
N7—C1151.352 (4)C114—H1140.9500
N7—C1171.510 (4)C116—C1171.551 (5)
N8—C1151.350 (4)C116—C1181.519 (5)
N8—C1161.499 (4)C116—C1191.508 (5)
C101—C1031.440 (5)C117—C1201.506 (5)
C102—C1041.438 (5)C117—C1211.511 (5)
C103—C1041.399 (5)C118—H11A0.9800
C103—C1081.377 (4)C118—H11B0.9800
C104—C1051.387 (5)C118—H11C0.9800
C105—H1050.9500C119—H11D0.9800
C105—C1061.378 (5)C119—H11E0.9800
C106—H1060.9500C119—H11F0.9800
C106—C1071.381 (5)C120—H12A0.9800
C107—C1081.391 (5)C120—H12B0.9800
C108—H1080.9500C120—H12C0.9800
C109—C1101.377 (5)C121—H12D0.9800
C109—C1141.376 (5)C121—H12E0.9800
C110—H1100.9500C121—H12F0.9800
C110—C1111.393 (5)
C107—O1—C109123.2 (3)C109—C114—H114120.3
O2—N7—C115126.2 (3)C113—C114—C109119.5 (3)
O2—N7—C117121.3 (3)C113—C114—H114120.3
C115—N7—C117112.2 (3)N7—C115—C112126.8 (3)
O3—N8—C115125.9 (3)N8—C115—N7107.3 (3)
O3—N8—C116121.2 (3)N8—C115—C112125.7 (3)
C115—N8—C116112.5 (3)N8—C116—C11799.7 (2)
N5—C101—C103177.3 (4)N8—C116—C118106.1 (3)
N6—C102—C104176.3 (4)N8—C116—C119110.3 (3)
C104—C103—C101120.6 (3)C118—C116—C117114.0 (3)
C108—C103—C101119.1 (3)C119—C116—C117114.8 (3)
C108—C103—C104120.3 (3)C119—C116—C118110.9 (3)
C103—C104—C102118.9 (3)N7—C117—C116100.1 (2)
C105—C104—C102121.5 (3)C120—C117—N7109.6 (3)
C105—C104—C103119.7 (3)C120—C117—C116115.2 (3)
C104—C105—H105119.7C120—C117—C121111.4 (3)
C106—C105—C104120.5 (3)C121—C117—N7106.6 (3)
C106—C105—H105119.7C121—C117—C116112.9 (3)
C105—C106—H106120.5C116—C118—H11A109.5
C105—C106—C107119.0 (3)C116—C118—H11B109.5
C107—C106—H106120.5C116—C118—H11C109.5
O1—C107—C106125.7 (3)H11A—C118—H11B109.5
O1—C107—C108112.7 (3)H11A—C118—H11C109.5
C106—C107—C108121.6 (3)H11B—C118—H11C109.5
C103—C108—C107118.8 (3)C116—C119—H11D109.5
C103—C108—H108120.6C116—C119—H11E109.5
C107—C108—H108120.6C116—C119—H11F109.5
C110—C109—O1123.7 (3)H11D—C119—H11E109.5
C114—C109—O1114.1 (3)H11D—C119—H11F109.5
C114—C109—C110121.8 (3)H11E—C119—H11F109.5
C109—C110—H110120.8C117—C120—H12A109.5
C109—C110—C111118.4 (3)C117—C120—H12B109.5
C111—C110—H110120.8C117—C120—H12C109.5
C110—C111—H111119.5H12A—C120—H12B109.5
C112—C111—C110121.0 (3)H12A—C120—H12C109.5
C112—C111—H111119.5H12B—C120—H12C109.5
C111—C112—C113118.8 (3)C117—C121—H12D109.5
C111—C112—C115122.3 (3)C117—C121—H12E109.5
C113—C112—C115118.9 (3)C117—C121—H12F109.5
C112—C113—H113119.8H12D—C121—H12E109.5
C114—C113—C112120.5 (3)H12D—C121—H12F109.5
C114—C113—H113119.8H12E—C121—H12F109.5
O1—C107—C108—C103178.9 (3)C109—O1—C107—C1066.6 (5)
O1—C109—C110—C111173.5 (3)C109—O1—C107—C108172.4 (3)
O1—C109—C114—C113173.7 (3)C109—C110—C111—C1120.7 (5)
O2—N7—C115—N8179.0 (3)C110—C109—C114—C1130.3 (6)
O2—N7—C115—C1122.7 (5)C110—C111—C112—C1130.3 (5)
O2—N7—C117—C116163.6 (3)C110—C111—C112—C115177.0 (3)
O2—N7—C117—C12042.0 (4)C111—C112—C113—C1140.1 (5)
O2—N7—C117—C12178.7 (4)C111—C112—C115—N725.1 (5)
O3—N8—C115—N7174.2 (3)C111—C112—C115—N8159.3 (3)
O3—N8—C115—C1129.5 (5)C112—C113—C114—C1090.1 (5)
O3—N8—C116—C117160.8 (3)C113—C112—C115—N7152.2 (3)
O3—N8—C116—C11880.6 (4)C113—C112—C115—N823.5 (5)
O3—N8—C116—C11939.6 (4)C114—C109—C110—C1110.6 (5)
N8—C116—C117—N726.2 (3)C115—N7—C117—C11622.4 (3)
N8—C116—C117—C120143.6 (3)C115—N7—C117—C120144.0 (3)
N8—C116—C117—C12186.8 (3)C115—N7—C117—C12195.4 (3)
C101—C103—C104—C1023.6 (5)C115—N8—C116—C11725.6 (3)
C101—C103—C104—C105176.3 (3)C115—N8—C116—C11893.1 (3)
C101—C103—C108—C107177.9 (3)C115—N8—C116—C119146.8 (3)
C102—C104—C105—C106179.1 (3)C115—C112—C113—C114177.5 (3)
C103—C104—C105—C1061.1 (5)C116—N8—C115—N712.5 (4)
C104—C103—C108—C1070.2 (5)C116—N8—C115—C112163.9 (3)
C104—C105—C106—C1071.2 (5)C117—N7—C115—N87.3 (4)
C105—C106—C107—O1178.3 (3)C117—N7—C115—C112176.4 (3)
C105—C106—C107—C1082.8 (5)C118—C116—C117—N786.5 (3)
C106—C107—C108—C1032.1 (5)C118—C116—C117—C12031.0 (4)
C107—O1—C109—C11057.1 (5)C118—C116—C117—C121160.6 (3)
C107—O1—C109—C114129.5 (3)C119—C116—C117—N7144.0 (3)
C108—C103—C104—C102178.4 (3)C119—C116—C117—C12098.6 (4)
C108—C103—C104—C1051.8 (5)C119—C116—C117—C12131.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C118—H11C···N5i0.982.573.469 (6)153
C105—H105···O3ii0.952.433.282 (4)149
C108—H108···O2iii0.952.593.476 (4)155
C111—H111···O20.952.392.940 (4)117
C113—H113···O30.952.272.859 (4)119
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z1; (iii) x+1, y, z.
Selected bond lengths (Å) and bond angles (°) for compound 3 top
Bond lengths (Å)
Phthalonitrile moietyNitronyl nitroxide moiety
O1—C1071.372 (4)O2—N71.281 (3)
O1—C1091.394 (4)O3—N81.289 (3)
N5—C1011.142 (4)N7– C1151.352 (4)
N6—C1021.146 (4)N8– C1151.350 (4)
C101—C1031.440 (5)N7—C1171.510 (4)
C102—C1041.438 (5)N8—C1161.499 (4)
Bond angles (°)
Phthalonitrile moietyNitronyl nitroxide moiety
C104—C103—C101120.6 (3)O2—N7—C115126.2 (3)
C103—C104—C102118.9 (3)O2—N7—C117121.3 (3)
C107—O1—C109123.2 (3)O3—N8—C115125.9 (3)
O8—N3—C116121.2 (3)
Intermolecular N—O···π and C—N···π interaction parameters (Å and °) for compound 3 top
Cg1 and Cg2 are the centroids of the C103–C108 and C109–C114 rings, respectively.
YX···πX···πYX···πY···π
N7—O2···Cg1iv3.563 (3)136.66 (19)4.580 (4)
N8—O3···Cg2v3.729 (3)142.93 (19)4.820 (4)
C101—N5···Cg2vi3.612 (4)114.0 (3)4.208 (4)
C102—N6···Cg1vii3.268 (4)128.6 (3)4.082 (4)
Symmetry codes: (iv) -x+1, -y, -z+1; (v) x, -y+1/2, z+1/2; (vi) -x+2, -y, -z+1; (vii) x, -y+1/2, z-1/2.
UV–Vis data for the nπ* transitions of phthalonitriles 3 and 4 at room temperaturea top
Nitronyl nitroxideImino nitroxide
Solventλmax 3ε 3λmax PhNNbε PhNNbλmax 4ε 4λmax PhINcε PhINc
Acetonitrile615491583485445484441418
Dichloromethane621555608d731d447512443d484d
Toluene637454631481449479445442
Notes: (a) λmax in nm, ε in cm-1 M-1; (b) taken from Fidan et al. (2017); (c) taken from Fidan et al. (2016); (d) spectrum recorded in CHCl3.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds